Low Charge Injection, 8-Channel, High Voltage, Enhanced Analog Switch with Bleed Resistors

Features

HVCMOS technology for high performance

- Integrated bleed resistors on the outputs
- 8 Channels of high voltage analog switch
- 3.3 or 5.0 V CMOS input logic level
- 20 MHz data shift clock frequency
- Very low quiescent power dissipation (-10 A)
- Low parasitic capacitance
- DC to 50 MHz analog signal frequency
- -60 dB typical off-isolation at 5 MHz
- CMOS logic circuitry for low power
- Excellent noise immunity
- Cascadable serial data register with latches
- Flexible operating supply voltages

Applications

- Medical ultrasound imaging
- NDT metal flaw detection
- Piezoelectric transducer drivers
- Inkjet printer heads
- Optical MEMS modules

General Description

The Supertex HV2301 is a low charge injection, 8-channel, high voltage analog switch integrated circuit (IC) with bleed resistors. The device can be used in applications requiring high voltage switching, controlled by low voltage control signals, such as medical ultrasound imaging, piezoelectric transducer driver, and printers. The built-in bleed resistors eliminate voltage built up on capacitive loads such as piezoelectric transducers. The HV2301 is an enhanced version of the HV232.

Input data is shifted into an 8 -bit shift register that can then be retained in an 8 -bit latch. To reduce any possible clock feedthrough noise, the latch enable bar should be left high until all bits are clocked in. Data is clocked in during the rising edge of the clock. Using HVCMOS technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

The device is suitable for various combinations of high voltage supplies, e.g., $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\text {NN }}:+40 \mathrm{~V} /-160 \mathrm{~V},+100 \mathrm{~V} /-100 \mathrm{~V}$, and $+160 \mathrm{~V} /-$ 40 V .

Block Diagram

Ordering Information

Device	Package Options	
	48-Lead LQFP $7.00 \times 7.00 \mathrm{~mm}$ body 1.60 mm height (max) 0.50 mm pitch	28-Lead PLCC .453x.453in body .180in height (max) .050in pitch
HV2301	HV2301FG-G	HV2301PJ-G

-G indicates the part is RoHS compliant (Green)

Absolute Maximum Ratings

Parameter	Value
V_{DD} logic supply	-0.5 V to +7 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\text {NN }}$ differential supply	220 V
$\mathrm{~V}_{P P}$ positive supply	-0.5 V to $\mathrm{V}_{\text {NN }}+200 \mathrm{~V}$
$\mathrm{~V}_{\text {NN }}$ negative supply	+0.5 V to -200 V
Logic input voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power dissipation:	
48-Lead LQFP	1.0 W
28 -Lead PLCC	1.2 W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Operating Conditions

Sym	Parameter	Value
V_{DD}	Logic power supply voltage	3.0 V to 5.5 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive high voltage supply	40 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-40 V to -160 V
$\mathrm{~V}_{\text {IH }}$	High level input voltage	$0.9 \mathrm{~V}_{\mathrm{DD}}$ to V_{DD}
V_{IL}	Low-level input voltage	0 V to $0.1 \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\mathrm{SIG}}$	Analog signal voltage peak-to-peak	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Notes:

1. Power up/down sequence is arbtrary except GND must be powered-up first and powered down last.
2. $V_{S I G}$ must be $V_{N N} \leq V_{S I G} \leq V_{P P}$ or floating during power up/down transition.
3. Rise and fall times of power supplies $V_{D D}, V_{P P}$ and $V_{N N}$ should not be less than 1.0 msec .

Pin Configuration

48-Lead LQFP (FG) (top view)

28-Lead PLCC (PJ) (top view)

Product Marking

$Y Y=$ Year Sealed
WW = Week Sealed
L = Lot Number
Bottom Marking
C = Country of Origin*

A = Assembler ID*
\qquad = "Green" Packaging
*May be part of top marking
Package may or may not include the following marks: Si or
48-Lead LQFP (FG)

YY = Year Sealed
WW = Week Sealed
L = Lot Number
A = Assembler ID
C = Country of Origin*
\ldots = "Green" Packaging
*May be part of top marking

Package may or may not include the following marks: Si or 48
28-Lead PLCC (PJ)

DC Electrical Characteristics
(Over operating conditions unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Typ	Max	Min	Max				
$\mathrm{R}_{\text {ONS }}$	Small signal switch on-resistance	-	30	-	26	38	-	48	Ω	$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$	
		-	25	-	22	27	-	32		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
		-	25	-	22	27	-	30		$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$	
		-	18	-	18	24	-	27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
		-	23	-	20	25	-	30		$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+160 \mathrm{~V} \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$	
		-	22	-	16	25	-	27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
$\Delta R_{\text {ons }}$	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	\%	$\begin{aligned} & I_{\text {SIG }}=5.0 \mathrm{~mA}, V_{P P}=+100 \mathrm{~V}, \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$		
$\mathrm{R}_{\mathrm{ONL}}$	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1.0 \mathrm{~A}$		
$\mathrm{R}_{\mathrm{INT}}$	Value of output bleed resistance	-	-	20	35	50	-	-	K Ω	Output switch to RGND$\mathrm{I}_{\mathrm{RINT}}=0.5 \mathrm{~mA}$		
$\mathrm{I}_{\text {soL }}$	Switch off leakage per switch	-	5.0	-	1.0	10	-	15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{~V}_{\text {NN }}+10 \mathrm{~V}$		
$\mathrm{V}_{\text {os }}$	DC offset switch off	-	300	-	100	300	-	300	mV	No load		
	DC offset switch on	-	500	-	100	500	-	500	mV			
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches off		
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-	$\mu \mathrm{A}$	All switches off		
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\text {sw }}=5.0 \mathrm{~mA}$		
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\text {sw }}=5.0 \mathrm{~mA}$		
I_{sw}	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycly $<0.1 \%$		
$\mathrm{f}_{\text {sw }}$	Output switching frequency	-	-	-	-	50	-	-	kHz	Duty cycle $=50 \%$		
I_{PP}	Average V_{PP} supply current	-	4.0	-	-	5.0	-	5.5	mA	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$	All output switches are turning on and off at 50 kHz with no load	
		-	3.5	-	-	3.5	-	3.5		$\begin{aligned} & V_{P P}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$		
		-	3.5	-	-	3.5	-	4.0		$\begin{aligned} & V_{P P}=+160 \mathrm{~V} \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$		
	Average V_{NN} supply curent	-	4.5	-	-	5.0	-	5.5	mA	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$	All output switches are turning on and off at 50 kHz with no load	
$\mathrm{I}_{\text {NN }}$		-	3.5	-	-	3.5	-	3.5		$\begin{aligned} & V_{\mathrm{PP}}=+100 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$		
		-	3.5	-	-	3.5	-	4.0		$\begin{aligned} & \hline V_{P P}=+160 \mathrm{~V} \\ & V_{N N}=-40 \mathrm{~V} \\ & \hline \end{aligned}$		
I_{DD}	Average V_{DD} supply current	-	4.0	-	-	4.0	-	4.0	mA	$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent V_{DD} supply current	-	10	-	-	10	-	10	$\mu \mathrm{A}$	All logic inputs are static		
$\mathrm{I}_{\text {SOR }}$	Data out source current	0.45	-	0.45	0.70	-	0.40	-	mA	$V_{\text {OUT }}=V_{D D}-0.7 \mathrm{~V}$		
$\mathrm{I}_{\text {SINK }}$	Data out sink current	0.45	-	0.45	0.70	-	0.40	-	mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$		
$\mathrm{C}_{\text {IN }}$	Logic input capacitance	-	10	-	-	10	-	10	pF	---		

AC Electrical Characteristics

(Over recommended operating conditions: $V_{D D}=5.0 \mathrm{~V}, t_{R}=t_{F} \leq 5 n s, 50 \%$ duty cycle, $C_{\text {LOAD }}=20 \mathrm{pF}$ unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
$\mathrm{t}_{\text {SD }}$	Set up time before $\overline{\mathrm{LE}}$ rises	25	-	25	-	-	25	-	ns	---
$\mathrm{t}_{\text {wLE }}$	Time width of $\overline{L E}$	56	-	-	56	-	56	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		12	-	-	12	-	12	-		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
t_{DO}	Clock delay time to data out	-	120	-	95	140	-	167	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		-	58	-	40	69	-	85		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {wCL }}$	Time width of CL	55	-	55	30	-	55	-	ns	---
$t_{\text {su }}$	Set up time data to clock	39	-	47	30	-	58	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		16	-	21	10	-	26	-		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
t_{H}	Hold time data from clock	2	-	2	-	-	2	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.0$ or 5.0 V
$\mathrm{f}_{\text {CLK }}$	Clock frequency	-	-	-	-	8.0	-	-	MHz	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Clock rise and fall times	-	50		-	50	-	50	ns	---
t_{oN}	Turn on time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega$
$\mathrm{t}_{\text {OFF }}$	Turn off time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega$
dv/dt	Maximun $\mathrm{V}_{\text {SIG }}$ slew rate	-	20	-	-	20	-	20	V/ns	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\text {PP }}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$
K	Off isolation	-30	-	-30	-33	-	-30	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1 \mathrm{k} \Omega / 15 \mathrm{pF}$ load
		-58	-	-58	-	-	-58	-		$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
K_{CR}	Switch crosstalk	-60	-	-60	-70	-	-60	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
$1{ }_{\text {ID }}$	Output switch isolation diode current	-	300	-	-	300	-	300	mA	300ns pulse width, 2.0\% duty cycle
$\mathrm{C}_{\text {SG(OFF) }}$	Off capacitance SW to GND	5.0	17	5.0	12	17	5.0	17	pF	$\mathrm{OV}, \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\text {SG(ON) }}$	On capacitance SW to GND	25	50	25	38	50	25	50	pF	$\mathrm{OV}, \mathrm{f}=1.0 \mathrm{MHz}$
$+\mathrm{V}_{\text {SPK }}$	Output voltage spike	-	-	-	-	150	-	-	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
$-V_{\text {SPK }}$		-	-	-	-	150	-	-		
+ $\mathrm{V}_{\text {SPK }}$		-	-	-	-	150	-	-		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$,
- $\mathrm{V}_{\text {SPK }}$		-	-	-	-	150	-	-		$R_{\text {LOAD }}^{P P}=50 \Omega$
$+\mathrm{V}_{\text {SPK }}$		-	-	-	-	150	-	-		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$,
$-V_{\text {SPK }}$		-	-	-	-	150	-	-		$R_{\text {LOAD }}=50 \Omega$
QC	Charge injection	-	-	-	820	-	-	-	pC	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$
		-	-	-	600	-	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$
		-	-	-	350	-	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$

Truth Table

D0	D1	D2	D3	D4	D5	D6	D7	$\overline{\text { LE }}$	CLR	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	Off							
H								L	L	On							
	L							L	L		Off						
	H							L	L		On						
		L						L	L			Off					
		H						L	L			On					
			L					L	L				Off				
			H					L	L				On				
				L				L	L					Off			
				H				L	L					On			
					L			L	L						Off		
					H			L	L						On		
						L		L	L							Off	
						H		L	L							On	
							L	L	L								Off
							H	L	L								On
X	X	X	X	X	X	X	X	H	L	Hold Previous State							
X	X	X	X	X	X	X	X	X	H	All Switches Off							

Notes:

1. The eight switches operate independently.
2. Serial data is clocked in on the L to H transition of the CLK.
3. The switches go to a state retaining their present condition at the rising edge of $\overline{L E}$. When $\overline{L E}$ is low the shift register data flow through the latch. $D_{\text {OUT }}$ is high when data in the shift register 7 is high.
Shift register clocking has no effect on the switch states if $\overline{L E}$ is high.
4. The CLR clear input overrides all other inputs.

Typical Waveforms

Test Circuits

OFF Isolation

Isolation Diode Current

Crosstalk

Charge Injection

Output Voltage Spike

Pin Configuration
48-Lead LQFP (FG)

Pin \#	Pin Name	Pin \#	Pin Name
1	SW5	25	VNN
2	NC	26	NC
3	SW4	27	RGND
4	NC	28	GND
5	SW4	29	VDD
6	NC	30	NC
7	NC	31	NC
8	SW3	32	NC
9	NC	33	DIN
10	SW3	34	CLK
11	NC	35	$\overline{\text { LE }}$
12	SW2	36	CLR
13	NC	37	DOUT
14	SW2	38	NC
15	NC	39	SW7
16	SW1	40	NC
17	NC	41	SW7
18	SW1	42	NC
19	NC	43	SW6
20	SW0	44	NC
21	NC	45	SW6
22	SW0	46	NC
23	NC	47	SW5
24	VPP	48	NC

Pin Configuration
28-Lead PLCC (PJ)

Pin \#	Pin Name	Pin \#	Pin Name
1	SW3	15	NC
2	SW3	16	DIN
3	SW2	17	CLK
4	SW2	18	$\overline{\text { LE }}$
5	SW1	19	CLR
6	SW1	20	DOUT
7	SW0	21	SW7
8	SW0	22	SW7
9	NC	23	SW6
10	VPP	24	SW6
11	RGND	25	SW5
12	VNN	26	SW5
13	GND	27	SW4
14	VDD	28	SW4

48-Lead LQFP Package Outline (FG)

$7.00 \times 7.00 \mathrm{~mm}$ body, 1.60 mm height (max), 0.50 mm pitch

View B

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded marklidentifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ
Dimension (mm)	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.45	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60			$3.5{ }^{\circ}$
	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*		0.75			7°

[^0]Drawings are not to scale.
Supertex Doc. \#: DSPD-48LQFPFG Version, D041309.

28-Lead PLCC Package Outline (PJ)

 .453x.453in. body, .180in. height (max), .050in. pitch

Vertical Side View

Horizontal Side View

View A

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Actual shape of this feature may vary.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e	R
Dimension (inches)	MIN	. 165	. 090	. 062	. 013	. 026	. 485	. 450	. 485	. 450	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$. 025
	NOM	. 172	. 105	-	-	-	. 490	. 453	. 490	. 453		. 035
	MAX	. 180	. 120	. 083	. 021	. 032	. 495	. 456	. 495	. 456		. 045

JEDEC Registration MS-018, Variation AB, Issue A, June, 1993.

Drawings not to scale.

Supertex Doc. \#: DSPD-28PLCCPJ, Version B031111.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

[^0]: JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

 * This dimension is not specified in the JEDEC drawing.

[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

