HV2621/HV2721/HV2722

300 V , Low-Charge Injection, 16-Channel, High-Voltage Analog Switch

Features

- 300V,16-Channel High-Voltage Analog Switch
- 3.3V or 5.0V CMOS Input Logic Level
- 33 MHz Data Shift Clock Frequency
- Very Low Quiescent Current ($10 \mu \mathrm{~A}$)
- Low Parasitic Capacitance
- DC to 50 MHz Analog Small-Signal Frequency
- -60 dB Typical Off Isolation at 5.0 MHz
- Excellent Noise Immunity
- Cascadable Serial Data Register with Latches
- Flexible Operating Supply Voltage
- Integrated Bleed Resistors on the Outputs (both sides for HV2721, one side only for HV2722)

Applications

- Medical Ultrasound Imaging
- Nondestructive Testing (NDT) Metal Flaw Detection
- Multi-Layer Printed Circuit Board (PCB) Tester
- Piezoelectric Transducer Drivers
- Inkjet Printer Head
- Optical MEMS Module

General Description

The HV2621/HV2721/HV2722 devices are 300V, low-charge injection, 16-channel, high-voltage analog switches. These devices are designed for use in applications requiring high-voltage switching controlled by low-voltage control signals, such as medical ultrasound imaging, piezoelectric transducer drivers. HV2621/HV2721 are almost identical to HV2601/2701 but have larger signal range. If the $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}= \pm 150 \mathrm{~V}$, HV2621/HV2721/HV2722 can pass the analog signal up to $\pm 135 \mathrm{~V}$.
The HV2721 has integrated bleed resistors on both sides of the switches. HV2722 has integrated bleed resistors on one side, SWxA only. HV2621 has no bleed resistors. The bleed resistor eliminates voltage build-up on capacitive loads such as piezoelectric transducers.
Input data are shifted into a 16-bit shift register that can then be retained in a 16-bit latch. To change all the switch state at the same time, the latch enable bar should be left high until all bits are clocked in. The input data are clocked in at the rising edge of the clock. After all bits are clocked in to the shift register, a negative pulse of the latch enable bar changes all the switch ON/OFF states defined by input data at the same time. Using the HVCMOS technology, these devices combine 300V high-voltage bilateral DMOS switches and low-power CMOS logic to provide efficient control of high-voltage analog signals.
These devices are suitable for various combinations of high-voltage supplies, e.g., $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}$: $+60 \mathrm{~V} /-240 \mathrm{~V}$, $+150 \mathrm{~V} /-150 \mathrm{~V}$, and $+260 \mathrm{~V} /-40 \mathrm{~V}$.

Package Types

| HV2621/HV2721/HV2722 |
| :---: | :---: |
| $9 \times 9 \times 1.0 m m ~ Q F N ~$ |

(TOP VIEW)

HV2621/HV2721/HV2722

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †
Logic Supply Voltage (V_{DD}).. 0.5 V to 6.5 V
Differential Supply Voltage ($\mathrm{V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$)...330V
Positive Supply Voltage (V_{PP})..-0.5V to $\mathrm{V}_{\mathrm{NN}}+300 \mathrm{~V}$
Negative Supply Voltage (V_{NN}) .. 300 V to +0.5 V
Logic Input Voltage (V_{IN})..-0.5V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog Signal Range ($\mathrm{V}_{\text {SIG }}$)... V_{NN} to V_{PP}
Peak Analog Signal Current/Channel (I_{PK}) 3A
\dagger Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (NOTES 1, 2, 3)

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions
Logic Supply Voltage	V_{DD}	3	-	5.5	V	
Differential Supply Voltage	$\mathrm{V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$	60	-	300	V	
Positive Supply Voltage	V_{PP}	60	-	260	V	
Negative Supply Voltage	V_{NN}	-240	-	0	V	
High-Level Input Voltage	V_{IH}	$0.9 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V	
Low-Level Input Voltage	V_{IL}	0	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	V	
Analog Signal Voltage Peak-to-Peak	$\mathrm{V}_{\mathrm{SIG}}$	$\mathrm{V}_{\mathrm{NN}}+15$	-	$\mathrm{V}_{\mathrm{PP}}-15$	V	

Note 1: Recommended power up sequence is $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PP}}$ and V_{NN}. Power down is in reverse order.
2: $\quad \mathrm{V}_{\mathrm{SIG}}$ must be $\mathrm{V}_{\mathrm{NN}} \leq \mathrm{V}_{\mathrm{SIG}} \leq \mathrm{V}_{\mathrm{PP}}$ or floating during power up/down transition.
3: Rise and fall times of power supplies, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PP}}$ and V_{NN} should be greater than 1.0 ms .

DC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface specifications apply over the full operating temperature range.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions/Comments		
Small Signal Switch On-Resistance	$\mathrm{R}_{\text {ONS }}$	-	26	48	Ω	$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+60 \mathrm{~V}, \\ & V_{N N}=-240 \mathrm{~V} \end{aligned}$	
		-	22	32	Ω	$\mathrm{I}_{\text {SIG }}=150 \mathrm{~mA}$		
		-	22	30	Ω	$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V} \end{aligned}$	
		-	18	27	Ω	$\mathrm{I}_{\text {SIG }}=150 \mathrm{~mA}$		
		-	20	30	Ω	$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+260 \mathrm{~V}, \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$	
		-	16	27	Ω	$\mathrm{I}_{\text {SIG }}=150 \mathrm{~mA}$		
Small Signal Switch On-Resistance Matching	$\Delta \mathrm{R}_{\text {ONS }}$	-	5	20	\%	$\begin{aligned} & I_{\mathrm{SIG}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=+150 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V} \end{aligned}$		
Large Signal Switch On-Resistance	$\mathrm{R}_{\mathrm{ONL}}$	-	17	-	Ω	$\mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-15 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1 \mathrm{~A}$		
Value of Output Bleed Resistor (HV2721/HV2722 Only)	$\mathrm{R}_{\text {INT }}$	30	50	70	k Ω	Output switch to RGND,$\mathrm{I}_{\mathrm{RINT}}=0.5 \mathrm{~mA}$		
Switch Off Leakage per Switch	ISOL	-	1	15	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}+15 \mathrm{~V}$ See Figure 3-1		
DC Offset Switch Off	V_{OS}	-	1	10	mV	$R_{\text {LOAD }}=35 \mathrm{k} \Omega(\mathrm{HV} 2621), 70 \mathrm{k} \Omega$ (HV2722), No load (HV2721), see Figure 3-2		
DC Offset Switch On		-	1	10				

HV2621/HV2721/HV2722

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Unless otherwise specified, $\mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface specifications apply over the full operating temperature range.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions/Comments	
Quiescent $\mathrm{V}_{\text {PP }}$ Supply Current	$\mathrm{I}_{\mathrm{PPQ}}$	-	10	50	$\mu \mathrm{A}$	All switches off	
Quiescent $\mathrm{V}_{\text {NN }}$ Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$	-	10	50	$\mu \mathrm{A}$		
Quiescent $V_{\text {PP }}$ Supply Current	$\mathrm{I}_{\mathrm{PPQ}}$	-	10	50	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\mathrm{SW}}=5.0 \mathrm{~mA}$	
Quiescent $\mathrm{V}_{\text {NN }}$ Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$	-	10	50	$\mu \mathrm{A}$		
Switch Output Peak Current	$I_{\text {SW }}$	2.0	3.0	-	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $<0.1 \%$ (Note 1)	
Output Switching Frequency	$\mathrm{f}_{\text {SW }}$	-	-	50	kHz	Duty cycle = 50\% (Note 1)	
Average VPP Supply Current	$\mathrm{I}_{\text {PP }}$	-	-	3	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+60 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-240 \mathrm{~V} \\ & \hline \end{aligned}$	All output switches are turning on and off at 10 kHz with no load
		-	-	4	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V} \end{aligned}$	
		-	-	6	mA	$\begin{aligned} & V_{P P}=+260 \mathrm{~V}, \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$	
Average $\mathrm{V}_{\text {NN }}$ Supply Current	I_{NN}	-	-	3	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+60 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-240 \mathrm{~V} \end{aligned}$	All output switches are turning on and off at 10 kHz with no load
		-	-	4	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V} \end{aligned}$	
		-	-	6	mA	$\begin{aligned} & V_{P P}=+260 \mathrm{~V}, \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$	
Average V_{DD} Supply Current	$I_{\text {DD }}$	-	-	4	mA	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}, \mathrm{f}_{\mathrm{DIN}}=2.5 \mathrm{MHz}$	
Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current	$\mathrm{I}_{\text {DDQ }}$	-	-	10	$\mu \mathrm{A}$	All logic inputs are static	
Data Out Source Current	$\mathrm{I}_{\text {SOR }}$	8	-	-	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.7 \mathrm{~V}$	
Data Out Sink Current	$\mathrm{I}_{\text {SINK }}$	12	-	-	mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$	
Logic Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	-	10	pF	Note 2	

Note 1: Specification is obtained by characterization and is not 100% tested.
2: Design guidance only.

AC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 5.0 \mathrm{~ns}, 50 \%$ duty cycle, $\mathrm{C}_{\mathrm{LOAD}}=20 \mathrm{pF}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Boldface specifications apply over the full operating temperature range.

Sym.	Sym.	Min.	Typ.	Max.	Units	Conditions/Comments
Setup Time before $\overline{\mathrm{LE}}$ rises	$t_{\text {SD }}$	25	-	-	ns	Note 1
Time Width of $\overline{\text { LE }}$	$\mathrm{t}_{\text {WLE }}$	56	-	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (Note 1)
		12	-	-	ns	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ (Note 1)
Clock Delay Time to Data Out	$t_{\text {DO }}$	-	-	45	ns	$V_{D D}=3.3 \mathrm{~V}$
		-	-	25	ns	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
Time Width of CLR	$t_{\text {WCLR }}$	55	-	-	ns	Note 1
Setup Time Data to Clock	$t_{\text {SU }}$	7	-	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (Note 1)
		7	-	-	ns	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ (Note 1)
Hold Time Data from Clock	t_{H}	4	-	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (Note 1)
		3.5			ns	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ (Note 1)

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

Unless otherwise specified, $\mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 5.0 \mathrm{~ns}, 50 \%$ duty cycle, $\mathrm{C}_{\mathrm{LOAD}}=20 \mathrm{pF}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Boldface specifications apply over the full operating temperature range.

Sym.	Sym.	Min.	Typ.	Max.	Units	Conditions/Comments
Clock Frequency	$\mathrm{f}_{\text {CLK }}$	-	-	16	MHz	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (Note 1)
		-	-	33	MHz	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ (Note 1)
Clock Rise and Fall Time	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	-	-	50	ns	Note 1
Turn-On Time	t_{ON}	-	-	6		$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\mathrm{PP}}-15 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=20 \mathrm{k} \Omega$
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	-	-	6	$\mu \mathrm{s}$	See Figure 3-3
Maximum $\mathrm{V}_{\text {SIG }}$ Slew Rate	dV/dt	-	-	20	V/ns	$\mathrm{V}_{\mathrm{PP}}=+60 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-240 \mathrm{~V}$ (Note 1)
		-	-	20		$\mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V}$ (Note 1)
		-	-	20		$\mathrm{V}_{\mathrm{PP}}=+260 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$ (Note 1)
Off Isolation	K_{O}	-	-55	-50	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1.0 \mathrm{k} \Omega / / 15 \mathrm{pF}$ load See Figure 3-4 (Note 1)
		-	-60	-58		$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load See Figure 3-4 (Note 1)
Switch Crosstalk	K_{CR}	-	-70	-60	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load See Figure 3-5 (Note 1)
Output Switch Isolation Diode Current	IID	-	-	200	mA	300 ns pulse width, 2.0% duty cycle, See Figure 3-6 (Note 1)
Off Capacitance SW to GND	$\mathrm{C}_{\text {SG(OFF) }}$	-	10	-	pF	$\mathrm{V}_{\mathrm{SIG}}=50 \mathrm{mV} @ 1 \mathrm{MHz}$, no load (Note 1)
On Capacitance SW to GND	$\mathrm{C}_{\text {SG(ON) }}$	-	18	-		
Output Voltage Spike at SWA, SWB	$+\mathrm{V}_{\text {SPK }}$	-	-	250	mV	$\begin{aligned} & V_{P P}=+60 \mathrm{~V}, V_{N N}=-240 \mathrm{~V}, \\ & R_{\text {LOAD }}=50 \Omega \text {, see Figure } 3-7(\text { Note } 1) \end{aligned}$
	$-V_{\text {SPK }}$	-250	-	-		
	$+\mathrm{V}_{\text {SPK }}$	-	-	250		$\mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-150 \mathrm{~V}$,
	$-V_{\text {SPK }}$	-250	-	-		$\mathrm{R}_{\text {LOAD }}=50 \Omega$, see Figure 3-7 (Note 1)
	$+\mathrm{V}_{\text {SPK }}$	-	-	250		$\begin{aligned} & V_{P P}=+260 \mathrm{~V}, V_{N N}=-40 \mathrm{~V}, \\ & R_{\text {LOAD }}=50 \Omega \text {, see Figure } 3-7(\text { Note } 1) \end{aligned}$
	$-V_{\text {SPK }}$	-250	-	-		
Charge Injection	QC	-	1000	-	pC	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+60 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-240 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \text {, see Figure 3-8 (Note 1) } \end{aligned}$
		-	770	-		$\begin{aligned} & V_{\mathrm{PP}}=+150 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \text {, see Figure 3-8 (Note 1) } \end{aligned}$
		-	360	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+260 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \text {, see Figure } 3-8 \text { (Note 1) } \end{aligned}$

Note 1: Specification is obtained by characterization and is not 100% tested.

TEMPERATURE SPECIFICATION

Parameters	Sym	Min	Typ	Max	Units	Conditions
Temperature Range						
Operating Temperature Range	T_{A}	0	-	+70	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	T_{S}	-65	-	+150	${ }^{\circ} \mathrm{C}$	
Maximum Junction Temperature	T_{J}	-	-	+125	${ }^{\circ} \mathrm{C}$	
Package Thermal Resistance						
Thermal Resistance, 64L QFN	Θ_{JA}	-	21	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

HV2621/HV2721/HV2722

TABLE 1-1: TRUTH TABLE (NOTES 1, 2, 3, 4, 5, 6)

DO	D1	...	D7	D8	...	D15	LE	CLR	SW0	SW1	...	SW7	SW8	...	SW15
L	-	\ldots	-	-	...	-	L	L	OFF	-	...	-	-	\ldots	-
H	-		-	-		-	L	L	ON	-		-	-		-
-	L		-	-		-	L	L	-	OFF		-	-		-
-	H		-	-		-	L	L	-	ON		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		L	-		-	L	L	-	-		OFF	-		-
-	-		H	-		-	L	L	-	-		ON	-		-
-	-		-	L		-	L	L	-	-		-	OFF		-
-	-		-	H		-	L	L	-	-		-	ON		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		L	L	L	-	-		-	-		OFF
-	-		-	-		H	L	L	-	-		-	-		ON
X	X	X	X	X	X	X	H	L			D	EVIO	STA		
X	X	X	X	X	X	X	X	H			L	ITCH	OFF		

Note 1: The 16 switches operate independently.
2: Serial data is clocked in on the L to H transition of the CLK.
3: All 16 switches go to a state retaining their latched condition at the rising edge of $\overline{\mathrm{LE}}$. When $\overline{\mathrm{LE}}$ is low, the shift registers data flow through the latch.
4: DOUT is high when data in the register 15 is high.
5: Shift register clocking has no effect on the switch states if $\overline{\mathrm{LE}}$ is high.
6: The CLR clear input overrides all the inputs.

1.1 Typical Timing Diagrams

Figure 1-1 shows the timing of the AC characteristic parameters graphically.

FIGURE 1-1: Logic Input Timing Diagram.

HV2621/HV2721/HV2722

2.0 PIN DESCRIPTION

This section details the pin description for 64-lead QFN package (Figure 2-1). The descriptions of the pins are listed in Table 2-1.

FIGURE 2-1: 64-Lead QFN Package - Top View.
TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Symbol		
	HV2621	HV2721/ HV2722	
1	SW5A	SW5A	Analog Switch 5 Terminal A
2	NC	NC	No Connection
3	SW4B	SW4B	Analog Switch 4 Terminal B
4	SW4A	SW4A	Analog Switch 4 Terminal A
5	NC	NC	No Connection
6	SW3B	SW3B	Analog Switch 3 Terminal B
7	SW3A	SW3A	Analog Switch 3 Terminal A
8	NC	NC	No Connection
9	SW2B	SW2B	Analog Switch 2 Terminal B
10	SW2A	SW2A	Analog Switch 2 Terminal A
11	NC	NC	No Connection

Pin Number	Symbol		Description
	HV2621	HV2721/ HV2722	
12	SW1B	SW1B	Analog Switch 1 Terminal B
13	SW1A	SW1A	Analog Switch 1 Terminal A
14	NC	NC	No Connection
15	SW0B	SWOB	Analog Switch 0 Terminal B
16	SWOA	SWOA	Analog Switch 0 Terminal A
17	V_{NN}	V_{NN}	Negative Supply Voltage
18	NC	NC	No Connection
19	$V_{\text {PP }}$	$V_{\text {PP }}$	Positive Supply Voltage
20	NC	NC	No Connection
21	CLR	CLR	Latch Clear Logic Input
22	$\overline{\text { LE }}$	$\overline{\text { LE }}$	Latch Enable Logic Input
23	GND	GND	Ground
24	$V_{D D}$	$V_{\text {DD }}$	Logic Supply Voltage
25	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Data In Logic Input
26	CLK	CLK	Clock Logic Input for Shift Register
27	Dout	Dout	Data Out Logic Output
28	NC	NC	No Connection
29	$V_{\text {PP }}$	$V_{\text {PP }}$	Positive Supply Voltage
30	NC	NC	No Connection
31	V_{NN}	V_{NN}	Negative Supply Voltage
32	NC	NC	No Connection
33	NC	RGND	No Connection/Ground for Bleed Resistor
34	NC	NC	No Connection
35	SW15B	SW15B	Analog Switch 15 Terminal B
36	SW15A	SW15A	Analog switch 15 Terminal A
37	NC	NC	No Connection
38	SW14B	SW14B	Analog Switch 14 Terminal B
39	SW14A	SW14A	Analog Switch 14 Terminal A
40	NC	NC	No Connection
41	SW13B	SW13B	Analog Switch 13 Terminal B
42	SW13A	SW13A	Analog switch 13 Terminal A
43	NC	NC	No Connection
44	SW12B	SW12B	Analog Switch 12 Terminal B
45	SW12A	SW12A	Analog Switch 12 Terminal A
46	NC	NC	No Connection
47	SW11B	SW11B	Analog Switch 11 Terminal B
48	SW11A	SW11A	Analog Switch 11 Terminal A
49	SW10B	SW10B	Analog Switch 10 Terminal B
50	SW10A	SW10A	Analog Switch 10 Terminal A
51	NC	NC	No Connection
52	SW9B	SW9B	Analog Switch 9 Terminal B
53	SW9A	SW9A	Analog Switch 9 Terminal A
54	NC	NC	No Connection

HV2621/HV2721/HV2722

Pin Number	Symbol		
	HV2621	HV2721/ HV2722	
55	SW8B	SW8B	Analog Switch 8 Terminal B
56	SW8A	SW8A	Analog Switch 8 Terminal A
57	NC	NC	No Connection
58	SW7B	SW7B	Analog Switch 7 Terminal B
59	SW7A	SW7A	Analog Switch 7 terminal A
60	NC	NC	No Connection
61	SW6B	SW6B	Analog Switch 6 Terminal B
62	SW6A	SW6A	Analog Switch 6 Terminal A
63	NC	NC	No Connection
64	SW5B	SW5B	Analog Switch 5 Terminal B
VSUB (Thermal Pad)			The central thermal pad on the bottom of package must be connected to VNN externally

3.0 TEST CIRCUIT EXAMPLES

This section details a few example of test circuits.

FIGURE 3-1: Switch Off Leakage per Switch.

FIGURE 3-2: DC Offset Switch On/Off.

FIGURE 3-3: $\quad T_{\text {ON }} / T_{\text {OFF }}$ Test Circuit.

FIGURE 3-4: Off Isolation.

FIGURE 3-5: Switch Crosstalk.

FIGURE 3-6: Isolation Diode Current.

HV2621/HV2721/HV2722

FIGURE 3-7:
Output Voltage Spike.

FIGURE 3-8: Charge Injection.

4.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{PP}}=+150 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-150 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

FIGURE 4-1: $\quad I_{P P} / I_{N N}$ vs. Switching
Frequency.

FIGURE 4-2: $\quad I_{P P Q} / I_{N N Q}$ vs. Temperature.

FIGURE 4-3: $\quad I_{D D Q}$ vs. Temperature.

FIGURE 4-4: $\quad T_{\text {ON }} / T_{\text {OFF }}$ vs. Temperature.

FIGURE 4-5: $\quad I_{D D}$ vs. CLK Frequency.

FIGURE 4-6:
K_{O} vs. Frequency with 50Ω Load.

5.0 DETAILED DESCRIPTION AND APPLICATION INFORMATION

5.1 Device Overview

The HV2621/HV2721/HV2722 are 300V, low-charge injection, 16 -channel, high-voltage analog switches. The high-voltage analog switches are used for multiplexing a piezoelectric transducer array in a probe to multiple channel transmitters (Tx) arrays in a medical ultrasound system.

The HV2621/HV2721/HV2722 are distinguished by bleed resistors that eliminate voltage build-up in capacitance load such as piezoelectric transducers. These devices can pass $\pm 135 \mathrm{~V}$ high-voltage large signal with $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}= \pm 150 \mathrm{~V}$. These devices have typical 18Ω on-resistance and 50 MHz bandwidth for small-signals.
Figure 5-1 shows a typical medical ultrasound image system consisting 64-channels of transmit pulsers, 64-channels of receivers (LNA and ADC) and 64-channels of T/R switches connecting to 192 elements of an ultrasound probe via a HV2XXX high-voltage analog switch array.

FIGURE 5-1:
Typical Medical Ultrasound Imaging System.

5.2 Logic Input Timing

The HV2621/HV2721/HV2722 have digital serial interface consisting of Data $\ln \left(\mathrm{D}_{\text {IN }}\right)$, Clock (CLK), Data Out ($\mathrm{D}_{\mathrm{OUT}}$), Latch Enable ($\overline{\mathrm{LE}}$), and Clear (CLR) to control 16 switches individually. The digital circuits are supplied by $V_{D D}$. The serial clock frequency is up to 33 MHz .

The switch state configuration data is shifted into the shift registers at the rising edge (low-to-high transition) of the clock. The switch configuration bit of SW15 is shifted in first and the configuration bit of SWO is shifted in last. To change all the switch states at the same time, the Latch Enable Input ($\overline{\mathrm{LE}}$) should remain high while the 16-bit Data In signal is shifted into the 16 -bit register. After the valid 16-bit data completes shifting into the shift registers, the high-to-low transition of the $\overline{\mathrm{LE}}$ signal transfers the contents of the shift
registers into the latches. Finally, setting the $\overline{\mathrm{LE}}$ high again, allows all the latches to keep the current state while new data can now be shifted into the shift registers without disturbing the latches.
It is recommended to change all the latch states at the same time through this method to avoid possible clock feed through noise (see Figure 5-2 for details).
When the CLR input is set high, it resets the data of all 16 latches to low. Consequently, all the high-voltage switches are set to OFF state. However, the CLR signal does not affect the contents of the shift register, so the shift register can operate regardless of the CLR signal. Therefore, when the CLR input is low, the shift register still retains the previous data.

Shift Register Data from Previous Data Inputs are Shifted Out
FIGURE 5-2: Latch Enable Timing Diagram.

5.3 Multiple Devices Connection

The digital serial interface of the HV2621/ HV2721/HV2722 allows multiple devices to make a daisy-chain together. In this configuration, $\mathrm{D}_{\text {OUt }}$ of a device is connected to the $D_{I N}$ of the subsequent device, and so forth. The last $D_{\text {OUT }}$ of the daisy-chained HV2621/HV2721/HV2722 can be either floating or fed back to an FPGA to check the previously stored data in the shift registers.
To control all the high-voltage analog switch states in daisy-chained N devices, N -times 16 clocks and N -times 16 bits of data are shifted into shift registers, while $\overline{\mathrm{LE}}$ remains high and CLR remains low. After all the data finishes shifting in, one single negative pulse of $\overline{\mathrm{LE}}$ transfers the data from all the shift registers to all the latches simultaneously. Consequently, all N -times 16 high-voltage analog switches change states simultaneously.

5.4 Power Up/Down Sequence and Decoupling Capacitor

The recommended power up sequence is $V_{D D}, V_{P P}$ and V_{NN}. The power down sequence is in reverse order. We also recommend the rise time and fall time of power supplies are greater than 1 msec . During the power up/down period, all the analog switch inputs should be within between V_{PP} and V_{NN} or floating.
It is recommended that $0.1 \mu \mathrm{~F}$ or larger ceramic decoupling capacitors, with the appropriate voltage ratings, be connected between GND and other supplies ($\mathrm{V}_{\mathrm{PP}}, \mathrm{V}_{\mathrm{NN}}$ and V_{DD}). These decoupling capacitors should be placed as close as possible to the device.

HV2621/HV2721/HV2722

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Example

Legend: $\mathrm{XX} \ldots \mathrm{X}$ Product Code or Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
(e3) Pb-free JEDEC designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

64-Lead Very Thin Plastic Quad Flat, No Lead Package (R4X) - 9x9x0.9 mm Body [VQFN] With 7.15×7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

BOTTOM VIEW
Microchip Technology Drawing C04-149D [R4X] Sheet 1 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (R4X) - 9x9x0.9 mm Body [VQFN] With 7.15×7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS							
Dimension Limits						MIN		NOM	MAX
	N	64							
Number of Pins	e	0.50 BSC							
Pitch	A	0.80	0.90	1.00					
Overall Height	A1	0.00	0.02	0.05					
Standoff	A3	0.20 REF							
Contact Thickness	E	9.00 BSC							
Overall Width	E2	7.05	7.15	7.25					
Exposed Pad Width	D	9.00 BSC							
Overall Length	D2	7.05	7.15	7.25					
Exposed Pad Length	b	0.18	0.25	0.30					
Contact Width	L	0.30	0.40	0.50					
Contact Length	K	0.20	-	-					
Contact-to-Exposed Pad									

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-149D [R4X] Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (R4X) - 9x9x0.9 mm Body [VQFN] With 7.15×7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

UnitsDimension Limits		MILLIMETERS		
		MIN	NOM	MAX
Contact Pitch	E		50 BSC	
Optional Center Pad Width	X2			7.25
Optional Center Pad Length	Y2			7.25
Contact Pad Spacing	C1		9.00	
Contact Pad Spacing	C2		9.00	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.95
Contact Pad to Center Pad (X64)	G1	0.40		
Spacing Between Contact Pads (X60)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2019)

- Original release of this document

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	Examples: a) HV2621/R4X: 16-Channel High-Voltage Analog Switch, 64-lead QFN
Device: HV2621: 300V, Low-Charge Injection 16-Channel HighVoltage Analog Switch HV2721: 300V, Low-Charge Injection 16-Channel HighVoltage Analog Switch with Bleed Resistor at Both Sides of Switch HV2722: 300V, Low-Charge Injection 16-Channel HighVoltage Analog Switch with Bleed Resistor at One Side of Switch	
Package: \quad R4X= Very Thin Plastic Quad Flat Pack, No Lead Package - 9x9x0.9 mm Body, 64-Lead (QFN)	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2019, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-5019-1

Microchip

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com	Australia - Sydney	India - Bangalore Tel: $91-80-3090-44$	Austria - Wels
	China - Beijing Tel: 86-10-8569-7000	India - New Delhi Tel: 91-11-4160-8631	Denmark - Copenhagen
	China - Chengdu Tel: 86-28-8665-5511	India - Pune Tel: 91-20-4121-0141	Tel: 45-4450-2828 Fax: 45-4485-2829
	China - Chongqing Tel: 86-23-8980-9588	Japan - Osaka Tel: 81-6-6152-7160	Finland - Espoo Tel: 358-9-4520-820
	China - Dongguan Tel: 86-769-8702-9880	Japan - Tokyo Tel: 81-3-6880-3770	France - Paris Tel: 33-1-69-53-63-20
Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455	China - Guangzhou Tel: 86-20-8755-8029 China - Hangzhou	Korea - Daegu Tel: 82-53-744-4301 Korea - Seoul	Fax: 33-1-69-30-90-79 Germany - Garching Tel: 49-8931-9700
Austin, TX Tel: 512-257-3370	Tel: 86-571-8792-8115	Tel: $82-2-554-7200$ Malaysia - Kuala Lumpur	Germany - Haan Tel: 49-2129-3766400
Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn Tel: 49-7131-72400
	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe Tel: 49-721-625370
	China - Qingdao	Philippines - Manila	
Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075	Tel: 86-532-8502-7355 China - Shanghai Tel: 86-21-3326-8000	Tel: 63-2-634-9065 Singapore Tel: 65-6334-8870	Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44
	China - Shenyang Tel: 86-24-2334-2829	Taiwan - Hsin Chu Tel: 886-3-577-8366	Germany - Rosenheim Tel: 49-8031-354-560
Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924	China - Shenzhen Tel: 86-755-8864-2200	Taiwan - Kaohsiung Tel: 886-7-213-7830	Israel - Ra'anana Tel: 972-9-744-7705
Detroit Novi, MI	China - Suzhou Tel: 86-186-6233-1526	Taiwan - Taipei Tel: 886-2-2508-8600	Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781
Tel: 248-848-4000 Houston, TX	China - Wuhan Tel: 86-27-5980-5300	Thailand - Bangkok Tel: 66-2-694-1351	Italy - Padova Tel: 39-049-7625286
Houston, TX Tel: $281-894-5983$	China - Xian Tel: 86-29-8833-7252	Vietnam - Ho Chi Minh Tel: 84-28-5448-2100	Netherlands - Drunen
Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380	China - Xiamen Tel: 86-592-2388138		Tel: 31-416-690399 Fax: 31-416-690340
	China - Zhuhai Tel: 86-756-3210040		Norway - Trondheim Tel: 47-7288-4388
Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800			Poland - Warsaw Tel: 48-22-3325737
			Romania - Bucharest Tel: 40-21-407-87-50
			Spain - Madrid Tel: 34-91-708-08-90
Raleigh, NC Tel: 919-844-7510			Fax: 34-91-708-08-91
New York, NY Tel: 631-435-6000			Sweden - Gothenberg Tel: 46-31-704-60-40
San Jose, CA Tel: 408-735-9110			Sweden - Stockholm Tel: 46-8-5090-4654
Tel: 408-436-4270			UK - Wokingham Tel: 44-118-921-5800
Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078			Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF

