16-Channel (2 Banks of 8-Channels), High Voltage, Analog Switch With Bleed Resistors

Features

- $\mathrm{HVCMOS}^{\circledR}$ technology for high performance
- 220 V operating conditions
- 22Ω typical output on-resistance
- Integrated bleed resistors on the outputs
- 3.3 V and 5.0 V CMOS logic compatibility
- Very low quiescent power dissipation ($-10 \mu \mathrm{~A}$)
- -45 dB min off isolation at 7.5 MHz
- Low parasitic capacitance
- Excellent noise immunity
- Flexible operating supply voltages
- 48-lead LQFP package

Applications

- Medical ultrasound imaging
- Non-destructive evaluation

General Description

The Supertex HV2731 is a 220V, 16-channel, high voltage, analog switch integrated circuit (IC) with output bleed resistors $\left(R_{\mathrm{INT}}\right)$. The output switches are configured as 2 sets of 8 single pole, single throw analog switches. The IC is intended to be used in applications requiring high voltage switching controlled by low voltage control signals, such as ultrasound imaging.

The 2 sets of 8 analog switches are controlled by 2 input logic controls, $D_{\text {IN }} 1$ and $D_{\text {IN }} 2$. A logic high on $D_{\text {IN }} 1$ will turn on switches 0 to 7 and a logic high on $D_{\text {IN }} 2$ will turn on switches 8 to 15 . The bleed resistors help to significantly reduce voltage built up on capacitive loads such as piezoelectric transducers connected to the outputs.

Abstract

Using HVCMOS ${ }^{\circledR}$ technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

Block Diagram

Ordering Information

Device	48-Lead LQFP
	7.00x7.00mm body
	1.60mm height (max)
HV2731	HV2731FG-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
V_{DD} logic supply	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ differential supply	225 V
$\mathrm{~V}_{\mathrm{PP}}$ positive supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+225 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ negative supply	+0.5 V to -225 V
Logic input voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	2.5 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power dissipation	1.0 W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

48-Lead LQFP (FG)
(top view)

Product Marking

$Y Y=$ Year Sealed
WW = Week Sealed
L = Lot Number
Bottom Marking
C = Country of Origin*
A = Assembler ID*
$\operatorname{cccccccc}$ AAA
\qquad = "Green" Packaging
*May be part of top marking

Package may or may not include the following marks: Si or 47 48-Lead LQFP (FG)

Recommended Operating Conditions

Sym	Parameter	Value
V_{DD}	Logic power supply voltage	3.0 V to 5.5 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive driver supply	+50 V to +110 V
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-10 V to $\mathrm{V}_{\mathrm{PP}}-220 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage	$\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ to V_{DD}
V_{IL}	Low-level input voltage	0 V to 1.0 V
$\mathrm{~V}_{\mathrm{SIG}}$	Analog signal voltage peak-to-peak	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

[^0]DC Electrical Characteristics (Over recommended operating conditions unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
$\mathrm{R}_{\text {ONS }}$	Small signal switch on-resistance	-	30	-	26	32	-	40	Ω	$\begin{aligned} & \mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SIG}}=5.0 \mathrm{~mA}, \\ & \mathrm{~V}_{P P}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V} \end{aligned}$
		-	25	-	22	27	-	35		$\begin{aligned} & \mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V} \end{aligned}$
		-	25	-	22	27	-	30		$\begin{aligned} & V_{\text {SIG }}=0 \mathrm{~V}, I_{S I G}=5.0 \mathrm{~mA}, \\ & V_{P P}=+110 \mathrm{~V}, V_{N N}=-110 \mathrm{~V} \end{aligned}$
		-	20	-	18	22	-	25		$\begin{aligned} & V_{S I G}=0 \mathrm{~V}, \mathrm{I}_{S I G}=200 \mathrm{~mA}, \\ & \mathrm{~V}_{P \mathrm{P}}=+110 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-110 \mathrm{~V} \end{aligned}$
$\Delta \mathrm{R}_{\text {ons }}$	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	\%	$\begin{aligned} & V_{\text {SIG }}=0 \mathrm{~V}, I_{\text {SIG }}=5.0 \mathrm{~mA}, \\ & V_{P P}=+110 \mathrm{~V}, V_{N N}=-110 \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\text {ONL }}$	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1.0 \mathrm{~A}$
$\mathrm{R}_{\text {INT }}$	Output switch shunt resistance	-	-	20	35	50	-	-	K Ω	Output switch to $\mathrm{R}_{\text {GND }}$ $\mathrm{I}_{\mathrm{RINT}}=0.5 \mathrm{~mA}$
$\mathrm{I}_{\text {sol }}$	Switch off-leakage per switch	-	5.0	-	1.0	10	-	15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=+10 \mathrm{~V}$
$\mathrm{V}_{\text {os(OFF) }}$	DC offset switch off	-	300	-	100	300	-	300	mV	No load
$\mathrm{V}_{\text {OS(ON) }}$	DC offset switch on	-	500	-	100	500	-	500		
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches off
$\mathrm{I}_{\text {nva }}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-		
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\mathrm{sw}}=5.0 \mathrm{~mA}$
$\mathrm{I}_{\text {NNQ }}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-		
$\mathrm{l}_{\text {sw }}$	Switch output peak current	-	2.0	-	-	2.0	-	2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $<0.1 \%$
$\mathrm{f}_{\text {sw }}$	Output switching frequency	-	-	-	-	50	-	-	kHz	Duty cycle $=50 \%$
$\mathrm{I}_{\text {PP }}$	Average $\mathrm{V}_{\text {PP }}$ supply current	-	8.1	-	-	8.8	-	10	mA	$\mathrm{V}_{\mathrm{PP}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V}$, All switches turning on and off at 50 kHz
$\mathrm{I}_{\text {NN }}$	Average $\mathrm{V}_{\text {NN }}$ supply current	-	-8.1	-	-	-8.8	-	-10		
$\mathrm{I}_{\text {PP }}$	Average $\mathrm{V}_{\text {PP }}$ supply current	-	8.1	-	-	6.3	-	6.9	mA	$V_{P P}=110 \mathrm{~V}, V_{N N}=-110 \mathrm{~V}, \mathrm{All}$ switches turning on and off at 50 kHz
$\mathrm{I}_{\text {NN }}$	Average $\mathrm{V}_{\text {NN }}$ supply current	-	-8.1	-	-	-6.3	-	-6.9		
$\mathrm{I}_{\text {DDQ }}$	Quiescent $\mathrm{V}_{\text {DD }}$ supply current	-	10	-	-	10	-	10	$\mu \mathrm{A}$	All logic inputs are static
I_{DD}	Average V_{DD} supply current	-	2.0	-	-	2.0	-	2.0	mA	$\begin{aligned} & \frac{\mathrm{D}_{\text {IN }} 1=\mathrm{D}_{1 \mathrm{~N}} 2=3.0 \mathrm{MHz},}{\mathrm{LE}=\text { high }} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Logic input capacitance	-	10	-	-	10	-	10	pF	---

AC Electrical Characteristics (Over recommended operating conditions unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
$\mathrm{t}_{\text {wLE }}$	Time width of $\overline{\mathrm{LE}}$	150	-	150	-	-	150	-	ns	---
$\mathrm{t}_{\text {WDIN }}$	Time width of $\mathrm{D}_{\text {IN }}$	150	-	150	-	-	150	-	ns	---
$\mathrm{t}_{\text {sD }}$	Set up time before $\overline{\mathrm{LE}}$ rises	150	-	150	-	-	150	-	ns	---

AC Electrical Characteristics (cont.) (Over recommended operating conditions unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
t_{ON}	Turn on time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{~K} \Omega \end{aligned}$
$\mathrm{t}_{\text {ofF }}$	Turn off time	-	5.0	-	-	5.0	-	5.0		
dv/dt	Maximum $\mathrm{V}_{\text {SIG }}$ slew rate	-	20	-	-	20	-	20	V / ns	---
K	Off isolation	-30	-	-30	-33	-	-30	-	dB	$\begin{aligned} & \mathrm{f}=5.0 \mathrm{MHz}, \\ & \text { load }=1.0 \mathrm{~K} \Omega / / 15 \mathrm{pF} \end{aligned}$
		-45	-	-45	-50	-	-45	-		$\mathrm{f}=7.5 \mathrm{MHz}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
K_{CR}	Switch crosstalk	-45	-	-45	-	-	-45	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{R}_{\text {LOAD }}=50 \Omega$
$1{ }_{10}$	Output switch isolation diode current	-	300	-	-	300	-	300	mA	300 ns pulse width, 2.0\% duty cycle
$\mathrm{C}_{\text {SG(OFF) }}$	Off capacitance SW to GND	5.0	17	5.0	12	17	5.0	17	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\text {SG(ON) }}$	On capacitance SW to GND	25	50	25	38	50	25	50	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$+V_{\text {SPK }}$	Output voltage spike	-	-	-	250	-	-	-	mV	$\mathrm{R}_{\text {LOAD }}=50 \Omega$
$-V_{\text {SPK }}$		-	-	-	500	-	-	-		
QC	Charge injection	-	-	-	770	-	-	-	PC	$\mathrm{V}_{\mathrm{PP}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V}$
		-	-	-	620	-	-	-		$\mathrm{V}_{\mathrm{PP}}=+110 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-110 \mathrm{~V}$

Logic Timing Waveforms

Truth Table

DIN2	DIN1	$\overline{L E}$	SW0 to SW7	SW8 to SW15
L	L	L	OFF	OFF
L	H	L	ON	OFF
H	L	L	OFF	ON
H	H	L	ON	ON
X	X	H	Hold Previous State	

Test Circuits

OFF Isolation

Crosstalk

Pin Configuration

Pin	Function	Pin	Function
1	VNN	25	SW10
2	N/C	26	SW10
3	VPP	27	SW9
4	N/C	28	SW9
5	$\mathrm{D}_{\text {IN }} 1$	29	SW8
6	$\overline{\text { LE }}$	30	SW8
7	$\mathrm{D}_{1 \mathrm{~N}} 2$	31	SW7
8	N/C	32	SW7
9	N/C	33	SW6
10	VDD	34	SW6
11	GND	35	SW5
12	N/C	36	SW5
13	RGND	37	SW4
14	SW15	38	N/C
15	SW15	39	SW4
16	SW14	40	N/C
17	SW14	41	SW3
18	SW13	42	SW3
19	SW13	43	SW2
20	SW12	44	SW2
21	SW12	45	SW1
22	SW11	46	SW1
23	SW11	47	SW0
24	N/C	48	SWO

48-Lead LQFP Package Outline (FG)

$7.00 \times 7.00 \mathrm{~mm}$ body, 1.60 mm height (max), 0.50 mm pitch

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ
Dimension (mm)	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.45	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60			$3.5{ }^{\circ}$
	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*		0.75			7°

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
Supertex Doc. \#: DSPD-48LQFPFG Version, D041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

[^0]: Notes:

 1. Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
 2. $V_{S I G}$ must be $V_{N N} \leq V_{S I G} \leq V_{P P}$ or floating during power up/down transition.
 3. Rise and fall times of power supplies $V_{D D}, V_{P P}$ and $V_{N N}$ should not be less than 1.0 msec .
[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

