Ring Generator Controller IC

Features

- 3.3 V operation, logic inputs 3.3 V \& 5.0 V compatible
- Digital control of ring frequency, amplitude, and offset
- Control via 8 -bit bus or via individual inputs
- 8 built-in ring frequencies: $12,16^{2} /{ }_{3}, 20,25,33 \frac{1}{3}, 40$, $50,60 \mathrm{~Hz}$
- External ring frequency input
- Low distortion sine wave synthesizer
- AC-only, AC+DC, or DC-only ringer output
- Adjustable over-current protection
- Internal precision voltage references
- Power-on reset and undervoltage lockout for hotswap capability
- Sync output with adjustable lead time for synchronizing ringing relays
- Fault output for problem detection
- Open or closed loop operation
- Efficient 4-quadrant operation
- Zero-cross turn-on with zero-cross turn-off option

Applications

- PBX
- DLC
- Key Systems
- Remote Terminal
- Wireless Loop Systems

General Description

The HV461FG is a highly integrated ring generator controller IC, designed to work with a patented four-quadrant inverter topology, with synchronous rectifiers on the secondary side to achieve higher efficiencies. The inverter delivers the desired ring voltage from a standard -48V Telecom power supply.

The HV461 consists of a sine wave synthesizer that can provide eight different ring frequencies for universal applications. Any other frequency in the 12 to 63 Hz range can be obtained by applying an external logic signal to the IC. A transparent latch permits control of the ringer output individually or through the 8 -bit bus. The output amplitude and DC offset can be digitally controlled providing high flexibility to the designers. The patented inverter topology using the HV461 controller IC is capable of achieving higher efficiencies, typically over 80%, and drive up to a 40 REN load.

The controller allows ring generators to provide a floating 94 VAC (rms) waveform that can be referenced to either the -48 V or any other offset level by using the programmable offset pins of the IC. Output offset may be achieved by directly generating the offset within the power stage, or by floating the output stage on a DC source, or both.

The HV461 also has an internal boost converter that can be used to provide the gate drive voltages for the two MOSFETS on the primary side and the two secondary rectifiers on the secondary side.

Typical Application Circuit

Ordering Information

Part Number	Package Option	Packing
HV461FG-G	48-Lead LQFP	250/Tray
HV461FG-G M931	48-Lead LQFP	1000/Reel

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
V_{DD}	+4.0 V
Digital inputs	-0.5 V to +7.0 V
Analog inputs	-0.5 V to +7.0 V
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{j a}$
48 -Lead LQFP	$52^{\circ} \mathrm{C} / \mathrm{W}$

Pin Configuration

> 48-Lead LQFP (top view)

Product Marking

$Y Y=$ Year Sealed WW = Week Sealed
L = Lot Number
C = Country of Origin*
A = Assembler ID* = "Green" Packaging
*May be part of top marking
Package may or may not include the following marks: Si or $\$ 7$
48-Lead LQFP

Electrical Specifications (unless otherwise specified: $V_{D 0}=3.3 V, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
External Supply

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{DD}	Supply voltage	3.0	3.3	3.6	V	---
I_{DD}	$\left.\begin{array}{l}\text { Supply current } \\ (\mathrm{AV} \\ \mathrm{DD}\end{array}+\mathrm{DV}_{\mathrm{DD}}\right)$					

Gate Drive Supply

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{G D}$	Boost circuit voltage	9.0	9.6	10.2	V	---
$I_{\text {GD }}$	Gate drive supply current	-	-	$\begin{gathered} 5.0 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.97-3.63 \mathrm{~V}$, SW outputs unloaded $\mathrm{V}_{\mathrm{DD}}=2.50-2.93 \mathrm{~V}$, SW outputs unloaded
$\mathrm{V}_{\mathrm{DR}(10)}$	Drive voltage, low	-	-	0.2	V	$\mathrm{I}_{\text {OUT }}=-10 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{DR} \text { (hi) }}$	Drive voltage, hi	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V	$\mathrm{I}_{\text {OUT }}=10 \mu \mathrm{~A}$
$\mathrm{t}_{\text {RISE }}$	Rise time	-	-	100	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
$\mathrm{t}_{\text {FALL }}$	Fall time	-	-	100	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
f_{GD}	Converter frequency	same as PWM				---
$\mathrm{D}_{\text {GD }}$	Duty cycle	45	50	55	\%	---

Voltage Reference

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\text {REF1 }}$	Reference voltage 1	1.213	1.250	1.288	V	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{TC}_{\text {REF1 }}$	Temperature coefficient	-	200	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	---
$\Delta \mathrm{V}_{\text {ref1 }}$	Output regulation	-6.25	-	+6.25	mV	$\mathrm{I}_{\text {out }}= \pm 100 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {REF2 }}$	Reference voltage 2	2.425	2.500	2.575	V	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{TC}_{\text {REF2 }}$	Temperature coefficient	-	500	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	---
$\Delta \mathrm{V}_{\text {ref2 }}$	Output regulation	-12.5	-	0	mV	$\mathrm{I}_{\text {out }}=0-100 \mu \mathrm{~A}$ source

Logic Inputs

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\mathbb{I N (I)})}$	Input voltage low	-	-	$0.3 \cdot \mathrm{~V}_{\mathrm{DD}}$	V	---
$\mathrm{V}_{\mathbb{I N (h i)}}$	Input voltage high	$0.7 \cdot \mathrm{~V}_{\mathrm{DD}}$	-	-	V	---
$\mathrm{I}_{\mathbb{I N (I)})}$	Input current low	-	-	-1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathbb{I N (h i)}}$	Input current high	-	-	1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathbb{I N}}$	Input capacitance	-	-	10	pF	---
t_{S}	Set-up time	-	-	100	ns	---
t_{H}	Hold time	-	-	100	ns	---

Reset

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\text {RESET(ON) }}$	RESET on voltage	1.200	1.325	1.450	V	---
$\mathrm{V}_{\text {RESET(OFF) }}$	RESET off voltage	1.000	1.125	1.250	V	---
$\mathrm{V}_{\text {RESET (HYS) }}$	RESET hysteresis	0.150	0.200	0.250	V	---
$\mathrm{I}_{\text {P-UP }}$	RESET pull-up current	7.0	10.0	13.0	$\mu \mathrm{~A}$	---

Undervoltage Lockout

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\mathrm{DD}(O N)}$	V_{DD} on voltage	2.75	2.85	2.95	V	---
$\mathrm{V}_{\mathrm{DD}(\mathrm{OFF})}$	V_{DD} off voltage	2.50	-	-	V	---
$\mathrm{V}_{\mathrm{DD}(\mathrm{HYS})}$	V_{DD} hysteresis	-	0.10	-	V	---
$\mathrm{V}_{\mathrm{GD}(\mathrm{ON})}$	V_{GD} on voltage	same as V_{GD} regulation point	V	---		
$\mathrm{V}_{\mathrm{GD}(\mathrm{OFF})}$	V_{GD} off voltage	7.0	-	-	V	---
$\mathrm{V}_{\mathrm{GD}(\mathrm{HYS})}$	V_{GD} hysteresis	0.20	-	-	V	---

Fault Output

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\text {OUT(lo) }}$	Output voltage low	-	-	0.2	V	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$
$\mathrm{~K}_{\text {FAULT(on) }}$	FAULT on threshold	6	8	10	$\%^{*}$	$\mathrm{C}_{\text {FAULT }}=10 \mu \mathrm{~F}$
$\mathrm{~K}_{\text {FAULT(off) }}$	FAULT off threshold	1	2	3	$\%^{*}$	$\mathrm{C}_{\text {FAULT }}=10 \mu \mathrm{~F}$
$\mathrm{t}_{\text {FAULT(hold) }}$	FAULT hold time	50	-	-	mS	$\mathrm{C}_{\text {FAULT }}=10 \mu \mathrm{~F}$

* Percent of time PWM overrange or overcurrent is active.

Amplifiers

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{IN}	Input range	0.25	-	2.50	V	---
I_{IN}	Input bias current	-500	-	500	nA	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-0.5$
$\mathrm{~V}_{\text {OFFSET }}$	Input offset voltage	-15	-	15	mV	---
$\mathrm{V}_{\text {OUT(min) }}$	Min output	-	0.1	0.2	V	$\mathrm{I}_{\mathrm{OUT}}= \pm 100 \mathrm{uA}$
$\mathrm{V}_{\text {OUT(max) }}$	Max output	$\mathrm{V}_{\mathrm{DD}}-0.2$	$\mathrm{~V}_{\mathrm{DD}}-0.1$	-		$\mathrm{I}_{\mathrm{OUT}}= \pm 100 \mathrm{uA}$
$\mathrm{A}_{\text {VOL }}$	Open loop gain	60	80	-	dB	---
CMRR	Common mode rejection ratio	-40	-60	-	dB	---
GBW	Gain-bandwidth product	1.0	-	-	MHz	---
SL	Slew rate	0.1	-	-	$\mathrm{V} / \mu \mathrm{s}$	---
PSRR	Power supply rejection ratio	-30	-	-	dB	$\mathrm{f}<10 \mathrm{kHz}$

Sinewave Synthesizer

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{DC}	DC level	1.213	1.250	1.288	V	---
A	Amplitude	1.900	2.000	$\begin{gathered} 2.100 \\ 0 \end{gathered}$	$\begin{aligned} & V_{\text {P-P }} \\ & V_{\text {P-P }} \end{aligned}$	$\begin{aligned} & \text { AMP } \neq 00 \\ & \text { AMP }=00 \end{aligned}$
f_{0}	Frequency	-	$16{ }^{2 / 3}$	-	Hz	$\mathrm{FREQ}=000, \mathrm{f}_{\mathrm{osc}}=19.6608 \mathrm{MHz}$
f_{1}	Frequency	-	20	-	Hz	$\mathrm{FREQ}=001, \mathrm{f}_{\mathrm{osc}}=19.6608 \mathrm{MHz}$
f_{2}	Frequency	-	25	-	Hz	$\mathrm{FREQ}=010, \mathrm{f}_{\mathrm{osc}}=19.6608 \mathrm{MHz}$
f_{3}	Frequency	-	30	-	Hz	$\mathrm{FREQ}=011, \mathrm{f}_{\mathrm{osc}}=19.6608 \mathrm{MHz}$
f_{4}	Frequency	-	$331 / 3$	-	Hz	$\mathrm{FREQ}=100, \mathrm{f}_{\mathrm{osc}}=19.6608 \mathrm{MHz}$
f_{5}	Frequency	-	40	-	Hz	FREQ $=101, \mathrm{f}_{\mathrm{osc}}=19.6608 \mathrm{MHz}$
f_{6}	Frequency	-	50	-	Hz	FREQ $=110, \mathrm{f}_{\mathrm{Osc}}=19.6608 \mathrm{MHz}$
f_{7}	Frequency	-	60	-	Hz	$\mathrm{FREQ}=111, \mathrm{f}_{\mathrm{osc}}=19.6608 \mathrm{MHz}$
Δf	Frequency accuracy	-	-	0.1	\%	$\mathrm{f}_{\text {osc }}=19.6608 \mathrm{MHz}$
THD	Harmonic distortion	-	-	3	\%	$\begin{aligned} & \mathrm{C}_{\text {SINE }}=33 \mathrm{nF} \\ & \mathrm{f}_{\text {ring }}=162 / 3 \text { to } 60 \mathrm{~Hz} \end{aligned}$
$\mathrm{R}_{\text {OUT }}$	Output resistance	$\begin{aligned} & 14.4 \\ & 72.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 80.0 \end{aligned}$	$\begin{aligned} & 17.6 \\ & 88.0 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \text { AMP } \neq 00 \\ & \text { AMP }=00 \end{aligned}$

External Ring Frequency

Sym	Parameter	Min	Typ	Max	Units	Conditions	
$\mathrm{f}_{\text {CAP(10) }}$	Capture frequency low*	-	12	-	Hz	loop filter $=(33 \mu \mathrm{~F}+10 \mathrm{k} \Omega) \\| 4.7 \mu \mathrm{~F}$	
$\mathrm{f}_{\text {CAP(}{ }^{\text {hi }} \text { }}$	Capture frequency high*	-	63	-	Hz	loop filter $=(33 \mu \mathrm{~F}+10 \mathrm{k} \Omega) \\| 4.7 \mu \mathrm{~F}$	
$\mathrm{V}_{\text {IN(0) }}$	Input low	-	-	$0.3-V_{D D}$	V	---	
$\mathrm{V}_{\text {IN(hi) }}$	Input high	$0.7 \cdot V_{\text {DD }}$	-	-	V	---	
$\Delta \theta_{\text {RING }}$	Phase jitter, sine ref out	-5	-	+5	deg	loop filter $=(33 \mu \mathrm{~F}+10 \mathrm{k} \Omega) \\| 4.7 \mu \mathrm{~F}$	

* Lock range is the same as capture range

Sine Reference Attenuator

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{DC}	DC level	1.213	1.250	1.288	V	$\mathrm{~V}_{\mathrm{IN}(\mathrm{DC})}=1.250 \mathrm{~V}$
$\mathrm{~A}_{\text {OFF }}$	Attenuation	-	-	0.010	$\mathrm{~V} / \mathrm{V}$	$\mathrm{AMP}=00$
$\mathrm{~A}_{\mathrm{LO}}$	Attenuation	0.490	0.500	0.510	$\mathrm{~V} / \mathrm{V}$	$\mathrm{AMP}=01$
$\mathrm{~A}_{\text {MED }}$	Attenuation	0.735	0.750	0.765	$\mathrm{~V} / \mathrm{V}$	$\mathrm{AMP}=10$
$\mathrm{~A}_{\text {HI }}$	Attenuation	0.980	1.000	1.020	$\mathrm{~V} / \mathrm{V}$	$\mathrm{AMP}=11$
$\mathrm{~V}_{\mathrm{IN}}$	Input range	0.2	-	$\mathrm{V}_{\mathrm{DD}}-0.2$	V	---

DC REF Multiplexer

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{IN}	Input range	0.0	-	V_{DD}	V	---
I_{IN}	Input bias current	-500	-	+500	nA	---
$\mathrm{I}_{\mathrm{OFF}}$	Off leakage current	-	-	1.0	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0.5$ to $\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$

Enable and SYNC

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\text {OUT(lo) }}$	SYNC output voltage low	-	-	0.2	V	$\mathrm{I}_{\text {OUT }}=1.0 \mathrm{~mA}$ sink
$\mathrm{V}_{\text {OUT(hi) }}$	SYNC output voltage high	$\mathrm{V}_{\mathrm{DD}}-0.2$	-	-	V	$\mathrm{I}_{\text {OUT }}=1.0 \mathrm{~mA}$ source
t_{ON}	ENABLE delay, on	-	-	5	$\mu \mathrm{~s}$	---
$\mathrm{t}_{\text {OFF }}$	ENABLE delay, off	0	-	60		
1	$\mu \mathrm{s}$ ring cycle	SYNCMODE $=0$ SYNCMODE $=1$				
$\mathrm{~T}_{\text {SYNC(ON) }}$	SYNC on lead time	4.5	5.0	5.5	ms	$\mathrm{C}_{\text {SINE }}=0$ $\mathrm{R}_{\text {SYNC }}=154 \mathrm{k} \Omega$ $\mathrm{C}_{\text {SYNC }}=47 \mathrm{nF}$
$\mathrm{T}_{\text {SYNC(OFF) }}$	SYNC off delay	-250	0	+250	$\mu \mathrm{ss}$	$\mathrm{C}_{\text {SINE }}=10 \mathrm{nF}$
$\mathrm{t}_{\text {SYNC(rise) }}$	SYNC rise time	-	-	300	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {SYNC(fall) }}$	SYNC fall time	-	-	300	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PWM Controller
Sym \quad Parameter
Min
Typ

Max	Units	Conditions

PWM Frequency

$\mathrm{f}_{\text {PWM }}$	PWM frequency	21.25 127.5	25.00 150.0	28.75 172.5	kHz kHz	$\mathrm{R}_{\text {PWM }}=500 \mathrm{k} \Omega$ $\mathrm{R}_{\text {PWM }}=83 \mathrm{k} \Omega$
$\mathrm{t}_{\text {PWMSYNC(OUT) }}$	PWM sync output pulse width	30	50	70	ns	---
$\mathrm{t}_{\text {PWMSYNC(N) }}$	PWM sync input pulse width	25	-	-	ns	---
$\mathrm{f}_{\text {PWMSYNC(IN) }}$	PWM sync input frequency range	25	-	150	kHz	---
$\mathrm{V}_{\text {PWMSYNC(IO) }}$	PWM sync output low voltage	-	-	0.2	V	$\mathrm{I}_{\text {out }}=1.0 \mathrm{~mA}$ sink
$\mathrm{I}_{\text {PWMSYNC }}$	PWM sync pull-up current	-	100	-	$\mu \mathrm{A}$	---

Switch Driver Outputs

$\mathrm{V}_{\text {OUT(0) }}$	Output voltage, low	-	-	0.2	V	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$ sink
$\mathrm{V}_{\text {OUT(hi) }}$	Output voltage, high	$\mathrm{V}_{\mathrm{GD}}-0.2$	-	-	V	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$ source
$\mathrm{t}_{\text {RISE }}$	Rise time	-	-	50	ns	$\mathrm{C}_{\mathrm{L}}=4 \mathrm{nF}$
$\mathrm{t}_{\text {FALL }}$	Fall time	-	-	50	ns	$\mathrm{C}_{\mathrm{L}}=4 \mathrm{nF}$

Timing

D	Duty cycle	$\begin{aligned} & 23 \\ & 48 \\ & 73 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & 27 \\ & 52 \\ & 77 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{PWM}_{1 \mathrm{~N}}=0.625 \mathrm{~V} \\ & \mathrm{PWM}_{\mathrm{IN}}=1.250 \mathrm{~V} \\ & \mathrm{PWM}_{\mathbb{N}}=1.875 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DCL}}=0 \mathrm{~V} \end{aligned}$
$D_{\text {linit }}$	Duty cycle limit	$\begin{aligned} & 12 \\ & 72 \\ & 22 \\ & 62 \end{aligned}$	$\begin{aligned} & 20 \\ & 80 \\ & 30 \\ & 70 \end{aligned}$	$\begin{aligned} & 28 \\ & 88 \\ & 38 \\ & 78 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & V_{\text {DCL }}=0.50 \mathrm{~V}, \mathrm{PWM}_{\mathrm{I}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DCL}}=0.50 \mathrm{~V}, \mathrm{PWM}_{\mathrm{N}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DLL}}=0.75 \mathrm{~V}, \mathrm{PWM}_{\mathrm{N}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DCL}}=0.75 \mathrm{~V}, \mathrm{PWM}_{\mathrm{IN}}=2.5 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{DCL}}$	$\mathrm{V}_{\mathrm{DCL}}$ input current	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DCL}}=0-1.0 \mathrm{~V}$
t_{DB}	Primary switch deadband	$\begin{gathered} 0 \\ 0.95 \end{gathered}$	$\begin{aligned} & 100 \\ & 1.00 \end{aligned}$	$\begin{gathered} 150 \\ 1.05 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & C_{D B}=0 \mathrm{pF} \\ & R_{D B}=14 \mathrm{k} \Omega, C_{D B}=100 \mathrm{pF} \end{aligned}$
$\mathrm{t}_{\text {DIY }}$	Secondary switch delay	$\begin{gathered} 0 \\ 0.95 \end{gathered}$	$\begin{aligned} & 100 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 150 \\ & 1.05 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & C_{D L Y}=0 \mathrm{pF} \\ & R_{D L Y}=14 \mathrm{k} \Omega, C_{D L Y}=100 \mathrm{pF} \end{aligned}$

Switch Outputs

ENABLE	AMP	OFF	SW1	SW2	SW3	SW4
0	00	XX	Off	Off	Off	Off
0	$\neq 00$	$X X$	Off	Off	Switching	Switching
1	$X X$	$X X$	Switching	Switching	Switching	Switching

$X=$ don't care, $\neq 00=01,10$, or 11
Figure 1: Switch Timing Diagram

Figure 2: ENABLE and SYNC Timing - SYNCMODE = 0

Figure 3: ENABLE and SYNC Timing - SYNCMODE = 1

Figure 4: AMP Timing

Typical Application

Figures 5 and 6 on pages 9 and 10 show the schematic of a typical 15 REN ring generator application. The basic design
equations for elements connected to different pins are given in the Pin Descriptions Table beginning on page 11.

Figure 5: Block Diagram and Typical Applicatin Circuit

Figure 6: Typical Power Stage for 15 REN Ring Generator

Pin Description (refer to pin configuration on page 2)

Pin	Name	Description
1	DCREF3	See DCREF1 and DCREF2 (pins 47 \& 48).
2	VREF1	Outputs a 1.25 V nominal reference voltage. Bypass with a 100 nF capacitor to ground.
3	VREF2	Outputs a 2.50 V nominal reference voltage. Bypass with a 100 nF capacitor to ground.
4	AVDD	Supply for the analog section. 3.0 to 3.6 V Must be from the same source as DVDD. Bypass with a 100 nF capacitor to ground as close as possible to the IC.
5	TSYNC	An RC network connected to this pin determines the SYNC pulse lead time (see SYNC pin 14). $\mathrm{t}_{\text {LEAD }}=0.48 R \mathrm{C}$ If SYNC is not utilized, TSYNC must still have a connected RC network.
6	XTAL	A crystal from this pin to ground provides the frequency reference for the internal sine wave synthesizer. A 19.6608 MHz baud rate crystal provides the 8 most common ring frequencies. The crystal is operated in the series mode. A loading capacitor is not necessary. See also FREQ0-2 (pins 21-23) and FRING (pin 7).
7	FRING	Ring frequency is normally selected from the 8 built-in frequencies using control inputs FREQ02. Other arbitrary frequencies in the range of 12 to 63 Hz may be obtained by applying an externa signal to FRING. This external signal sets the ring frequency at a $1: 1$ ratio. The ring signal remains a sine wave, with amplitude and offset still controlled via AMPx and OFFx. The ring signal, while frequency locked to the FRING signal, is not phase-synchronized to it. This allows the ring signal to immediately start at 0° when enabled via ENABLE or AMP $\neq 00$. When unused, this input must be connected to VGD.
8	PLLFLT	Phase locked loop filter. An RC network connected to this pin stabilizes the PLL that locks on to the optional external ring frequency signal. (See FRING, pin 7) The RC network determines the lock time of the PLL. Due to the low frequencies involved, it may take a couple seconds to lock to the external signal. See the typical application schematic for typical values. When unused, this pin should be left unconnected.
9	ROSC	A resistor from this pin to VDD sets the PWM frequency. $\mathrm{f}_{\mathrm{PWM}} \approx 12.5 \mathrm{GHz} \Omega / \mathrm{R}_{\mathrm{osc}}$ (valid for $20-$ 150 kHz)
10	$\overline{\text { RESET }}$	A capacitor from this pin to ground provides a power-on reset interval. It has an internal $10 \mu \mathrm{~A}$ pull-up to charge the external reset capacitor. Alternatively, an external logic-level or opendrain signal may be applied to implement the reset function. During the reset interval when $\mathrm{V}_{\text {RESEI }}<1.325 \mathrm{~V}$, the ringer output is disabled regardless of the state of the ENABLE input, allowing time for the host controller to assume control. Use a low leakage tantalum or ceramic capacitor. $\mathrm{t}_{\text {RESET }}=1.325 \mathrm{~V} \cdot \mathrm{C}_{\text {RESET }} / 10 \mu \mathrm{~A}$
11	PWMSYNC	This pin functions as both an input and an output. It is open-drain with an internal $100 \mu \mathrm{~A}$ pullup. As an output, it provides a short, low-going pulse at the internal PWM frequency. As an input, it synchronizes internal PWM frequency to the externally applied signal, provided the external signal is at a higher frequency. The low-going applied sync pulse should be between 25 ns and less than the PWM period in duration. The external source should be open drain. If the PWMSYNC pins of multiple HV461s are tied together, their PWM frequencies will be phaselocked to the HV461 with the highest free-running frequency. A maximum of 10 HV 461 s may be tied together. If unused, this pin should be left unconnected.
12	CFAULT	A capacitor from this pin to ground sets the integration time of the FAULT detection circuitry. A larger capacitor provides less suseptability to transient problems, while a smaller capacitor provides quicker response. Values in the range of $1 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ are appropriate. If the FAULT output is not used, this pin should be grounded. See also FAULT (pin 15).

Pin Description (cont.)

Pin	Name	Description
13	SYNCMODE	With SYNCMODE low, ringer output ceases the instant ENABLE goes low. When high, ringer output ceases at the next ring signal phase crossing $\left(0^{\circ} / 180^{\circ}\right)$ after ENABLE goes low.
14	SYNC	Outputs a pulse indicating sine reference 0° and 180° phase crossing (not to be confused with zero-voltage crossing). The rising edge precedes phase crossing by a user-adjustable time period (see TSYNC pin 44). Falling edge coincides with sine reference phase crossing. SYNC is digitally derived, therefore phase shifts caused by the external filter capacitor at SINEREF will not be reflected at the SYNC output.
15	FAULT	Indicates abnormal operating conditions of output overcurrent, supply undervoltage (VDD \& VGD), or PWM overrange (duty cycle limit - see VDCL, pin 3). Together, these 3 conditions catch most any problem. When an overcurrent or overrange condition exists for more than 8% of the time, this output becomes active. It is cleared when the problem occurs less than 2% of the time. Undervoltage conditions immediately activate the FAULT output. It is active low and open drain to allow wire-ORing. See CFAULT (pin 15) for additional information.
16	ENABLE	Ringer output enable. Active high. When enabled, the ring signal always starts immediately at 0 degrees. If $A M P \neq 00, S W 1$ and $S W 2$ are held off when $E N A B L E=0$ but $S W 3$ and $S W 4$ continue switching. If AMP $=00$, SW3 and SW4 are held off as well. When disabled, the error amplifier is set at unity gain to prevent saturation, reducing turn-on glitches when re-enabled. See SYNCMODE (pin 13) for additional information.
17	OFFO	Sets ring DC offset. Offset changes are effected at the next phase crossing $\left(0^{\circ} / 180^{\circ}\right)$ of the ring signal. Except for 00, offsets are set by the voltages at DCREF1-3. (OFFO is LSB) Offset $=1 / 2 x$ Gain $x\left(V_{\text {DCPEEx }}-V_{\text {PEF1 }}\right)$
18	OFF1	Gain $x\left(V_{\text {DCREFx }}-V_{\text {REFF }}\right)$ $00=0 \mathrm{~V} \quad 01=$ DCREF1 $\quad 10=$ DCREF2 $11=$ DCREF3
19	AMP0	Sets ring amplitude. Amplitude changes are effected at the next phase crossing $\left(0^{\circ} / 180^{\circ}\right)$ of the ring signal. Amplitudes, as a percentage of full scale, are: (AMPO is LSB)
		Full scale amplitude $=0.707 \mathrm{~V}_{\text {RMS }} \times$ Gain
20	AMP1	$00=0 \% \quad 01=50 \% \quad 10=75 \% \quad 11=100 \%$
21	FREQ0	Sets ring frequency. Frequency changes are effected at the next phase crossing $\left(0 \% 180^{\circ}\right)$ of the ring signal. Frequencies when using a 19.6608 MHz crystal are: (FREQ0 is LSB)
22	FREQ1	
		$000=16.7 \mathrm{~Hz}$
23	FREQ2	$100=33.3 \mathrm{~Hz}$
24	$\overline{L E}$	Latch enable. The latch gates control inputs FREQ0-2, AMPO-1, OFF0-1, and ENABLE. When LE is high, latch outputs follow inputs. On a low-going transition, outputs are latched.
25	TDLY	An RC network on this pin sets the primary to secondary switch delay. This prevents the secondary-side switches (SW3\&4) from turning on prematurely. $\mathrm{t}_{\mathrm{DLY}}=0.48 \mathrm{RC}$
26	TDB	An RC network on this pin sets the deadband (break-before-make time) on the primary-side switches (SW1\&2). Deadband prevents both switches from conducting simultaneously. $\mathrm{t}_{\mathrm{DB}}=0.48 \mathrm{RC}$
27	DGND	Digital ground. Connect to AGND and PGND close to the IC.
28	SW4	Secondary-side switch driver output.
29	SW3	Secondary-side switch driver output.
30	SW2	Primary-side N-channel switch driver output.

Pin Description (cont.)

Pin	Name	Description		
31	SW1	Primary-side P-channel switch driver output.		
32	PGND	Power ground. Connect to AGND and DGND close to the IC.		
33	VGD	Supply for the SW1-4 drivers. An external boost converter controlled by VDR provides 9.6 V for driving the power stage MOSFETs. An undervoltage condition on this supply pin disables ringer output and activates the FAULT output.		
34	VDR	Gate drive for the external boost converter circuit. Outputs a fixed 50% duty cycle at the ringer PWM frequency (see ROSC, pin 9). Output voltage regulation is via burp-mode operation. This output is boostrapped to VGD, thus during startup VDR amplitude is VDD and after startup is VGD. (See VGD, pin 33)		
35	DVDD	Supply for the digital section. 3.0 V to 3.6 V input. Undervoltage disables ringer output. Must be from the same source as AVDD. Bypass with a 100 nF capacitor to ground as close as possible to the IC. An undervoltage condition on this supply pin disables ringer output and activates the FAULT output.		
36	CL+	Current limit amplifier non-inverting input.		
37	CL-	Current limit amplifier inverting input.		
38	CLCOMP	Current limit compensation. An RC network connected between this pin and CL- establishes current limit reaction time and stability.		
39	DIFFAMP+	Differential amplifier non-inverting input.	The differential amplifier sets gain, establishing output amplitude and DC offset in conjunction with AMPx and OFFx.$\begin{aligned} & \text { Gain }=R_{F B 2} / R_{F B 1} \\ & \left(R_{F B 3}=R_{F B 1} \text { and } R_{F B 4}=R_{F B 2} \text {, see schematic }\right) \end{aligned}$	
40	DIFFAMP-	Differential amplifier inverting input.		
41	DIFFAMPO	Differential amplifier output.		
42	COMP2	Error amplifier compensation. An RC network connected between these pins establishes loop stability.		
43	COMP1	COMP1 is the error amp inverting input. COMP2 is the error amp output.		
44	SINEREF	Sine wave reference. Amplitude is $2 \mathrm{~V}_{\text {p.p }}$ nominal. Output impedance is approximately $16 \mathrm{k} \Omega$. An external 33nF capacitor from this pin to ground should be employed to remove high frequency synthesizer ripple. Synthesizer ripple is at a frequency of $2^{15} \cdot \mathrm{f}_{\mathrm{RING}}$		
45	AGND	Analog ground. Connect to AGND and DGND close to the IC.		
46	VDCL	Voltage applied to this pin sets the min/max duty cycle limits. If the PWM controller hits these limits, clipping of the ringer output will occur and the FAULT output will be activated. $\mathrm{D}_{\text {MIN }}=$ $0.4 \mathrm{~V}_{\mathrm{DCL}} \mathrm{D}_{\text {MAX }}=1-0.4 \mathrm{~V}_{\mathrm{DCL}}$		
47	DCREF1	In conjunction with the OFFx control inputs, voltages applied to these inputs set the output DC offset. Output offset is the selected DCREFx voltage multiplied by gain. See also OFF0 \& OFF1 (pins 17 \& 18)		
48	DCREF2			

48-Lead LQFP Package Outline (FG)

$7.00 x 7.00 \mathrm{~mm}$ body, 1.60 mm height (max), 0.50 mm pitch

Top View

Side View

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	$\boldsymbol{\theta}$
$\begin{array}{\|c} \text { Dimension } \\ (\mathrm{mm}) \end{array}$	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.45	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60			$3.5{ }^{\circ}$
	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*		0.75			7°

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.

Supertex Doc. \#: DSPD-48LQFPFG Version, D041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C MAX8778ETJ+ NTBV30N20T4G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF TC105333ECTTR NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP81101MNTXG IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BNDERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G AZ494AP-E1 UTC3843D XDPL8219XUMA1

[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

