

HV56020

Dual High Voltage Op Amp with Step-Up Converter and Power MOSFET

Features

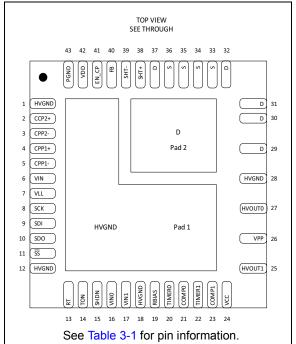
- Dual High Voltage Operational Amplifiers
 - Up to +225V
 - 40 mA Minimum Peak Output Sink/Source Current
 - Output Voltage Comparators for Short Circuit Detection
 - 124 Hz, -3 dB Bandwidth with 0.22 µF Load
- DC-to-DC Step-Up Converter
 - Single Input Voltage Supply VIN: 2.7V to 5.5V
 - Overvoltage Protection
 - Undervoltage Protection
 - Short Circuit Protection
 - Low Current Standby Mode
 - Temperature Sensor
 - Power-ON Reset
 - 24 MHz SPI Interface
- Power MOSFET
- 60V BV_{DSS}
- 10 m Ω On Resistance

Applications

- Haptic Drivers
- · Power Amplifiers

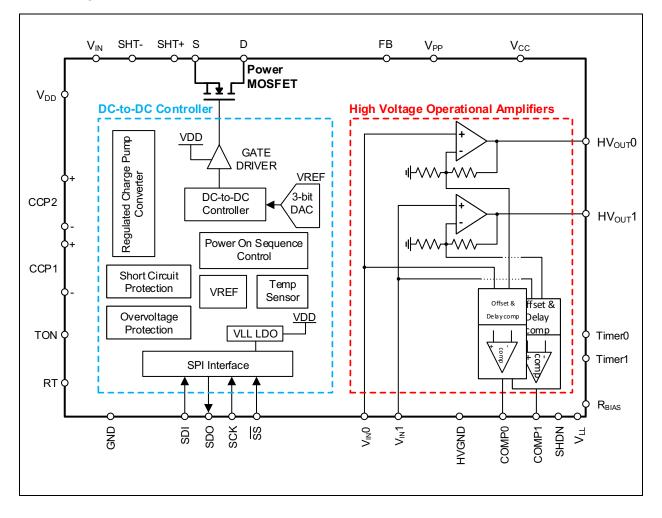
Related Devices

 HV56022 Dual High Voltage Operational Amplifiers


Description

The HV56020 is a Multi-Chip Module (MCM) driver solution designed for Haptic Applications. The IC consists of three devices: (1) Dual High Voltage Operational Amplifiers, (2) a DC-to-DC Controller, and (3) a Power MOSFET. The Op Amps are designed to drive haptic (piezo) actuators at 225V with 40 mA minimum source/sink current. The DC-to-DC Controller and the power MOSFET along with an external transformer generate the voltage supply for the High Voltage Op Amps using a Non-Isolated Flyback configuration.

The HV56020 includes ample protection circuitry: Over/Undervoltage Protection, Output Short Circuit Protection (DC-to-DC), Temperature Sensor and Output Voltage Comparators for load Short Circuit Detection.


Package Type

7 mm x 7 mm 43-Lead VQFN

HV56020

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{LL} , Low Voltage Logic Supply	0.3V to 5.5V
V _{IN} 0,1, High Voltage Op Amps Inputs	-0.3V to 5.5V
V _{IN} , Converter Input Voltage Supply	-0.3V to 6.0V
EN_CP, Enable Charge Pump Input Voltage	-0.3V to 6.0V
V _{DD} , Low Output Voltage Supply	-0.3V to 8.0V
V _{CC} , Low Voltage Supply for High Voltage Op Amps	-0.3V to 8.0V
V _{PP} , High Voltage Supply for Op Amps	-0.3V to 250V
Storage Temperature	55°C to +150°C
Operating Junction Temperature	0°C to +125°C

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC-TO-DC CONTROLLER								
Charge Pump Supply Voltage	V _{IN}	2.7	3.3	5.5	V			
Logic Supply Voltage	V _{LL}	3.0	3.3	3.6	V	Internal LDO		
High-Level Input Logic Voltage	V _{IH}	2.0	_	V _{LL}	V			
Low-Level Input Logic Voltage	V _{LL}	0	_	0.8	V			
HIGH VOLTAGE OPERATIONAL AI	HIGH VOLTAGE OPERATIONAL AMPLIFIERS							
High Voltage Supply	V _{PP}	50	_	225	V			
Low Voltage Supply	V _{CC}	6.0	6.5	7.0	V			
Inputs for High Voltage Op Amps	V _{IN} 0,1	0	_	2.98	V			

POWER SEQUENCE

Power-Up Sequence:

- 1. Connect ground
- 2. Set all driver inputs to low
- 3. Apply V_{IN}
- 4. Enable $V_{DD}(V_{CC})$
- 5. Set all converter inputs to a known state
- 6. Enable V_{PP}

Power-Down Sequence:

- 1. Disable V_{IN} 0 and V_{IN} 1 (set to 0V)
- 2. Disable V_{PP}
- 3. Disable V_{DD} (V_{CC})
- 4. Power down V_{IN}
- 5. Disconnect ground

DC-TO-DC CONTROLLER: AC/DC CHARACTERISTICS

Unless otherwise specified, $T_A = T_J = +25^{\circ}$ C. **Boldface** specifications apply over the full operating temperature range of $T_A = T_J = 0^{\circ}$ C to +125°C. Typical values are at +25°C. EN_CP = "1", V_{LL}=3.3V, V_{CC} = 6.5V unless otherwise specified.

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Charge Pump Regulator						
Charge Pump Input Voltage	V _{IN}	2.7	3.3	5.5	V	
Charge Pump Output Voltage	V _{DD}	6	6.5	7	V	2.7V ≤ V _{IN} ≤ 5.5V, I _{DD} =15 mA
Charge Pump Output Load Current		15	_	_	mA	Depends on IC loading and external capacitor selection
Output Ripple Voltage	V _{RIPPLE}	—	_	80	mV	V_{IN} = 3.3V, I_{DD} = 15 mA, Output Capacitance = 10 µF (Note 1)
V _{DD} Undervoltage Lockout	VDD _{UVLO}	4.25	_	4.75	V	Rising Edge
V _{DD} Undervoltage Lockout Hysteresis	VDD _{HYST}		0.25		V	Falling
Enable Charge Pump Input Pin	EN_CP	0	—	V _{IN}	V	
Low Threshold for EN_CP Pin	V _{IL} (EN_CP)	0	_	0.8	V	
High Threshold for EN_CP Pin	V _{IH} (EN_CP)	2.0	_	V _{IN}	V	
Pull Down Resistor at EN_CP Pin	EN_CP _{PD}	_	500	_	kΩ	EN_CP = 3.3V
Power-Down Input Current	I _{DDPD}			5	μA	EN_CP = 0V
Clock Generation						
Minimum Switching Frequency	f _{s,MIN}	160	200	240	kHz	RT = 400 kΩ
Maximum Switching Frequency	f _{s,MAX}	320	400	480	kHz	RT = 200 kΩ
Clock Ramp Maximum	V _{TS}	_	3.5	_	V	Note 2
Clock Ramp Minimum	V _{RST}	_	0.2	_	V	Note 2
TON Generation	<u> </u>					-
Maximum Voltage at TON	VTON _{MAX}	_	_	2.8	V	2.8V = 0.8V _{TS} = 80% PWM Max (Note 2)
Minimum Voltage at TON	VTON _{MIN}	0	—	—	V	0.25V _{TS} = 25% PWM Min (Note 2)
TON Generation Internal Gain	K _{TON}	_	40	—	V/V	Note 2
Output Voltage Feedback						·
Comparator Delay	T _{DLYCOMP}	—	_	50	ns	10 mV Overdrive (Note 2)
Overvoltage Protection						
OVP Set Point	OVP _R	-3%	1.278	+3%	V	
OVP Hysteresis	OVP _{HYST}	—	0.36	—	V	
OVP Delay Time	OVP _{DLY}	_	50	_	ns	100 mV Overdrive (Note 2)
Short Circuit Protection						•
Short Circuit Comparator Offset	SH _{OFF}	34	50	68	mV	SHT_EN = 1 (SHT+ and SHT- pins)
Temperature Sensor						· · · · · ·
Temperature Threshold	T _{TH}	125		150	°C	Note 2
Temperature Threshold Hysteresis	T _{THHYST}	_	25	—	°C	Note 2
Voltage Reference 3-Bit DAC						·
Integral Nonlinearity	INL	_	_	±0.5	LSB	Note 1
Differential Nonlinearity	DNL		_	±0.5	LSB	Note 1
Note 1: Specification is obtained		ation on	lia not 100			

Note 1: Specification is obtained by characterization and is not 100% tested.

2: Design guidance only.

DC-TO-DC CONTROLLER: AC/DC CHARACTERISTICS (CONTINUED)

Unless otherwise specified, $T_A = T_J = +25^{\circ}$ C. **Boldface** specifications apply over the full operating temperature range of $T_A = T_J = 0^{\circ}$ C to +125°C. Typical values are at +25°C. EN_CP = "1", V_{LL}=3.3V, V_{CC} = 6.5V unless otherwise specified.

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Code Word						
Code 000			0.3 V _{REF}		V	VPP READY =1
Code 001			0.4 VREF	_	V	
Code 010			$0.5 V_{REF}$		V	
Code 011		_	0.6 V _{REF}		V	
Code 100		_	$0.7 V_{REF}$		V	Note 1
Code 101		_	0.8 V _{REF}		V	
Code 110			0.9 V _{REF}	_	V	
Code 111	V _{REF}	-3%	1.188	+3%	V	VPP READY = 1
Logic Voltage Supply (Internal LD	O for SPI)					
Logic Voltage Supply	V_{LL}	3.0	3.3	3.6	V	
High-Level Input Logic Voltage	V _{IH}	2.0	_	V_{LL}	V	
Low-Level Input Logic Voltage	V _{IL}	0	—	0.8	V	
VLL Undervoltage Lockout	VLDO _{UVLO}	2.25	2.5	2.75	V	
VLL Undervoltage Lockout Hysteresis	VLDO _{HYST}	_	0.25		V	
SPI Interface						L
Maximum SPI Clock Frequency	SCK	24	—		MHz	3.3V Input Logic
Logic Input Rise and Fall Time	t _r , t _f		5	_	ns	Note 1
Source Current by Standard I/O Pin	Isource	10	—	_	mA	
Sink Current by Standard I/O Pin	lsink	10	—	_	mA	Note 2
SDI Valid to SCK Setup Time	t ₁	10	_	—	ns	
SDI Valid to SCK Hold Time	t ₂	20	—	—	ns	
SCK High Time % of 1/f _{clk}	t ₃	45	—	55	%	
SCK Low Time % of 1/f _{clk}	t ₄	45	—	55	%	
SS Pulse Width	t ₅	300	—	_	ns	Note 1
LSB SCK High to SS High	t ₆	10	—	_	ns	
SS Low to SCK High	t ₇	20	—	_	ns	
SDO Propagation Delay from SCK Falling Edge	t ₈	10	_	_	ns	
SDO Output Valid after SS Low	t ₉	20	—	_	ns	
SS Inactive to SDO High Impedance	t ₁₀	40	_	_	ns	Note 2

Note 1: Specification is obtained by characterization and is not 100% tested.

2: Design guidance only.

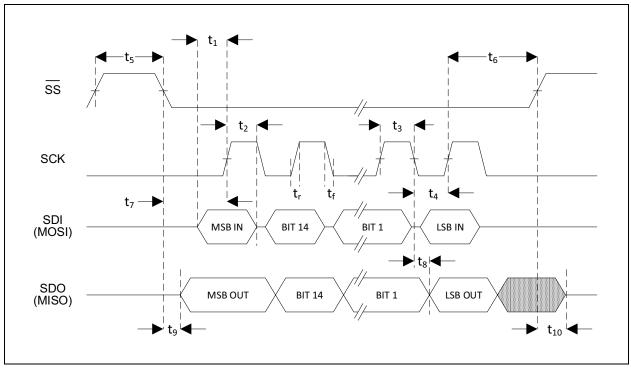


FIGURE 1-1: SPI Timing Diagram.

HV OPERATIONAL AMPLIFIERS: AC/DC CHARACTERISTICS

Unless otherwise specified, $T_A = T_J = +25^{\circ}$ C. **Boldface** specifications apply over the full operating temperature range $T_A = T_J = 0^{\circ}$ C to +125°C. Typical values are at +25°C, $V_{CC} = 6.5$ V unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
HV Op Amps Low Voltage Supply	V _{CC}	6	6.5	7	V	
HV Op Amps Low Voltage Supply Current	I _{CC}	_	0.2		mA	V_{CC} = 6.5V, V_{PP} = 225V, f _{HVOUT} = 124 Hz, sine wave V_{IN} 0,1= 0 to 2.98V, C_L = 0.22 µF (Note 1)
HV Op Amps Input Analog Voltage	V _{IN} 0,1	0		2.98	V	V _{PP} = 225V, V _{CC} = 6.5V
High Voltage Supply	V _{PP}	50	_	225	V	
V _{PP} Quiescent Supply Current	I _{PPQ}		_	4.5	mA	V _{IN} 0,1= 0V, SHDN = 0
V _{PP} Supply Current	I _{PP}	_	16.5	_	mA	$\begin{split} V_{CC} &= 6.5V, \ V_{PP} = 225V, \\ f_{HVOUT} &= 124 \ Hz, \\ sine \ wave \ V_{IN} 0, 1 = 0 \ to \ 2.98V, \\ C_L &= 0.22 \ \mu F \ (\text{Note 1}) \end{split}$
V _{PP} Shutdown Supply Current	I _{PPDN}	—	_	2	μA	SHDN = 1
HV _{OUT} High Level Output	V _{OH}	214	_	_	V	V _{CC} = 6.5V, V _{PP} = 225V, Ι _{HVOUT} = 100 μΑ
HV _{OUT} Low Level Output	V _{OL}	—	—	1	V	V _{CC} = 6.5V, V _{PP} = 225V, Ι _{HVOUT} = -100 μΑ
HV Op Amps Output Offset Voltage	HV _{OFFSET}	-1.1		+1.1	V	
HV _{OUT} Output Source Current	I _{HVOUT} (SOURCE)	40		_	mA	$100V \le V_{PP} \le 225V, V_{CC} = 6.5V$
HV _{OUT} Output Sink Current	I _{HVOUT} (SINK)	40		_	mA	$100V \le V_{PP} \le 225V, V_{CC} = 6.5V$
HV _{OUT} -3 dB Bandwidth	BW _{124Hz}	_	124		Hz	V_{PP} = 225V, V_{CC} = 6.5V, C_L = 0 to 0.22 μF, HV_{OUT} = Full scale output, 25°C ≤ T _J ≤ 60°C, R_{BIAS} = 150 kΩ (Note 1)
HV _{OUT} Slew Rate	SR _{HV}	0.09	_		V/µs	V_{PP} = 225V, V_{CC} = 6.5V, C_{L} = 0.22 µF
Closed Loop Gain	A _V	72	75	78	V/V	V _{PP} = 225V, V _{CC} = 6.5V, No Load
Shut Down Input Pin	SHDN	0.3		3.3	V	
HV Op Amps Shutdown Time	t _{SHDN}	_	300	_	ns	V _{PP} = 225V, V _{CC} = 6.5V, SHDN = 0 to 1, V _{IN} 0,1 = 0 (Note 2)
HV Op Amps Wake-Up Time from Shutdown	t _{WKUP}	_	2	_	ms	V _{PP} = 225V, V _{CC} = 6.5V, SHDN = 1 to 0, V _{IN} 0,1 = 0 (Note 2)
HV Op Amp Output Preload Capacitor	C _{PRE}	_	10	_	nF	Note 2
Output Voltage Comparators						
Comparator Output High Logic (VOH)	COMP0,	2		3.3	v	
Comparator Output Low Logic (VOL)	COMP1	0		0.8	v	
Comparator Output Sink Current	C _{ISINK}		-2		mA	Note 1
Comparator Output Source Current	CISOURCE	—	2	_	mA	Note 1
Comparator Input Offset	V _{OFFSET}		110	_	mV	Note 1
Comparator Delay	t _{DELAY}	0.6	1.6	2.6	ms	1.5 nF at Timer 0, 1 pin, R_{BIAS} = 150 k Ω

Note 1: Specification is obtained by characterization and is not 100% tested.

2: Design guidance only.

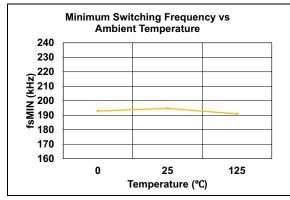
POWER MOSFET: AC/DC CHARACTERISTICS

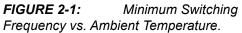
Unless otherwise specified $T_A = T_J = +25^{\circ}$ C. **Boldface** specifications apply over the full operating temperature range $T_A = T_J = 0^{\circ}$ C to +125°C. Typical values are at +25°C, EN_CP = 1, $V_{IN} = 3.3$ V, $V_{CC} = 6.5$ V unless otherwise specified.

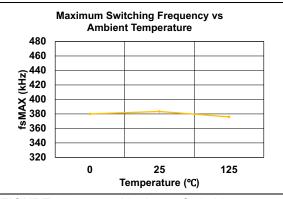
Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Drain to Source Breakdown Voltage	BVDSS	60	_	_	V	V _{GS} = 0V
Drain to Source ON Resistance	R _{DS} (ON)	—		10	mΩ	V _{GS} = 5V, ID = 1A (Note 1)
Diode Forward Voltage	V _{SD}			1.2	V	$I_{\rm S}$ = 60A, $V_{\rm GS}$ = 0V

Note 1: Design guidance only.

TEMPERATURE SPECIFICATIONS

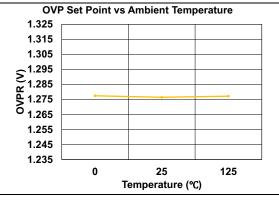
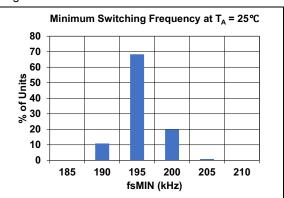
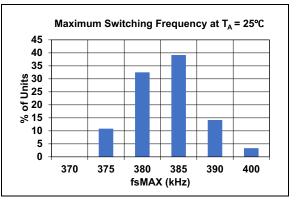

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	
Temperatures Ranges							
Operating Junction Temperature	TJ	0	—	+125	°C		
Storage Temperature	T _A	-55	—	+150	°C		
Package Thermal Resistances							
Thermal Resistance	θ _{JC}	_	1.66	_	°C/W	Note 1	
(43-Lead VQFN)	θ _{JA}		27	_	°C/W	Note 1	


Note 1: 4 Layers FR4 4"X4" PCB.


2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

2.1 DC-to-DC Controller

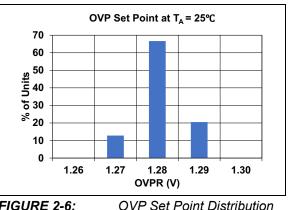

FIGURE 2-3:OVP Set Point vs AmbientTemperature.

FIGURE 2-4: Minimum Switching Frequency Distribution at $T_A = 25^{\circ}C$.

FIGURE 2-5: Maximum Switching Frequency Distribution at $T_A = 25^{\circ}$ C.

FIGURE 2-6: OVP Set Point Distribution at $T_A = 25^{\circ}$ C.

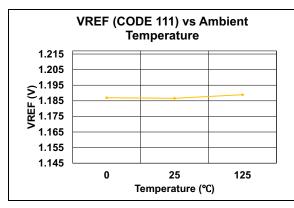


FIGURE 2-7: VREF (Code 111) vs Ambient Temperature.

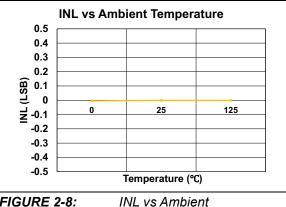


FIGURE 2-8: Temperature.

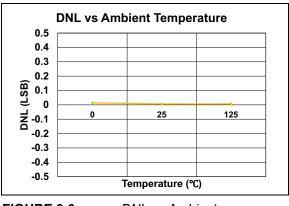
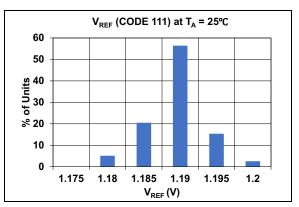
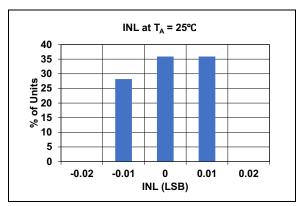




FIGURE 2-9: Temperature.

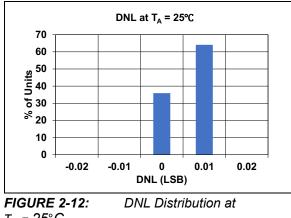

DNL vs Ambient

FIGURE 2-10: VREF (Code 111) Distribution at $T_A = 25^{\circ}$ C.

FIGURE 2-11: INL Distribution at $T_A = 25^{\circ}$ C.

 $T_A = 25^{\circ}C.$

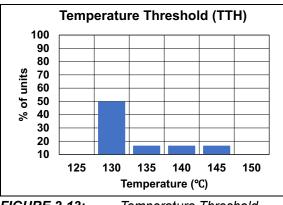
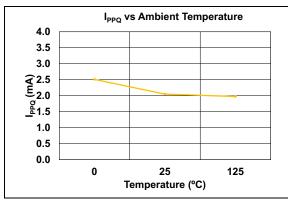
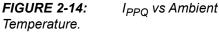
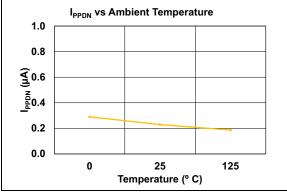
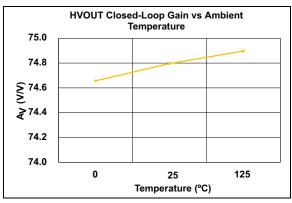
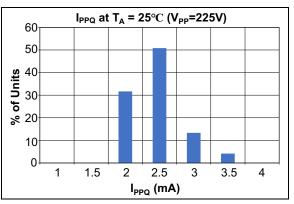
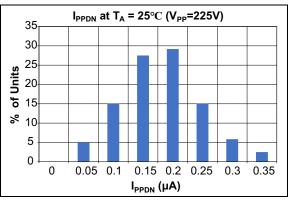





FIGURE 2-13:Temperature ThresholdDistribution.


2.2 HV Amplifiers




FIGURE 2-15: I_{PPDN} vs Ambient Temperature.

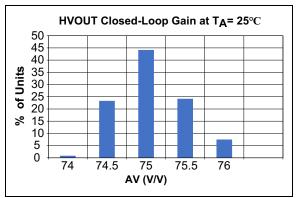

FIGURE 2-16: HVOUT Closed-Loop Gain vs Ambient Temperature.

FIGURE 2-17: I_{PPQ} Distribution at $T_A = 25^{\circ}$ C.

FIGURE 2-18: I_{PPDN} Distribution at $T_A = 25^{\circ}C$.

FIGURE 2-19: HVOUT Closed-Loop Gain Distribution at $T_A = 25^{\circ}$ C.

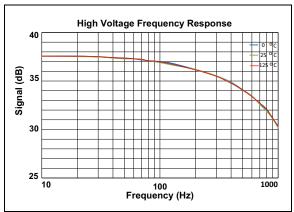


FIGURE 2-20:High Voltage FrequencyResponse: Signal vs Frequency ($V_{PP} = 225V$, $V_{CC} = 6.5V$, $V_{LL} = 3.3V$, $R_{BIAS} = 150 \ k\Omega$, $V_{IN} = 0$ to 2.98V, Load = 0.22 μ F).

2.3 **Power MOSFET**

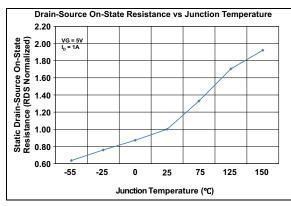
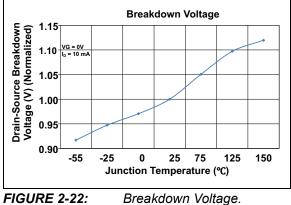
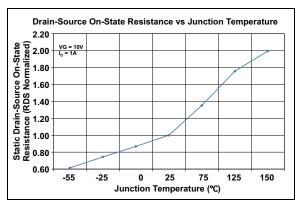




FIGURE 2-21: Drain-Source On-State Resistance vs Junction Temperature (VG = 5V).

FIGURE 2-22:

FIGURE 2-23: Drain-Source On-State Resistance vs Junction Temperature (VG = 10V).

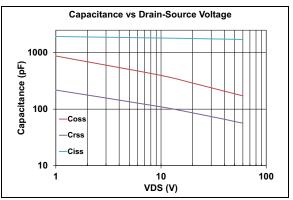


FIGURE 2-24: Capacitance vs Drain-Source Voltage.

HV56020

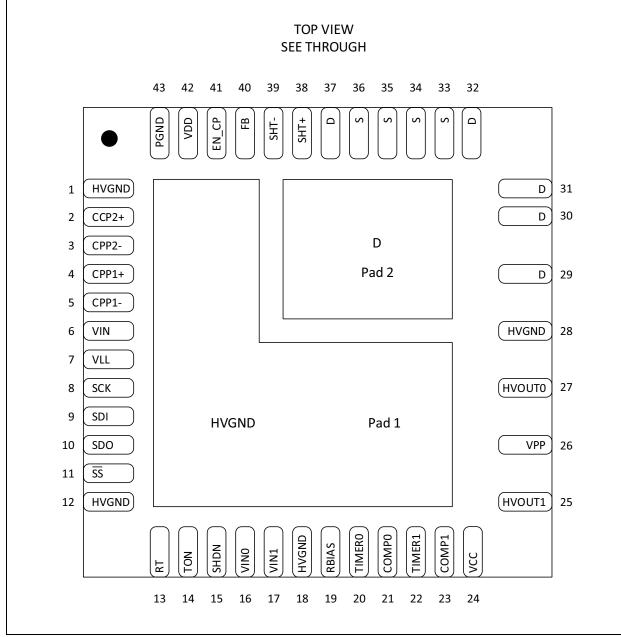


FIGURE 3-1:

VQFN 43-Lead 7 x 7 mm.

3.1 Pin Description

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:	PIN FUNCTION TABLE
------------	--------------------

PIN	Symbol	Description
1	HVGND	High Voltage Ground
2	CCP2+	Charge Pump Storage Capacitor #2 Plus Terminal
3	CCP2-	Charge Pump Storage Capacitor #2 Minus Terminal
4	CCP1+	Charge Pump Storage Capacitor #1 Plus Terminal
5	CCP1-	Charge Pump Storage Capacitor #1 Minus Terminal
6	V _{IN}	Input Voltage Supply
7	V _{LL}	Logic Output Voltage Supply
8	SCK	SPI Clock
9	SDI	SPI Data Input
10	SDO	SPI Data Output
11	SS	SPI Chip Select
12	HVGND	High Voltage Ground
13	RT	Frequency Adjustment Pin for DC-to-DC Controller
14	TON	TON Timer for Pulse Width Modulation
15	SHDN	Shutdown Output Pin
16	V _{IN} 0	CH0 Amplifier Input
17	V _{IN} 1	CH1 Amplifier Input
18	HVGND	High Voltage Ground
19	R _{BIAS}	Bias Reference for High Voltage Amplifiers
20	Timer0	Delay Timer 0
21	Comp0	Comparator Output 0
22	Timer1	Delay Timer 1
23	Comp1	Comparator Output 1
24	V _{CC}	Low Voltage Amplifier Supply
25	HV _{OUT} 1	CH1 High Voltage Amplifier Output
26	V _{PP}	High Voltage Amplifier Supply
27	HV _{OUT} 0	CH0 High Voltage Amplifier Output
28	HVGND	High Voltage Ground
29,30,31,32,37, Pad 2	D	Power MOSFET Drain
33,34,35,36	S	Power MOSFET Source
38	SHT+	Current Sense + Terminal
39	SHT-	Current Sense - Terminal
40	FB	Power Supply Feedback Input
41	EN_CP	Charge Pump Enable Input Pin
42	V _{DD}	Charge Pump Output Voltage
43	PGND	Power Ground

3.2 Charge Pump Storage Capacitors (CPP2+, CPP2-, CPP1+, CPP1-)

The storage capacitors input pins are used for the internal charge pump to generate V_{DD} . V_{DD} is the required voltage source to operate all the circuitry in the DC-to-DC Controller and the HV Op Amps bias currents, V_{CC} . 2 µF capacitors are recommended for both storage capacitors, CPP1 and CPP2.

3.3 Input Voltage Supply (VIN)

Input Voltage Supply pin for internal circuitry of the device and for the non-isolated flyback configuration. The device is intended for battery operated applications with a voltage range of 2.7V to 5.5V.

3.4 Logic Voltage Supply Output Pin (V_{LL})

 V_{LL} is an internally generated 3.3V voltage source for the SPI interface. V_{LL} is an output pin and can be used to power the other family device, HV56022, that requires a 3.3V voltage source. A 1 μF bypass capacitor is recommended to be connected at the V_{LL} output pin.

3.5 SPI- Serial Clock (SCK)

Serial clock pin for the SPI interface.

3.6 SPI- Serial Data Input (SDI)

Serial data input pin for the SPI interface.

3.7 SPI- Serial Data Output (SDO)

Serial data output pin for the SPI interface.

3.8 SPI- Serial Chip Select (SS)

Serial data chip select pin for the SPI interface.

3.9 High Voltage Ground (HVGND)

Ground reference pins for the High Voltage Amplifiers.

3.10 Power Ground (PGND)

Ground reference pin for the DC-to-DC converter, the internal Power MOSFET, and the short circuit sense resistor, R_{SHT} . The power ground separates the

DC-to-DC converter switching noise from the rest of the circuitry.

3.11 Frequency Adjustment (RT)

Adjustment input pin for the DC-to-DC converter PWM switching frequency, fs. A 200 k Ω resistor will set the switching frequency to 400 kHz (typical).

fs = 1/((RT*12 pF)+100 ns)

3.12 Duty Cycle On Time (TON)

The On-Time input pin takes a voltage reference, VTON, to set the PWM (Pulse Width Modulation) duty cycle. TON voltage range is from $0.25V_{TS}$ to $0.8V_{TS}$ to generate a 25% to 80% duty cycle, respectively.

3.13 Shutdown Output Pin (SHDN)

The Shutdown output pin is used to deactivate the other family device, HV56022 Dual High Voltage Amplifiers, when both devices are used in the same application. The HV Op Amps shutdown option is available at the RXB Register over the SPI interface; see Section 4.2.13 "SPI Control Registers" for more details.

3.14 High Voltage Amplifiers Inputs (V_{IN}0, V_{IN}1)

Input data signals for the High Voltage Operational Amplifiers.

3.15 Amplifiers Bias Reference Pin (R_{BIAS})

High Voltage Amplifiers bias reference input pin. A 150 k Ω resistor will set the bias currents for a 124 Hz, –3 dB bandwidth for 225V sinusoidal waveforms driving 0.22 μ F capacitive loads.

3.16 Output Voltage Comparator Output Pins (COMP0, COMP1)

The internal voltage comparators monitor the input data signals, $V_{IN}0, V_{IN}1$, and the High Voltage Amplifiers' feedback signals for a short at the amplifiers' outputs. The comparators monitor for a 20% or greater voltage drop in the output against the input signal before reporting a short flag, COMP0,1 = 1 or 3.3V.

3.17 Output Voltage Comparators Delay Timer Pins (Timer0, Timer1)

The output voltage comparators monitor the input data signals, $V_{IN}0$, $V_{IN}1$, against the HV Op Amp feedback signals: if there is a heavy capacitive load, the HVOUT signals will slowly increase, causing the comparators to detect a false short. False triggering is avoided by adding a delay to the input signals of the comparators. A 1.5 nF capacitor will add a 1.6 ms delay time when R_{BIAS} is set to 150 k Ω .

Time Delay = 7.55*R_{BIAS}*C (Timer)

3.18 Low Voltage Supply Input Pin for High Voltage Amplifiers (V_{cc})

 V_{CC} is the low voltage supply input pin for the High Voltage Op Amps and has an operational voltage range of 6V to 7V. V_{CC} is intended to be biased from the internal charge pump converter output voltage, V_{DD} . A 2 μF bypass capacitor is recommended to be added close to the V_{CC} pin.

3.19 High Voltage Amplifiers Outputs (HV_{OUT}0, HV_{OUT}1)

High Voltage Amplifiers Output channels.

3.20 High Voltage Amplifiers Supply Input Pin (V_{PP})

Input power supply pin for the High Voltage Op Amps. V_{PP} is generated by the flyback configuration formed by the internal power MOSFET, the DC-to-DC Controller, and the external transformer. The maximum operating voltage is 225V. A 0.1 μ F or higher bypass capacitor is recommended to be added close to the V_{PP} pin.

3.21 Power MOSFET Drain (D)

Drain pin connections for the internal Power MOSFET.

3.22 **Power MOSFET Source (S)**

Source pin connections for the internal Power MOSFET.

3.23 Current Sense Resistor Input Pins (SHT-, SHT+)

Current sense resistor input pins for the Short Circuit Protection circuitry in the DC-to-DC Controller.

3.24 Power Supply Feedback Input Pin (FB)

Feedback input pin for the DC-to-DC Controller.

3.25 Charge Pump Enable Input Pin (EN_CP)

Internal Charge Pump enable control pin.

EN_CP = '1' or 3.3V enables V_{DD} ; EN_CP = '0' or 0.V disables V_{DD} .

3.26 Charge Pump Output Voltage (V_{DD})

Charge pump output voltage source for the DC-to-DC internal circuitry and V_{CC}. V_{DD} is designed to supply voltage source for the HV56020 as well as for the HV56022, which is part of the same device family. A 10 μ F or greater capacitor is recommended for decoupling.

4.0 FUNCTIONAL DESCRIPTION

The HV56020 is a Multi-Chip Module (MCM) driver solution designed for Haptic Applications. The IC consists of three devices: (1) Dual High Voltage Operational Amplifiers, (2) a DC-to-DC Converter Controller, and (3) a Power MOSFET.

The High Voltage Operational Amplifiers operate up to 225V and can source/sink 40 mA minimum peak currents. The amplifiers are designed for a –3 dB bandwidth of 124 Hz for 225V sinusoidal waveforms driving 0.22 μF capacitive loads. In addition, the amplifiers are paired with output voltage comparators to monitor and report short circuit conditions.

The DC-to-DC Controller and the power MOSFET along with an external transformer generate the required voltage supply for the High Voltage Op Amps using a Non-Isolated Flyback configuration. The DC-to-DC Controller also includes many protection circuitries: Over and Undervoltage Protection, Short Circuit Protection (DC-to-DC), Power ON Reset, and a Temperature Sensor.

The power MOSFET is a 60V device with a 10 m Ω On resistance and a 14 nC gate charge. The MOSFET allows the flyback configuration to sustain a 400 kHz switching frequency.

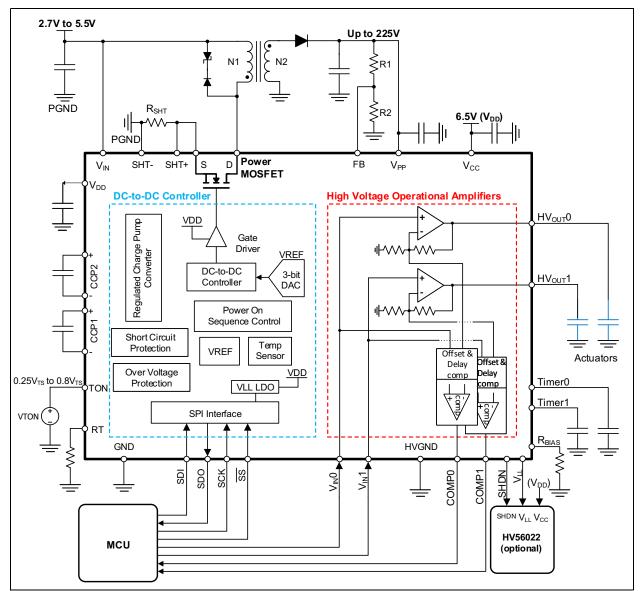
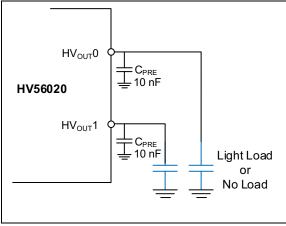


FIGURE 4-1: Functional Block Diagram.

4.1 High Voltage Operation Amplifiers

The High Voltage Operational Amplifiers operate up to 225V (unipolar) with 40 mA minimum source/sink peak current capabilities and are designed with a fixed 75V/V gain.


4.1.1 BANDWIDTH

The amplifiers' bandwidth is controlled in part by the internal bias currents set by an external resistor, **R**_{BIAS}. The internal bias currents can be increased by reducing R_{BIAS} to achieve higher Bandwidth. Increasing the Bandwidth will lead to higher power consumption. A 150 k Ω R_{BIAS} will set the bias currents for a 124 Hz,

-3~dB,~Bandwidth for 225V sinusoidal waveforms driving 0.22 μF capacitive loads.

4.1.2 STABILITY

Amplifiers are designed to operate for a wide range of capacitive loads and to maintain stability when light or no loads are present. 10 nF preload capacitors, C_{PRE} , are recommended to be added in parallel with the outputs $HV_{OUT}0$ and $HV_{OUT}1$. Figure 4-2 illustrates the application diagram using 10 nF preload capacitors.

4.1.3 SHORT CIRCUIT DETECTION

Amplifiers are paired with voltage comparators for output short circuit detection. The Output Voltage Comparators, **COMP0** and **COMP1**, are a safety feature designed to check the voltage across the load (haptic actuator) during operation. Comparators monitor the Amplifiers' feedback signals against 80% of the input signals, $V_{IN}0$ and $V_{IN}1$. If there is a short or failing load (drooping voltage) at the output, a flag ('1' or 3.3V) will be raised by the comparators for the MCU (controlling host).

Comparators are designed with internal voltage offset, V_{OFFSET} (~110 mV) and delay timer pins, Timer0 and Timer1, to prevent false triggering.

The internal voltage offsets are designed to avoid false triggering due to ground noise when input signals swing close to zero level.

Timer pins add delay compensation to the comparators' inputs, $V_{IN}0$ and $V_{IN}1$, by using capacitors at the Timer0 and Timer1 pins. When input signals are step functions (for example square waves), the amplifiers' outputs will slowly charge, producing trapezoidal waveforms. If input signals are not delayed, amplifiers' feedback signals will appear as short when compared to the input signals. A 150 k Ω R_{BIAS} and timer pins with 1.5 nF capacitors will provide a 1.6 ms delay. Figure 4-3 illustrates a false detection event when timer capacitors are not being used.

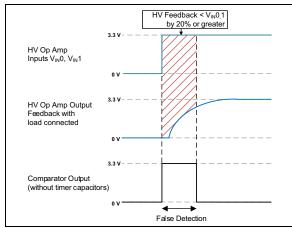


FIGURE 4-3: False Detection.

4.1.4 SHUTDOWN MODE

The shutdown mode, **SHDN**, disables the internal bias current, allowing for power saving when the amplifiers are not operating. The shutdown mode is available in the RXB Register Bit 1, **SHDN**; see Section 4.2.13 "SPI Control Registers" for more details.

4.2 DC-to-DC Controller

A Hysteretic Step-up DC-to-DC Controller is integrated in this driver IC to generate the high voltage rail, V_{PP} , required to power the High Voltage Amplifiers. The feedback input is a typical DC-to-DC feedback which monitors the feedback voltage from a resistor divider referenced to ground. When the sensing voltage is higher than the internal reference voltage, V_{REF} , it deactivates the pulse in the next cycle. When the sensing voltage is lower, it activates the pulse.

The DC-to-DC controller consists of a Charge Pump Regulator, PWM Controller, Oscillator Circuit, 3-Bit DAC for Voltage Reference, Overvoltage Protection, Short Circuit Protection, Temperature Sensor, Power-On Reset and a 16-bit Serial Peripheral Interface (SPI).

4.2.1 CHARGE PUMP REGULATOR

The internal charge pump regulator runs at a fixed switching frequency to generate V_{DD} , a 6.5V voltage source with 15 mA supply current. V_{DD} is the voltage source required to drive the gate of the internal power MOSFET, the DC-to-DC circuitry, and the High Voltage Amplifiers bias currents, V_{CC} . The enable charge pump input pin, **EN_CP**, turns ON the charge pump when it is High, and OFF when it is pulled Low or Open. V_{DD} is also designed to provide power for additional HV56022 devices (V_{CC}).

4.2.2 POWER-ON-RESET

The Power-on-Reset circuit ensures V_{DD} voltage has reached the operational mode, **VDD_{UVLO}**, (4.5V typical) before the internal circuitry is turned ON. The Power-on-Reset circuit also prevents the internal circuitry from running in case V_{DD} voltage drops below the non-operational mode, VDD_{UVLO} - **VDD_{HYST}**.

4.2.3 CLOCK GENERATION

The internal clock source is generated by an internal bias current set by an external resistor, **RT**. The frequency adjustment pin, RT, recommended range is from 200 k Ω to 400 k Ω to generate a 400 kHz to 200 kHz clock source respectively.

fs = 1/((RT*12pF)+100ns)

4.2.4 GATE DRIVER

The gate driver is designed to drive the internal power MOSFET transistor to the maximum switching frequency $\mathbf{f}_{s,MAX}$. The gate driver swings between V_{DD} and ground to drive the power MOSFET with fast rise and fall transition times.

4.2.5 VOLTAGE REFERENCE

The voltage reference sets the DC-to-DC output voltage, V_{PP} , when the IC is configured in a flyback configuration (suggested topology). The voltage

reference, V_{REF} , is specified by a 3-Bit code word and is set over the 16-Bit SPI interface (see Section 4.2.12 "SPI Serial Interface Mode 0" for more details). The 3-Bit code word allows for 8 different voltage levels starting with 000 equivalent to 67.5V, and 111 equivalent to 225V. Table 4-1 shows the complete operational values. The code word setting corresponds to a percentage of the V_{REF} that is set to be 1.188V. The minimum setting is 000, which corresponds to 30% of V_{REF}, and 111 to 100%. The maximum recommended operating V_{PP} voltage is 225V. To set V_{PP} to zero, the device needs to be disabled by the EN Bit (EN = '0') or set in a standby mode by STD_BY Bit (STD_BY = '1', EN = '1').

TABLE 4-1:3-BIT DAC TO OUTPUT
VOLTAGE

DAC <7:5>	V _{REF} (%)	V _{PP} (V)
000	30	67.5
001	40	90
010	50	112.5
011	60	135
100	70	157.5
101	80	180
110	90	202.5
111	100	225

4.2.6 OVERVOLTAGE PROTECTION

The Overvoltage Protection (OVP_R) circuitry monitors the DC-to-DC Controller output voltage, V_{PP} , for an overvoltage condition by checking the feedback voltage, VFB. If the output voltage surpasses 8% of maximum V_{PP} (225V), the Overvoltage protection circuitry will shut down the DC-to-DC Controller to prevent damage to the IC. In case of an Overvoltage condition there will also be an Overvoltage flag, OVER, reported in the TXB Register.

4.2.7 SHORT CIRCUIT PROTECTION

A short circuit at the output of the flyback transformer may cause damage to the power supply circuit and to the application system. A short circuit protection scheme is implemented in the DC-to-DC controller by monitoring the power MOSFET Source-to-Ground current with a sense resistor, \mathbf{R}_{SHT} . Short circuit is indirectly detected by sensing the inductor's saturation.

The presence of a higher than designed current through R_{SHT} will cause the voltage drop across the sense resistor to be greater than the 50 mV threshold offset voltage, **SH_{OFF}**, causing the short circuit condition, suspending DC-to-DC operation, and raising a **SHORT** flag in the TXB Register. The short circuit protection circuit can be enabled or disabled by the **SHT_EN** Bit in the RXB Register.

4.2.8 STANDBY MODE (STD_BY)

The standby mode sets the HV56020 into power saving mode when there are no actuations required at the High Voltage Outputs (HVOUTs), by disabling the DC-to-DC converter output, V_{PP} . The standby bit, **STD_BY**, is available at the RXB Register Bit 3. The standby mode stops PWM pulses for power MOSFET and keeps the rest of the device running until the full operational mode is enabled, EN = '1' and STD_BY = '0'.

4.2.9 ENABLE CONTROL (EN)

Enable control input bit, **EN**, for the DC-to-DC Controller is available in the RXB Register Bit 2. In disabled mode, EN = '0', all internal circuitry except the wake-up circuit is turned off. The wake-up circuit restores the internal circuitry to normal operation when the enable bit is set high, EN = '1'.

4.2.10 TEMPERATURE SENSOR

The Temperature Sensor helps to ensure that the maximum operational temperature of the IC, +150°C, is not exceeded. If the temperature of the device reaches the threshold temperature range, T_{TH} , the **TEMP** flag Bit will be set to '1' in the TXB Register. The Temperature Sensor has a +25°C hysteresis that

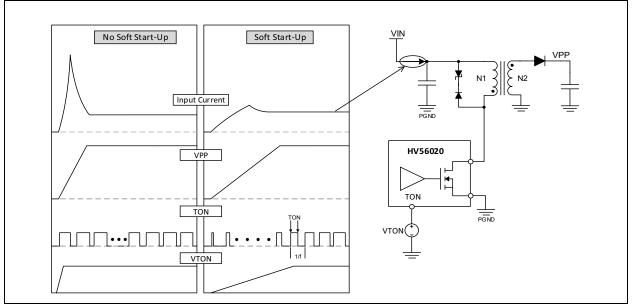
resets the TEMP Bit flags to '0' once temperature drops below the hysteresis threshold temperature, T_{THHYST}. The Temperature Sensor is only an indicator and will NOT perform any further action to the DC-to-DC or HV Op Amps.

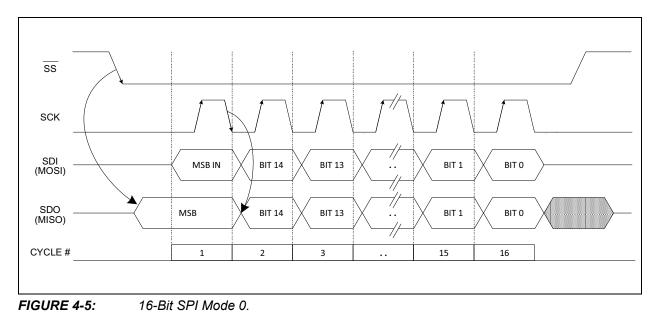
4.2.11 TON GENERATION

TON input pin takes a voltage reference to set the duty cycle, **TON**, of the Pulse Width Modulation (PWM) cycles for the internal gate driver. The voltage range is $0.25V_{TS}$ to $0.8V_{TS}$ to generate 25% to 80% duty cycle respectively, where **V**_{TS} is typically 3.5V.

To have a soft start-up, low input peak currents, in the flyback topology it is recommended to start increasing the PWM duty cycle slowly until the topology has reached the designed PWM duty cycle, TON. The slow increase in the TON is achieved by slowly increasing the **VTON** voltage reference. The diagram in Figure 4-4 shows two cases: when no soft start-up and when soft start-up is implemented using VTON. A 10 ms time constant is recommended for soft start-up.

Toggling EN or STBY Bit will reset the internal, VTON, voltage reference for PWM duty cycle. A TON reset ensures a soft start-up mode when EN or STBY are used multiple times during operation.




FIGURE 4-4:

TON Soft Start-Up Implementation.

4.2.12 SPI SERIAL INTERFACE MODE 0

The HV56020 uses a 16-bit Serial Peripheral Interface (SPI) module to communicate with the host controller. The serial synchronous interface is used to control and monitor the DC-to-DC Step-Up converter. The SPI module is designed to be compatible with operation Mode 0.

In Mode 0, data transmission starts when \overline{SS} goes Low, causing the Slave to output the Most Significant Bit (MSB) data in to the SDO (MISO) pin. Data transfer between Master and Slave takes place during the rising edge of the clock (SCK), which is considered to be idle when it is Low. This mode of operation requires data for Master and Slave to be present in the line (MISO/MOSI) before the rising edge of the clock (defining SDI to SCK setup time). Data are pushed out of the SDO (MISO) pin during the falling edge of the clock. After the first transaction, 16-Bit data exchange, Master writes the latest data (Dn) to Slave, while Slave passes its previous (Dn-1) stored data to the Master. Figure 4-5 illustrates the 16-bit operation mode.

4.2.13 SPI CONTROL REGISTERS

The 16-Bit SPI Interface module consists of two 8-Bit registers, a Receive Register, RXB, and a Transmit Register, TXB.

The Receive Register (**RXB**) is where the control settings for the DC-to-DC Controller are specified, for example, the Step-Up voltage level (V_{PP}), Short Circuit Detection Enable (SHT_EN), Standby (STD_BY), Enable (EN) and Shutdown (SHDN) modes of operation.

The Transmit Register (**TXB**) is used by the DC-to-DC converter to report the current operation state by using various status flags like Overtemperature (TEMP),

Short Circuit (SHORT), Overvoltage Detection (OVER) at V_{PP} , and whether the Step-Up voltage (V_{PP}) is ready for operation (READY).

To operate the DC-to-DC controller, only 8 bits of data are required, and correspond to the lower byte. The upper byte is a place holder used by the TXB register to report the status of the DC-to-DC controller, see Figure 4-6. The Most Significant Bit (MSB) of data is written (to SDI/MOSI pin) and read (pushed out of SDO/MISO pin) first.

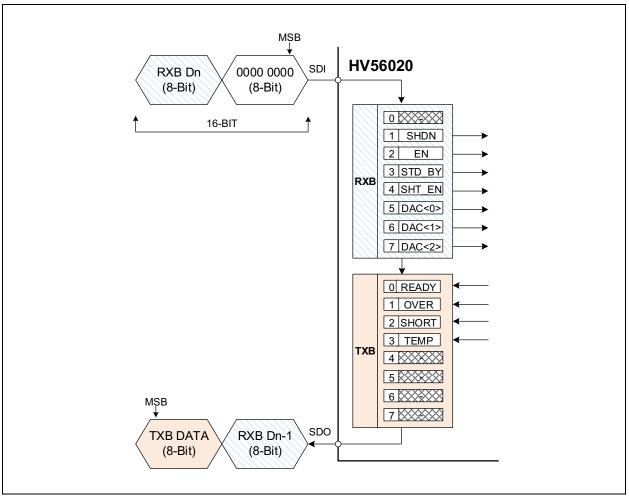


FIGURE 4-6:

SPI Registers: RXB, TXB.

4.2.13.1 RECEIVE REGISTER (RXB)

	R-0	R-0	R-0	R-0	R-0	R-0	U-0
R-0	DAC<2:0>	14-0	SHT EN	STD BY	EN	SHDN	
bit 7	DA0 - 2.02			010_01		OTDIN	bit (
							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7-5	DAC[2:0]: VF	REF 3-Bit Code	Word				
	Bits DAC[7:5	i] set the DC-t	o-DC output	voltage, V _{PP} .	Table 4-3 prese	nts the corresp	onding cod
	word values f	or the desired	V _{PP} voltage.				
bit 4	SHT_EN: She	ort Circuit Prote	ection Enable				
					to-DC is operat		
				,	T Flag will be rai	sed and reporte	ed on the TX
	•	and DC-to-DC			SHORT Flag is	roported in the -	TVP Dogiato
					the Step-Up cor		
	be operating	in a CCM mod			on SHT+ and S		
	on TXB Regis	ster Bit 2.					Ų
	Note: if SHT_EN = 0, state of SHORT = 0.						
	_	EN = 0, state	of SHORT = 0				J
bit 3	STD_BY: Sta	-	of SHORT = 0				J
bit 3	STD_BY: Sta 1 = Disables	ndby Mode	converter outp		rest of the circu	itry keeps runn	-
bit 3 bit 2	STD_BY: Sta 1 = Disables 0 = Standby r	andby Mode the DC-to-DC of	converter outp		rest of the circu	iitry keeps runn	-
	STD_BY: Sta 1 = Disables 0 = Standby (EN: DC-to-D(1 = DC-to-D(indby Mode the DC-to-DC (mode disabled. C Step-Up Con C enabled.	converter outp		rest of the circu	iitry keeps runn	-
bit 2	STD_BY: Sta 1 = Disables 0 = Standby r EN: DC-to-D(1 = DC-to-D(0 = DC-to-D(indby Mode the DC-to-DC (mode disabled. C Step-Up Con C enabled. C disabled.	converter outp verter Enable	ut voltage, the	rest of the circu	iitry keeps runn	-
bit 2	STD_BY: Sta 1 = Disables 0 = Standby n EN: DC-to-D(1 = DC-to-D(0 = DC-to-D(SHDN: High ²	indby Mode the DC-to-DC (mode disabled. C Step-Up Con C enabled. C disabled. Voltage Amplifi	converter outp verter Enable ers Shut Dow	ut voltage, the	rest of the circu	iitry keeps runn	-
bit 2	STD_BY: Sta 1 = Disables 0 = Standby (EN: DC-to-D(1 = DC-to-D(0 = DC-to-D(SHDN: High (1 = Disables	indby Mode the DC-to-DC (mode disabled. C Step-Up Con C enabled. C disabled. Voltage Amplifi the HV Op amp	converter outp verter Enable ers Shut Down	ut voltage, the	rest of the circu	iitry keeps runn	-
bit 2 bit 1	STD_BY: Sta 1 = Disables 0 = Standby r EN: DC-to-D0 1 = DC-to-D0 0 = DC-to-D0 SHDN: High 1 1 = Disables 0 = Enables t	indby Mode the DC-to-DC of mode disabled. C Step-Up Con C enabled. C disabled. Voltage Amplifi the HV Op amp he HV Op amp	converter outp verter Enable ers Shut Down os.	ut voltage, the	rest of the circu	iitry keeps runn	-
	STD_BY: Sta 1 = Disables 0 = Standby r EN: DC-to-D0 1 = DC-to-D0 0 = DC-to-D0 SHDN: High 1 1 = Disables 0 = Enables t	the DC-to-DC of mode disabled. C Step-Up Con C enabled. C disabled. Voltage Amplifit the HV Op amp he HV Op amp ted: Read as of	converter outp verter Enable ers Shut Down os.	ut voltage, the	rest of the circu	iitry keeps runn	

V _{REF}	V _{PP} (V)					
0.30 V _{REF}	67.5					
0.40 V _{REF}	90					
0.50 V _{REF}	112.5					
0.60 V _{REF}	135					
0.70 V _{REF}	157.5					
0.80 V _{REF}	180					
0.90 V _{REF}	202.5					
1.00 V _{REF}	225					
	V _{REF} 0.30 V _{REF} 0.40 V _{REF} 0.50 V _{REF} 0.60 V _{REF} 0.70 V _{REF} 0.80 V _{REF} 0.90 V _{REF}					

TABLE 4-3:CODE WORD LEVELS

HV56020

4.2.13.2 TRANSMIT REGISTER (TXB)

TABLE 4-4	: TRANS	MIT REGISTER	R (TXB)									
R-0	R-0	R-0	R-0	W-0	W-0	W-0	W-0					
		—		TEMP	SHORT	OVER	READY					
bit 7							bit (
Legend:												
R = Readal	ole bit	W = Writable	e bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unknown						
bit 7-4	Unimplem	nented: Read as	0									
bit 3		for future use. mperature Senso	or Flag									
	1 = Junction temperature in the device has reached +125 °C to +150 °C.											
		0 = Junction temperature in the device is within the recommended operating range.										
		Note: The temperature sensor has a +25°C hysteresis. This is only an indicator flag and will no										
	perform ar	perform any actions to the DC-to-DC Controller or HV Amplifiers.										
bit 2	SHORT: S	SHORT: Short Circuit Flag										
	 1 = Short Circuit detected, the DC-to-DC Controller suspends operation. 0 = Short Circuit NOT detected. 											
	Short Circuit Case:											
	If SHT_EN = 1 and EN = 1 (in RXB Register); and if short circuit is detected, SHORT = 1. SHOR											
	flag will be	flag will be cleared on the falling edge (1 to 0) of EN (Bit 2 in RXB Register).										
	Note: If SHT_EN = 0 and EN = 0 or 1, in RXB Register, SHORT = 0.											
bit 1	OVER: Overvoltage Flag											
	1 = V _{PP} voltage is above 8% of its maximum recommended value, 225V. The DC-to-DC Controlle											
	suspends operation.											
	$0 = V_{PP}$ voltage is within the recommended operating range: 67.5V to 225V.											
bit 0	READY: V _{PP} Voltage											
	1 = V _{PP} is	1 = V _{PP} is OK for the HV Amplifier for operation.										
	$0 = V_{PP}$ is not ready for the HV Amplifier for operation.											
		-	-	-								

DC/DC Mode	e Input			Output				Condition	
	EN	STD_BY	SHT_EN	SHDN	TEMP	SHORT	OVER	READY	
Enable	1	Х	Х	Х	Х	Х	Х	Х	Enable DC/DC converter
Enable	0	Х	Х	Х	Х	0	0	0	Disable DC/DC converter
Standby	1	1	х	Х	Х	х	х	х	No PWM pulse to power FET. All the other DC/DC converter circuit is ON.
Shutdown	1	х	х	1	х	х	х	x	All amplifiers are turned off. Drivers are drawing minimum quiescent current for power saving.
Short Circuit	1	Х	1	Х	Х	Х	Х	Х	Short Circuit Protection ON
Overtemp.	х	х	Х	Х	1/0	х	х	х	1: Overtemperature detected 0: No Overtemperature detected
Overvoltage	1	х	х	Х	Х	х	1/0	х	1: Overvoltage detected 0: No Overvoltage detected
Short Circuit	1	х	1	Х	Х	1/0	х	х	1: Short circuit detected 0: Short circuit NOT detected
Ready	1	Х	Х	Х	Х	Х	х	1/0	1: V _{PP} OK to send data 0: V _{PP} not OK to send data

DC/DC CONVERTER MODE OF OPERATION

4.3 Power MOSFET

The internal Power MOSFET is a 60V device with a 10 m Ω Drain-to-Source ON resistance. The MOSFET is designed to be used in a flyback topology to generate up to 225V output voltage. The small input capacitance, Ciss, allows the topology to sustain a 480 kHz switching frequency.

The MOSFET is designed to generate up to 8 Watts of power during operation.

5.0 APPLICATION INFORMATION

The HV56020 is designed for haptic applications where high voltage generation and integration are required. The device offers a complete solution by providing a DC-to-DC converter, a Power MOSFET, and HV Operational Amplifiers. The HV56020 is a battery operated device with an input voltage range of 2.7 to 5.5V.

In haptic applications, communication with the user occurs via the skin's haptic sensory system. Electro-Mechanical Polymer (EMP) Actuators are used in the low frequency band to stimulate the skin's sensory system. The haptic sensory system band frequency range is targeted around 1 Hz to 200 Hz and greater frequencies are used for audible feedback. The HV56020 is designed to drive 0.22 uF actuators at 124 Hz (-3 dB Bandwidth) with 225V sinusoidal waveforms.

Haptic applications require multiple channels to cover parts of the body with susceptible haptic sensory systems. For multiple channel solutions where simultaneous data transmission is not a strict requirement, the HV56022 can be used to add extra channel drive capacity. The HV56022 is a Dual High Voltage Operational Amplifier with the identical AC and DC electrical characteristics as the HV56020 amplifiers. The HV56020's V_{DD} and V_{LL} output voltages can be used to power HV56022's input voltage sources: V_{CC} (V_{DD}) and V_{LL}.

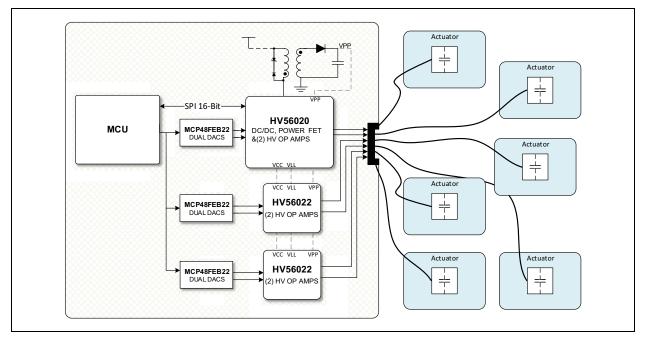


FIGURE 5-1:

Application Block Diagram.

5.1 PCB Layout Guidelines

The High Voltage Amplifiers can operate up to 225V with a 2.5 mA quiescent current (I_{PPQ}) during the idle state mode, dissipating 0.56 watts. During the transmission mode, the peak power can reach up to 3.7 watts (I_{PP} 16.5 mA typical) when driving both HV Amplifiers simultaneously with a 0.22 µF load using a 124 Hz sine wave. Average and peak power levels depend on the load capacitance and the input data waveform characteristics: frequency, amplitude, rise/fall times and duration. The printed circuit board (PCB) layout design must accommodate for high power dissipation by having a low thermal resistance with the device, HV56020.

During normal operation, actuators are expected to operate in burst modes with intermittent idle times, allowing for moderate power consumptions. Power consumption becomes a concern for the continuous mode of operation, where each amplifier can dissipate up to 1.8 watts of instantaneous power. Continuous operation modes will lead to high power consumption and, in case of a poorly designed PCB, thermal runaway.

5.1.1 HV56020

The HV56020 is a multi-chip module consisting of three devices: (1) Dual High Voltage Operational Amplifiers, (2) a DC-to-DC Converter Controller, and (3) a Power MOSFET. The HV Amplifiers and the DC-to-DC controller sit on the package lead frame **Pad 1** connected to High Voltage Ground, **HVGND**. The Power MOSFET sits on **Pad 2** connected to the **Drain**. Most of the heat generated by the devices will flow via the package lead frame Pad 1 and Pad 2, and a minor heat portion via the package mold compound (and to the air via convection).

5.1.2 PCB LAYOUT

The thermal resistance from the device's silicon \rightarrow die attach \rightarrow Pad1,2 \rightarrow PCB must be minimal to pull the heat out of the package as fast as possible. Low thermal resistance is achieved by the exposure of the pad's connections to a significant quantity of copper. It is recommended to use numerous **via** connections to the internal planes (HVGND and Drain connections) and to employ copper pour technique at the Top and Bottom Layers connecting the pads. Figure 5-2 illustrates the suggested layout for the copper pour and via connections in Top-Layer for Pad 1 and Pad 2.

The HVGND copper pour must be continuous throughout most of the PCB Top-Layer and regions containing the HV56020. HVGND connection pathways 1, 2, 3, and 4 must be cleared of components and signal traces to avoid cutting the ground plane and reducing the copper content in the Top Layer (see Figure 5-2). Small footprint components, e.g., 0402 EIA size code, and routing signal traces in the inner layers are recommended. Components for the **RT**, **TON**, **Timer Delay** and **R**_{BIAS} pins must be placed out of the HVGND pathways or at the Bottom-Layer. Trace routing for VIN0,1, and the SPI Interface signals: SCK, SDI, SDO, \overline{SS} , can be placed in the inner layers to avoid cutting the top ground plane.

Note: The standoff - spacing - for high voltage signal must be maintained in all layers/planes in accordance with the UL 840 pollution level 1, where a 0.56 mm minimum creepage spacing is recommended for 250V DC or AC RMS operation.

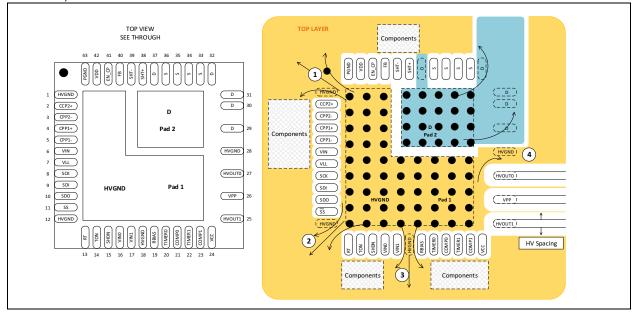


FIGURE 5-2: HV56020 PCB Layout Diagram.

5.1.3 PCB STACK-UP

The PCB is recommended to have a Stack-Up with at least four layers or higher count preferably to increase the ground (HVGND) copper content and help with the heat dissipation. The **Top** and **Bottom Layers** must be **2 Oz.** The rest of the planes and layers can be 1 Oz.

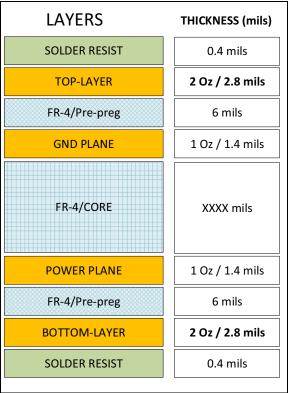
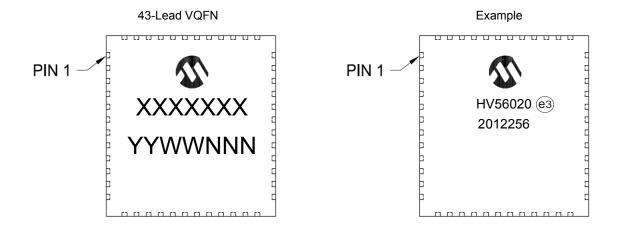
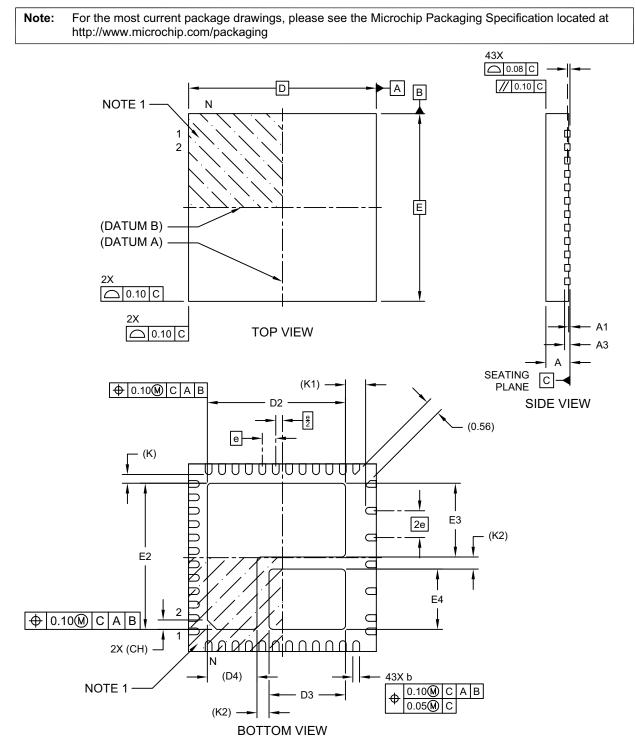



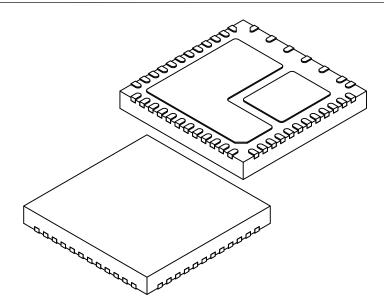
FIGURE 5-3: PCB Stack-Up.

HV56020


6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.


43-Lead Very Thin Plastic Quad Flat, No Lead Package (KXX) - 7x7 mm Body [VQFN] With Dual Exposed Pads

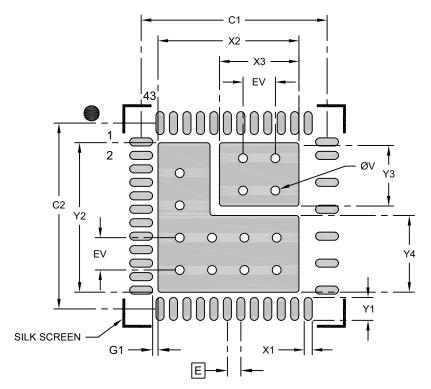
Microchip Technology Drawing C04-471 Rev. A Sheet 1 of 2

43-Lead Very Thin Plastic Quad Flat, No Lead Package (KXX) - 7x7 mm Body [VQFN] With Dual Exposed Pads

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS							
Dimension	Limits	MIN	NOM	MAX				
Number of Terminals	Ν		43					
Pitch	е		0.50 BSC					
Overall Height	Α	0.80	0.80 0.85					
Standoff	A1	0.00						
Terminal Thickness	A3		0.20 REF					
Overall Length	D		7.00 BSC					
Exposed Pad Length	D2	5.05	5.15	5.25				
Exposed Pad Length	D3	2.75	2.75 2.85 2.					
Exposed Pad Length	D4		1.85 REF					
Overall Width	E		7.00 BSC					
Exposed Pad Width	E2	5.35	5.45	5.55				
Exposed Pad Width	E3	2.65	2.75	2.85				
Exposed Pad Width	E4	2.15	2.25	2.35				
Terminal Width	b	0.18	0.25	0.30				
Terminal Length	L	0.35	0.35 0.40 0.4					
Pin 1 Index Chamfer	СН	0.35 REF						
Terminal-to-Exposed Pad	K		0.32 REF					
Terminal-to-Exposed Pad	K1		0.75 REF					
Exposed Pad-to-Exposed Pad	K2	0.45 REF						

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-471 Rev. A Sheet 2 of 2

43-Lead Very Thin Plastic Quad Flat, No Lead Package (KXX) - 7x7 mm Body [VQFN] With Dual Exposed Pads

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	X2			5.23
Optional Center Pad Width	X3			2.95
Optional Center Pad Length	Y2			5.55
Optional Center Pad Length	Y3			2.35
Optional Center Pad Length	Y4			2.85
Contact Pad Spacing	C1		6.90	
Contact Pad Spacing	C2		6.90	
Contact Pad Width (X43)	X1			0.30
Contact Pad Length (X43)	Y1			0.85
Contact Pad to Center Pad (X43)	G1	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2471 Rev. A

HV56020

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (March 2020)

· Initial release of this document

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.		<u>x(¹⁾</u> a Type	_X │ Temperature Range	/XXX Package	Examp a) H\	/56020T-V/KXX = 43-Terminal VQFN, Industrial Temperature, Very Thin Quad Flatpack,
Device:	HV56020		ll High Voltage Op Amp w Power MOSFET	ith Step-Up Converter		No Lead, 3000/Reel
Media Type:	т	= 300	00/Reel for KXX Package			
Temperature Range:	V		C to +125°C(Industrial) ad (Pb)-free/RoHS Compl	liant	Note 1:	catalog part number description. This
Package:	кхх	= Ver 7 x	y Thin Quad Flatpack, No <7 x 0.9 mm VQFN	o Lead 43-Terminal,		identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

HV56020

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5823-4

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141

Tel: 81-6-6152-7160

Tel: 81-3-6880- 3770

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Tel: 60-3-7651-7906

Tel: 60-4-227-8870

Tel: 63-2-634-9065

Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Thailand - Bangkok

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Japan - Osaka Japan - Tokyo

Korea - Daegu

Korea - Seoul

Malaysia - Kuala Lumpur

Malaysia - Penang

Philippines - Manila

Singapore

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Tel: 66-2-694-1351

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC259G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MCP6V36UT-E/LTY MXD8011HF MCP6V17T-E/MS SCY6358ADR2G LTC2065HUD#PBF NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCV4333DTBR2G EL5420CRZ-T7A AS324MTR-E1 AS358MMTR-G1 MCP6491T-ELTY