Off-Line, High Voltage EL Lamp Driver

Features

- Processed with HVCMOS ${ }^{\circledR}$ technology
- Input voltage up to 200 V DC
- 400 V peak-to-peak output voltage
- Output load up to 350 nF ($100 \mathrm{in}^{2}$ for $3.5 \mathrm{nF} / \mathrm{in}^{2}$ lamp)
- Adjustable output lamp frequency
- Adjustable on/off pulsing frequency

Applications

- Electronic organizers
- Handheld portable computers
- Display signs
- Portable instrumentation equipment

General Description

The Supertex HV809 is an off-line, high voltage, EL lamp driver integrated circuit designed for driving EL lamps of up to 350 nF at 400 Hz . The input supply voltage can be a rectified nominal 120 V AC source or any other DC source up to 200 V . The HV809 will supply the EL lamp with an AC square wave with a peak-to-peak voltage of two times the input DC voltage.
The HV809 has two internal oscillators, a low voltage output linear regulator, and a high voltage output H -bridge. The high voltage output H -bridge frequency is set by an external resistor connected between the REL-Osc and GND pins. The EL lamp is connected between pins VA and VB. For the HV809 in the 8-pin package, an external RC network can be connected between the oscillator's Osc1 and Osc2 pins to pulse the EL lamp on and off.

For detailed circuit and application information please refer to Application Note AN-H36.

Block Diagram

Ordering Information

Part Number	Package Option	Packing
HV809K2-G	7-Lead TO-220	$50 /$ Tube
HV809LG-G	8-Lead SOIC	$2500 /$ Reel
HV809SG-G	8-Lead SOIC w/ heat slug	$2500 /$ Reel

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
$\mathrm{HV}_{\mathrm{IN}}$, High voltage input	+210 V
$\mathrm{~V}_{\mathrm{DD}}$, Internal supply voltage	+15 V
Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation:	
8-Lead SOIC	500 mW
8-Lead SOIC w/ Heat Slug	1.5 Watts
7-Lead TO-220*	15 Watts

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

* With external heat sink mounted, refer to App Note AN-H36.

Product Marking

L = Lot Number
YY = Year Sealed WW = Week Sealed
____ = "Green" Packaging
Package may or may not include the following marks: Si or $\$ 7$

7-Lead TO-220

Y = Last Digit of Year Sealed WW = Week Sealed L = Lot Number
\qquad = "Green" Packaging

Pin Configuration

7-Lead TO-220
(front view)

8-Lead SOIC w/ Heat Slug
(top view)
(Heat slug is at ground potential)
Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{\text {ja }}$
7-Lead TO-220	$29^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOIC	$101^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOIC w/ heat slug	$84^{\circ} \mathrm{C} / \mathrm{W}$

Package may or may not include the following marks: Si or 4

8-Lead SOIC

Recommended Operating Conditions

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{HV}_{\mathbb{I N}}$	High voltage input	50	-	200	V	---
C_{L}	Load capacitance	-	-	350	nF	$\mathrm{R}_{\mathrm{EL}}=1.0 \mathrm{M} \Omega, \mathrm{HV} \mathrm{IN}_{\mathrm{N}}=170 \mathrm{~V}$
		-	-	150	nF	$\mathrm{R}_{\mathrm{EL}}=390 \mathrm{k} \Omega, \mathrm{HV} \mathrm{I}_{\mathbb{N}}=170 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature	-25	-	85	${ }^{\circ} \mathrm{C}$	---

Electrical Characteristics

DC Characteristics (Over recommended operating conditions unless otherwise specified $-T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
I_{IN}	High voltage supply current	-	-	70	mA	$\begin{aligned} & \mathrm{HV}_{\mathrm{IN}}=170 \mathrm{~V}, \mathrm{R}_{\mathrm{EL}}=1.0 \mathrm{M} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=350 \mathrm{nF}, \end{aligned}$
		-	-	9.0	mA	$\begin{aligned} & \mathrm{HV}_{\mathrm{IN}}=170 \mathrm{~V}, \mathrm{R}_{\mathrm{EL}}=1.0 \mathrm{M} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{nF}, \end{aligned}$
$\mathrm{I}_{\text {INQ }}$	Quiescent supply current	-	-	400	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{HV}_{\mathrm{IN}}=170 \mathrm{~V}, \mathrm{R}_{\mathrm{EL}}=1.0 \mathrm{M} \Omega, \\ & \mathrm{Osc} 1=\mathrm{GND}, \text { No Load } \end{aligned}$
		-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{HV}_{\mathrm{IN}}=170 \mathrm{~V}, \mathrm{R}_{\mathrm{EL}}=1.0 \mathrm{M} \Omega, \\ & \mathrm{Osc} 1=\mathrm{V}_{\mathrm{DD}}, \text { No Load } \end{aligned}$
$\mathrm{I}_{\text {SINK }}$	Osc2 sink current*	-	300	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {osc2 }}=1.0 \mathrm{~V}$
$\mathrm{I}_{\text {SOURCE }}$	Osc2 source current*	-	100	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{Osc} 2}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$
$\mathrm{l}_{\text {osc1 }}$	Osc1 logic input leakage current	-	± 10	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {Osc1 }}=G N D$ and $\mathrm{V}_{\text {DD }}$
$\mathrm{V}_{\text {Oscl (hyst) }}$	Osc1 hysteresis voltage	-	2.5	-	V	---
$V_{A B}$	Min differential output voltage across lamp	-	-	400	V	$\mathrm{HV}_{\text {IN }}=200 \mathrm{~V}$
$V_{D D}$	Internal supply voltage	8.0	10	12	V	No load on V_{DD}
$\mathrm{I}_{\text {DD ((OUT) }}$	Output V_{DD} current	4.0	-	-	mA	For HV809K2, $\Delta \mathrm{V}_{\mathrm{DD}}=1.0 \mathrm{~V}$

AC Characteristics (Over recommended operating conditions unless otherwise specified $-T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
f_{EL}	V_{A-B} output drive frequency	320	400	480	Hz	$\begin{aligned} & R_{E L}=1.0 \mathrm{M} \Omega, \\ & \text { Osc1 }=G N D, C_{L}=350 \mathrm{nF} \end{aligned}$
		0.8	1.0	1.2	kHz	$\begin{aligned} & R_{E L}=390 \mathrm{k} \Omega, \\ & \text { Osc1 }=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{nF} \end{aligned}$
t_{r}	Output rise time	-	180	250	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{nF}, \mathrm{HV}$ IN $=170 \mathrm{~V}$
t_{f}	Output fall time	-	50	100	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{nF}, \mathrm{HV}_{\text {IN }}=170 \mathrm{~V}$

Function Table

Input	Outputs	
Osc1	VA	VB
GND	Enabled	Enabled
VDD	Disabled	Disabled

Figure 1. AC Off-Line EL Lamp

Figure 2. Pulsing EL Lamp

Figure 3. Push-Button, Delayed Turn Off

Typical Waveform on $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$, and Differential Waveform $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$

 $\left(H V_{I N}=170 \mathrm{~V}, R_{E L}=1.0 \mathrm{M} \Omega\right.$, and $\left.C_{L}=350 \mathrm{nF}\right)$

Function Table

Pin Name	Description
Osc1	The Output H-bridge can be enabled and disabled by connecting the Osc1 pin to the GND and VDD pins. The output can be left enabled by connecting the Osc1 pin to GND.
Osc2	The RC network can be connected between the oscillator's Osc1 and Osc2 pins to pulse the EL lamp on and off.
VDD	Internal supply voltage.
REL-Osc	EL lamp frequency is controlled via an external $R_{\text {EL }}$ resistor connected between the REL-Osc and GND pins of the device.
VB	VB side of the EL lamp driver H-bridge. Connection for one of the EL lamp terminals.
VA	VA side of the EL lamp driver H-bridge. Connection for one of the EL lamp terminals.
HVIN	High voltage input supply pin.
GND	Ground pin.

7-Lead TO-220 Package Outline (K2)

Front View

Side View

Symbol		A	A1	A2	b	c	D	E	E1	e	H1	L	Q	ФP
Dimension (inches)	MIN	. 160	. 045	. 090	. 023	. 015	. 560	. 385	$\begin{aligned} & .300 \\ & \text { REF } \end{aligned}$. 045	. 234	. 540	. 103	. 146
	NOM	-	-	-	-	-	-	-		-	-	-	-	-
	MAX	. 190	. 055	. 115	. 037	. 022	. 590	. 415		. 055	. 258	. 560	. 113	. 156

Drawings not to scale.
Supertex Doc. \#: DSPD-7TO220K2, Version NR090308.

8-Lead SOIC (Narrow Body) Package Outline (LG) 4.90x3.90mm body, 1.75 mm height (max), 1.27 mm pitch

Note:
This chamfer feature is optional. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	01
Dimension (mm)	MIN	1.35*	0.10	1.25	0.31	4.80*	5.80*	3.80*	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	4.90	6.00	3.90		-	-			-	-
	MAX	1.75	0.25	1.65*	0.51	5.00*	6.20*	4.00*		0.50	1.27			8°	15°

[^0]
8-Lead SOIC (Narrow Body w/Heat Slug) Package Outline (SG)
 4.90x3.90mm body, 1.70mm height (max), 1.27mm pitch

Top View

Side View

Bottom View

View A - A

View B

Note:

1. If optional chamfer feature is not present, a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/ identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	E2	e	h	L	L1	L2	0	01
$\begin{aligned} & \text { Dimension } \\ & (\mathrm{mm}) \end{aligned}$	MIN	1.25*	0.00	1.25	0.31	4.80*	3.30^{+}	5.80*	3.80*	$2.29{ }^{+}$	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	4.90	-	6.00	3.90	-		-	-			-	-
	MAX	1.70	0.15	1.55*	0.51	5.00*	$3.81{ }^{+}$	6.20*	4.00*	$2.79{ }^{+}$		0.50	1.27			8°	15°

[^1](The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^2]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Drivers \& Controllers category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
ICB2FL01G LC74761M-9006-E MP3360DG-LF-P HV5812PJ-G-M904 TW8813-LB2-GR TW8819AT-NA2-GR TW8811-PC2-GR
MAX1839EEP+ TW9907-TA1-GR MAX7370ETG+T LX27901IDW STVM100DC6F DS3994Z+T\&R S1D13515F00A100 LX1686EIPW
AM26C32IDR MAX7370ETG+ LX1688IPW MAX1739EEP+ MAX17126BETM+ MAX14515AEWA+T DS3992Z-18P
BTM7710GXUMA1 DS3881E+C S1D13742F01A200 LX1688CPW MAX17126AETM+ MAX8729EEI+ MAX7370ETG
TIOS1013DMWR TLD5097EL HV857LK7-G TLD5097ELXUMA1 AAT2823IBK-1-T1 DLPA1000YFFT ICB2FL01GXUMA2
DLP2000FQC SC401U IR2117PBF PAD1000YFFR S1D13748B00B100 FIN324CMLX STVM100DS6F HV850MG-G AD8138ARZ-R7
AD8387JSVZ ADDI9023BBCZ ADM3202ARUZ-REEL7 IR21091SPBF DLPC6421ZPC

[^0]: JEDEC Registration MS-012, Variation AA, Issue E, Sept. 2005.

 * This dimension is not specified in the JEDEC drawing.

 Drawings are not to scale.
 Supertex Doc. \#: DSPD-8SOLGTG, Version I041309.

[^1]: JEDEC Registration MS-012, Variation BA, Issue E, Sept. 2005.

 * This dimension is not specified in the JEDEC drawing.
 \dagger This dimension differs from the JEDEC drawing.
 Drawings not to scale.
 Supertex Doc. \#: DSPD-8SOSG, Version D041009.

[^2]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

