High-Voltage Current-Mode PWM Controller

Features

- 10 to 120 V input voltage range
- Current-mode control
- High efficiency
- Up to 1.0 MHz internal oscillator
- Internal start-up circuit
- Low internal noise
- 50% maximum duty cycle

Applications

- DC/DC converters
- Distributed power systems
- ISDN equipment
- PBX systems
- Modems

General Description

The Supertex HV9110 is a BiCMOS/DMOS single-output, pulse width modulator IC intended for use in high-speed, high-efficiency switch mode power supplies. It provides all the functions necessary to implement a single-switch current mode PWM, in any topology, with a minimum of external parts.

Because the HV9110 utilizes Supertex's proprietary BiCMOS/ DMOS technology, it requires less than one tenth of the operating power of conventional bipolar PWM ICs, and can operate at more than twice their switching frequency. The dynamic range for regulation is also increased, to approximately 8 times that of similar bipolar parts. It starts directly from any DC input voltage between 10 and 120VDC, requiring no external power resistor. The output stage is push-pull CMOS and thus requires no clamping diodes for protection, even when significant lead length exists between the output and the external MOSFET. The clock frequency is set with a single external resistor.

Accessory functions are included to permit fast remote shutdown (latching or nonlatching) and under voltage shutdown.

For similar ICs intended to operate directly from up to 450VDC input, please consult the data sheets for the HV9120 and HV9123.

For detailed circuit and application information, please refer to application notes AN-H13 and AN-H21 to AN-H24.

Functional Block Diagram

Ordering Information

	14-Lead Narrow Body SOIC
Device	$8.65 \times 3.90 \mathrm{~mm}$ body
HV9110	1.27 mm pitch (\max)

Absolute Maximum Ratings

Parameter	Value
Input voltage, V_{IN}	120 V
Logic voltage, V_{DD}	15.5 V
Logic linear input,	
FB and sense input voltage	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation	750 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Configuration

Product Marking

9 HV9110NG	$Y=$ Last Digit of Year
แишแน	
Bottom Marking	$\mathrm{C}=$ Country of Origin*
ccccc AAA	$A=$ Assember ID* $==$ Green" Packaging

Electrical Characteristics

(Unless otherwise specified, $V_{D D}=10 \mathrm{~V},+V_{I N}=48 \mathrm{~V},-V_{I N}=0 \mathrm{~V}, R_{B A A S}=390 \mathrm{~K} \Omega, R_{\text {OSC }}=330 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}$.)

Sym	Parameter	\#	Min	Typ	Max	Units	Conditions
Reference							
$\mathrm{V}_{\text {REF }}$	Output voltage	-	3.92	4.00	4.08	V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{M} \Omega$
		-	3.82	4.00	4.16		$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{M} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{Z}_{\text {out }}$	Output impedance	\#	15	30	45	K Ω	---
$\mathrm{I}_{\text {SHORT }}$	Short circuit current	-	-	125	250	$\mu \mathrm{A}$	$V_{\text {REF }}=-V_{\text {IN }}$
$\Delta \mathrm{V}_{\text {REF }}$	Change in $\mathrm{V}_{\text {REF }}$ with temperature	\#	-	0.25	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Oscillator

$\mathrm{f}_{\text {MAX }}$	Oscillator frequency	-	1.0	3.0	-	MHz	$\mathrm{R}_{\mathrm{OSC}}=0 \mathrm{M} \Omega$
$\mathrm{f}_{\mathrm{OSC}}$	Initial accuracy ${ }^{1}$	-	80	100	120	KHz	$\mathrm{R}_{\mathrm{OSC}}=330 \mathrm{~K} \Omega$
		-	160	200	240		$R_{\mathrm{OSC}}=150 \mathrm{~K} \Omega$
-	Voltage stability	-	-	-	15	$\%$	$9.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<13.5 \mathrm{~V}$
-	Temperature coefficient	$\#$	-	170	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Notes:

\# Guaranteed by design.

1. Stray capacitance on OSC In pin must be $\leq 5.0 p F$.

Electrical Characteristics (cont.)
(Unless otherwise specified, $V_{D D}=10 \mathrm{~V},+V_{I N}=48 \mathrm{~V},-V_{I N}=0 \mathrm{~V}, R_{B I A S}=390 \mathrm{~K} \Omega, R_{\text {OSC }}=330 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}$.)

Sym	Parameter	\#	Min	Typ	Max	Units	Conditions
PWM							
$\mathrm{D}_{\text {MAX }}$	Maximum duty cycle	\#	49.0	49.4	49.6	\%	---
$\mathrm{D}_{\text {MIN }}$	Minimum duty cycle	-	-	-	0	\%	--
	Maximum pulse width before pulse drops out	\#	-	80	125	ns	---

Current Limit

	Maximum input signal	-	1.0	1.2	1.4	V	$\mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$
t_{D}	Delay to output	$\#$	-	80	120	ns	$\mathrm{~V}_{\mathrm{SENSE}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COMP}} \leq 2.0 \mathrm{~V}$

Error Amplifier

$\mathrm{V}_{\text {FB }}$	Feedback voltage	-	3.96	4.00	4.04	V	$\mathrm{~V}_{\mathrm{FB}}$ shorted to COMP	
I_{IN}	Input bias current	-	-		25	500	nA	$\mathrm{V}_{\mathrm{FB}}=4.0 \mathrm{~V}$
$\mathrm{~V}_{\text {OS }}$	Input offset voltage	-	nulled during trim			-	---	
$\mathrm{A}_{\text {VoL }}$	Open loop voltage gain	$\#$	60	80	-	dB	---	
GB	Unity gain bandwidth	$\#$	1.0	1.3	-	MHz	---	
$\mathrm{Z}_{\text {OUT }}$	Out impedance	$\#$	see Fig. 1				Ω	---
$\mathrm{I}_{\text {SOURCE }}$	Output source current	-	-1.4	-2.0	-	mA	$\mathrm{V}_{\text {FB }}=3.4 \mathrm{~V}$	
$\mathrm{I}_{\text {SIIK }}$	Output sink current	-	0.12	0.15	-	mA	$\mathrm{V}_{\text {FB }}=4.5 \mathrm{~V}$	
PSRR	Power supply rejection	$\#$	see Fig. 2				dB	---

Pre-regulator/Startup

$+\mathrm{V}_{\mathbb{I N}}$	Input voltage	-	10	-	120	V	$\mathrm{I}_{\mathrm{IN}}<10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}>9.4 \mathrm{~V}$
$+\mathrm{I}_{\mathrm{IN}}$	Input leakage current	-	-	-	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{DD}}>9.4 \mathrm{~V}$
$\mathrm{~V}_{T H}$	V_{DD} pre-regulator turn-off threshold voltage	-	8.0	8.7	9.4	V	$\mathrm{I}_{\text {PREREG }}=10 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {LOCK }}$	Undervoltage lockout	-	7.0	8.1	8.9	V	---

Supply

I_{DD}	Supply current	-	-	0.75	1.0	mA	$\mathrm{C}_{\mathrm{L}}<75 \mathrm{pF}$
I_{Q}	Quiescent supply current	-	-	0.55	-	mA	$\overline{\text { SHUTDOWN }}=-\mathrm{V}_{\mathbb{I N}}$
$\mathrm{I}_{\mathrm{BIAS}}$	Nominal bias current	-	-	20	-	$\mu \mathrm{A}$	---
V_{DD}	Operating range	-	9.0	-	13.5	V	---

Note:

\# Guaranteed by design.

Electrical Characteristics (cont.)
(Unless otherwise specified, $V_{D D}=10 \mathrm{~V},+V_{I N}=48 \mathrm{~V},-V_{I N}=0 \mathrm{~V}, R_{B A A S}=390 \mathrm{~K} \Omega, R_{\mathrm{OSC}}=330 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}$.)

Sym	Parameter	\#	Min	Typ	Max	Units	Conditions
Shutdown Logic							
$\mathrm{t}_{\text {SD }}$	$\overline{\text { SHUTDOWN }}$ delay	\#	-	50	100	ns	$C_{L}=500 \mathrm{pF}, \mathrm{V}_{\text {SENSE }}=-\mathrm{V}_{\text {IN }}$
$\mathrm{t}_{\text {sw }}$	SHUTDOWN pulse width	\#	50	-	-	ns	
t_{RW}	RESET pulse width	\#	50	-	-	ns	---
${ }_{\text {tw }}$	Latching pulse width	\#	25	-	-	ns	$\overline{\text { SHUTDOWN }}$ and RESET low
$\mathrm{V}_{\text {IL }}$	Input low voltage	-	-	-	2.0	V	---
$\mathrm{V}_{\text {IH }}$	Input high voltage	-	7.0	-	-	V	---
I_{H}	Input current, input high voltage	-	-	1.0	5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$
$1 / 1$	Input current, input low voltage	-	-	-25	-35	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

Output

$\mathrm{V}_{\text {OH }}$	Output high voltage		-	$V_{\text {DD }}-0.25$	-	-	V	$\mathrm{I}_{\text {Out }}=10 \mathrm{~mA}$
			-	$V_{D D}-0.3$	-	-		$\begin{aligned} & \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \\ & \mathrm{~T}_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
V_{oL}	Output low voltage		-	-	-	0.2	V	$\mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}$
			-	-	-	0.3		$\begin{aligned} & I_{\text {out }}=-10 \mathrm{~mA}, \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{R}_{\text {OUt }}$	Output resistance	Pull up	-	-	15	25	Ω	$\mathrm{I}_{\text {OUT }}= \pm 10 \mathrm{~mA}$
		Pull down	-	-	8.0	20		
		Pull up	-	-	20	30	Ω	$\begin{aligned} & \mathrm{I}_{\text {out }}= \pm 10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
		Pull down	-	-	10	30		
t_{R}	Rise time		\#	-	30	75	ns	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$
t_{F}	Fall time		\#	-	20	75	ns	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$

Note:
\# Guaranteed by design.

Truth Table

$\overline{\text { SHUTDOWN }}$	RESET	Output
H	H	Normal operation
H	$H \rightarrow L$	Normal operation, no change
L	H	Off, not latched
L	L	Off, latched
$L \rightarrow H$	L	Off, latched, no change

Test Circuits

NOTE:
Set Feedback Voltage so that $V_{\text {COMP }}=V_{\text {DIVIDE }} \pm 1.0 \mathrm{mV}$ before connecting transformer

Detailed Description

Preregulator

The preregulator/startup circuit for the HV9110 consists of a high-voltage, n-channel, depletion-mode, DMOS transistor driven by an error amplifier to form a variable current path between the VIN terminal and the VDD terminal. The maximum current (about 20 mA) occurs when $\mathrm{V}_{\mathrm{DD}}=0$, with current reducing as V_{DD} rises. This path shuts off altogether when V_{DD} rises to somewhere between 7.8 and 9.4 V , so that if V_{DD} is held at 10 or 12 V by an external source (generally the supply the chip is controlling), no current other than leakage is drawn through the high voltage transistor. This minimizes dissipation.

An external capacitor between VDD and VSS is generally required to store energy used by the chip in the time between shutoff of the high voltage path and the VDD supply's output rising enough to take over powering the chip. This capacitor should have a value of 100X or more the effective gate capacitance of the MOSFET being driven, i.e.,
$\mathrm{C}_{\text {STORAGE }} \geq 100 \times$ (gate charge of FET at 10 V)
as well as very good high frequency characteristics. Stacked polyester or ceramic caps work well. Electrolytic capacitors are generally not suitable.

A common resistor divider string is used to monitor $V_{D D}$ for both the under voltage lockout circuit and the shutoff circuit of the high voltage FET. Setting the under voltage sense point about 0.6 V lower on the string than the FET shutoff point guarantees that the under voltage lockout always releases before the FET shuts off.

Bias Circuit

An external bias resistor, connected between the BIAS pin and VSS is required by the HV9110 to set currents in a series of current mirrors used by the analog sections of the chip. The nominal external bias current requirement is 15 to $20 \mu \mathrm{~A}$, which can be set by a $390 \mathrm{~K} \Omega$ to $510 \mathrm{~K} \Omega$ resistor if a $10 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ is used, or a $510 \mathrm{k} \Omega$ to $680 \mathrm{~K} \Omega$ resistor if $\mathrm{V}_{D D}$ will be 12 V . A precision resistor is not required; $\pm 5 \%$ is fine.

Clock Oscillator

The clock oscillator of the HV9110 consists of a ring of CMOS inverters, timing capacitors, and a frequency dividing flip-flop. A single external resistor between the OSC IN and OSC OUT is required to set the oscillator frequency (see graph). One major difference exists between the Supertex HV9110 and competitive 9110s. On the Supertex part, the oscillator is shut off when a shutoff command is received. This saves about $150 \mu \mathrm{~A}$ of quiescent current, which aids in the construction of power supplies that meet CCITT specification I-430, and in other situations where an absolute minimum of quiescent power dissipation is required.

Reference

The Reference of the HV9110 consists of a stable bandgap reference followed by a buffer amplifier which scales the voltage up to approximately 4.0 V . The scaling resistors of the reference buffer amplifier are trimmed during manufacture so that the output of the error amplifier, when connected in a gain of -1 configuration, is as close to 4.0 V as possible. This nulls out any input offset of the error amplifier. As a consequence, even though the observed reference voltage of a specific part may not be exactly 4.0 V , the feedback voltage required for proper regulation will be.
$A \approx 50 \mathrm{~K} \Omega$ resistor is placed internally between the output of the reference buffer amplifier and the circuitry it feeds (reference output pin and non-inverting input to the error amplifier). This allows overriding the internal reference with a low impedance voltage source $\leq 6.0 \mathrm{~V}$. Using an external reference reinstates the input offset voltage of the error amplifier, and its effect of the exact value of feedback voltage required. Because the reference of the HV9110 is a high impedance node, and usually there will be significant electrical noise near it, a bypass capacitor between the reference pin and VSS is strongly recommended. The reference buffer amplifier is intentionally compensated to be stable with a capacitive load of 0.01 to $0.1 \mu \mathrm{~F}$.

Error Amplifier

The error amplifier in the HV9110 is a true low-power differential input operational amplifier intended for around the
amplifier compensation. It is of mixed CMOS-bipolar construction: A PMOS input stage is used so the common mode range includes ground and the input impedance is very high. This is followed by bipolar gain stages which provide high gain without the electrical noise of all-MOS amplifiers. The amplifier is unity gain stable.

Current Sense Comparators

The HV9110 uses a true dual comparator system with independent comparators for modulation and current limiting. This allows the designer greater latitude in compensation design, as there are no clamps (except ESD protection) on the compensation pin. Like the error amplifier, the comparators are of low-noise BiCMOS construction.

Remote SHUTDOWN

The SHUTDOWN and RESET pins of the 9110 can be used to perform either latching or non-latching shutdown of a converter as required. These pins have internal current source pull-ups so they can be driven from open drain logic. When not used they should be left open, or connected to VDD.

Output Buffer

The output buffer of the HV9110 is of standard CMOS construction (P-channel pull-up, N -channel pull-down). Thus the body-drain diodes of the output stage can be used for spike clipping if necessary, and external Schottky diode clamping of the output is not required.

Shutdown Timing Waveforms

Typical Performance Curves

Fig. 1
Error Amplifier Output Impedance $\left(Z_{0}\right)$

Fig. 2

Fig. 3

Bias Resistance (Ω)

Fig. 4

Fig. 5

Error Amplifier
Open Loop Gain/Phase

Frequency (Hz)

14-Lead SOIC (Narrow Body) Package Outline (NG)

8.65x3.90mm body, 1.75 mm height (max), 1.27 mm pitch

Top View

View B

Note:

1. This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	01
Dimension (mm)	MIN	1.35*	0.10	1.25	0.31	8.55*	5.80*	3.80*	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	8.65	6.00	3.90		-	-			-	-
	MAX	1.75	0.25	1.65*	0.51	8.75*	6.20 *	4.00*		0.50	1.27			8°	15°

JEDEC Registration MS-012, Variation AB, Issue E, Sept. 2005.

* This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.

Drawings are not to scale.
Supertex Doc. \#: DSPD-14SOICNG, Version E101708.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C MAX8778ETJ+ NTBV30N20T4G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF TC105333ECTTR NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP81101MNTXG IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BNDERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G AZ494AP-E1 UTC3843D XDPL8219XUMA1

[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

