High-Voltage Current-Mode PWM Controller

Features

- Input Voltage Range of V_{DD} Regulator
- HV9110: 10V to 120V
- HV9112: 9V to 80V
- HV9113: 10V to 120V
- Maximum Duty, Feedback Accuracy
- HV9110: 49\%, 1\%
- HV9112: 49\%, 2\%
- HV9113: 99\%, 1\%
- Current Mode Control
- <1 mA Supply Current
- >1 MHz clock

Applications

- DC/DC Power Converters

General Description

HV9110/HV9112/HV9113 are Switch-Mode Power Supply (SMPS) controllers suitable for the control of a variety of converter topologies, including the flyback converter and the forward converter.

The $V_{D D}$ regulator supports an input voltage as high as 80 V or 120 V .

HV9110/HV9112/HV9113 controllers include all essentials for a power converter design, such as a bandgap reference, an error amplifier, a ramp generator, a highspeed PWM comparator, and a gate driver. A shutdown latch provides on/off control.

The HV9110 and HV9113 feature an input voltage range of 10 V to 120 V , and the HV9112 has an input voltage range of 9 V to 80 V . The HV9110 and HV9112 have a maximum duty of 49%, while the HV9113 has a maximum duty of 99%.

Package Type

14-lead SOIC

See Table 3-1 for pin information.

HV9110/HV9112/HV9113

Functional Block Diagram

Functional Block Diagram

HV9110/HV9112/HV9113

1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS ${ }^{\dagger}$

Input Voltage, V_{IN}
HV9110/HV9113 120V
HV9112 80V
Device Supply Voltage, V_{DD} 15.5 V
Logic Input Voltage Range
-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Linear Input Voltage Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range... 750 mW
\dagger Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{I N}=48 \mathrm{~V}, \mathrm{~V}_{\text {DISC }}=0 \mathrm{~V}, \mathrm{R}_{\text {BIAS }}=390 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.								
Parameters		Sym.	Min.	Typ.	Max.	Units	Conditions	
REFERENCE								
Output Voltage	HV9110/13	$V_{\text {REF }}$	3.92	4	4.08	V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{M} \Omega$	
	HV9112		3.88	4	4.12			
	HV9110/13		3.82	4	4.16		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{M} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
Output Impedance		$\mathrm{Z}_{\text {OUT }}$	15	30	45	$\mathrm{k} \Omega$	(Note 1)	
Short Circuit Current		$\mathrm{I}_{\text {SHORT }}$	-	125	250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {REF }}=\mathrm{GND}$	
Change in $\mathrm{V}_{\text {REF }}$ with Temperature		$\Delta V_{\text {REF }}$	-	0.25	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & (\text { Note 1) } \end{aligned}$	
OSCILLATOR								
Oscillator Frequency		$\mathrm{f}_{\text {MAX }}$	1	3	-	MHz	$\mathrm{R}_{\mathrm{OSC}}=0 \Omega$	
Initial Accuracy		fosc	80	100	120	kHz	$\mathrm{R}_{\text {OSC }}=330 \mathrm{k} \Omega$ (Note)	
		160	200	240	$\mathrm{R}_{\text {OSC }}=150 \mathrm{k} \Omega$ (Note)			
V_{DD} Regulation			-	-	-	15	\%	$9.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<13.5 \mathrm{~V}$
Temperature Coefficient		-	-	170	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \text { (Note 1) } \end{aligned}$	
PWM								
Maximum Duty Cycle	HV9110/HV9112	$\mathrm{D}_{\text {MAX }}$	49	49.4	49.6	\%	(Note 1)	
	HV9113		95	97	99			
Dead Time	HV9113	$\mathrm{D}_{\text {MIN }}$	-	225	-	ns	HV9113 only (Note 1)	
Minimum Duty Cycle			-	-	0	\%		
Pulse Width where Pulse drops out			-	80	125	ns	(Note 1)	
CURRENT LIMIT								
Maximum Input Signal		$\mathrm{V}_{\text {LIM }}$	1	1.2	1.4	V	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	
Delay to Output		t_{D}	-	80	120	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CS}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COMP}} \leq 2 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DISC}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{BIAS}}=390 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Parameters		Sym.	Min.	Typ.	Max.	Units	Conditions
ERROR AMPLIFIER							
Feedback Voltage	HV9110/13	$V_{F B}$	3.96	4	4.04	V	V_{FB} shorted to COMP
	HV9112		3.92	4	4.08		
Input Bias Current		$\mathrm{I}_{\text {IN }}$	-	25	500	nA	$\mathrm{V}_{\mathrm{FB}}=4 \mathrm{~V}$
Input Offset Voltage		V_{OS}	Nulled during trim			-	
Open-loop Voltage Gain		$\mathrm{A}_{\mathrm{VOL}}$	60	80	-	dB	(Note 1)
Unity Gain Bandwidth		GB	1	1.3	-	MHz	(Note 1)
Output Source Current		Isource	-1.4	-2	-	mA	$\mathrm{V}_{\mathrm{FB}}=3.4 \mathrm{~V}$
Output Sink Current		ISINK	0.12	0.15	-	mA	$\mathrm{V}_{\mathrm{FB}}=4.5 \mathrm{~V}$
HIGH-VOLTAGE REGULATOR AND START-UP							
Input Voltage	HV9110/13	$\mathrm{V}_{\text {IN }}$	-	-	120	V	$\mathrm{I}_{\mathrm{IN}}<10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}>9.4 \mathrm{~V}$
	HV9112		-	-	80		
Input Leakage Current		$\mathrm{I}_{\text {IN }}$	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}>9.4 \mathrm{~V}$
Regulator Turn-off Threshold Voltage		$\mathrm{V}_{\text {TH }}$	8	8.7	9.4	V	$\mathrm{I}_{\mathrm{IN}}=10 \mu \mathrm{~A}$
Undervoltage Lockout		V LOCK	7	8.1	8.9	V	
SUPPLY							
Supply Current		I_{DD}	-	0.75	1	mA	$\mathrm{C}_{\mathrm{L}}<75 \mathrm{pF}$
Quiescent Supply Current		I_{Q}	-	0.55	-	mA	$\mathrm{V}_{\text {NSD }}=0 \mathrm{~V}$
Nominal Bias Current		$\mathrm{I}_{\text {BIAS }}$	-	20	-	$\mu \mathrm{A}$	
Operating Range		V_{DD}	9	-	13.5	V	
SHUTDOWN LOGIC							
Shutdown Delay		${ }^{\text {t }}$ S	-	50	100	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{~V}_{\mathrm{CS}}=0 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$
NSD Pulse Width		$\mathrm{t}_{\text {SW }}$	50	-	-	ns	(Note 1)
RST Pulse Width		t_{RW}	50	-	-	ns	(Note 1)
Latching Pulse Width		$\mathrm{t}_{\text {LW }}$	25	-	-	ns	$\mathrm{V}_{\text {NSD }}, \mathrm{V}_{\text {RST }}=0 \mathrm{~V}$ (Note 1)
Input Low Voltage		$\mathrm{V}_{\text {IL }}$	-	-	2	V	
Input High Voltage		$\mathrm{V}_{\text {IH }}$	7	-	-	V	
Input Current, Input High Voltage		$\mathrm{IIH}^{\text {I }}$	-	1	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$
Input Current, Input Low Voltage		ILL	-	-25	-35	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
OUTPUT							
Output High Voltage	HV9110/13	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0.25$	-	-	V	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$
	HV9112		$\mathrm{V}_{\mathrm{DD}}-0.3$	-	-		
	HV9110/13		$V_{D D}-0.3$	-	-		$\begin{aligned} & \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
Output Low Voltage	All	V_{OL}	-	-	0.2	V	$\mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}$
	HV9110/13		-	-	0.3		$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
Output Resistance	Pull up	$\mathrm{R}_{\text {OUT }}$	-	15	25	Ω	$\mathrm{l}_{\text {OUT }}= \pm 10 \mathrm{~mA}$
	Pull down		-	8	20		
	Pull up		-	20	30	Ω	$\mathrm{l}_{\text {OUT }}= \pm 10 \mathrm{~mA}$,
	Pull down		-	10	30		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Rise Time		t_{R}	-	30	75	ns	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Note 1)
Fall Time		t_{F}	-	20	75	ns	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ (Note 1)

Note 1: Design guidance only; Not 100\% tested in production.
2: Stray capacitance on OSC input pin must be $\leq 5 \mathrm{pF}$.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
TEMPERATURE RANGES						
Operating Temperature	-	-55	-	125	${ }^{\circ} \mathrm{C}$	
Storage Temperature	-	-65	-	150	${ }^{\circ} \mathrm{C}$	
PACKAGE THERMAL RESISTANCE		θ_{ja}	-	83	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-lead SOIC						

1.1 Truth Table

TRUTH TABLE

SHUTDOWN	RESET	OUTPUT
H	H	Normal operation
H	$\mathrm{H} \rightarrow \mathrm{L}$	Normal operation, no change
L	H	Off, not latched
L	L	Off, latched
$\mathrm{L} \rightarrow \mathrm{H}$	Off, latched, no change	

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Error Amplifier Output Impedance $\left(Z_{0}\right)$.

FIGURE 2-2: PSRR - Error Amplifier and Reference.

FIGURE 2-3: Bias Current vs. Bias Resistance.

FIGURE 2-4: Output Switching Frequency vs. Oscillator Resistance.

FIGURE 2-5: Error Amplifier Open-loop Gain/Phase.

FIGURE 2-6: $\quad R_{\text {DISCHARGE }}$ vs. $t_{\text {OFF }}$ (HV9113 only).

HV9110/HV9112/HV9113

3.0 PIN DESCRIPTION

Table 3-1 shows the pin description for HV9110/HV9112/HV9113. The locations of the pins are listed in Features.
TABLE 3-1: PIN DESCRIPTION

Pin Number	HV9110/HV9112/HV9113 Pin Name	Description
1	BIAS	Internal bias, current set
2	VIN	High-voltage V_{DD} regulator input
3	CS	Current sense input
4	GATE	Gate drive output
5	GND	Ground
6	V $_{\text {DD }}$	High-voltage V_{DD} regulator output
7	OSCO	Oscillator output
8	OSCI	Oscillator input
9	DISC	Oscillator discharge, current set
10	VREF	4V reference output Reference voltage level can be overridden by an externally applied voltage source.
11	NSD	Active low input to set shutdown latch
12	RST	Active high input to reset shutdown latch
13	FB	Error amplifier output
14		Feedback voltage input

4.0 TEST CIRCUITS

The test circuits for characterizing error amplifier output impedance, $Z_{O U T}$, and error amplifier, power supply rejection ratio, PSRR, are shown in Figure 4-1 and Figure 4-2.

FIGURE 4-1: Error Amp $\mathrm{Z}_{\text {OUT }}$.

FIGURE 4-2: PSRR.

5.0 DETAILED DESCRIPTION

5.1 High-Voltage Regulator

The high-voltage regulator included in HV9110/HV9112/HV9113 consists of a high-voltage Nchannel Depletion-mode DMOS transistor driven by an error amplifier, providing a current path between the $\mathrm{V}_{I N}$ terminal and the V_{DD} terminal. The maximum current, about 20 mA , occurs when $\mathrm{V}_{\mathrm{DD}}=0$, with current reducing as $V_{D D}$ rises. This path shuts off when $V_{D D}$ rises to somewhere between 8 V and 9.4 V . So, if $\mathrm{V}_{D D}$ is held at 10 V or 12 V by an external source, no current other than leakage is drawn through the high voltage transistor. This minimizes dissipation within the highvoltage regulator.

Use an external capacitor between V_{DD} and GND. This capacitor should have good high-frequency characteristics. Ceramic caps work well.

The device uses a compound resistor divider to monitor $V_{D D}$ for both the undervoltage lockout circuit and the shutoff circuit of the high-voltage FET. Setting the undervoltage sense point about 0.6 V lower on the string than the FET shutoff point guarantees that the undervoltage lockout releases before the FET shuts off.

5.2 Bias Circuit

HV9110/HV9112/HV9113 require an external bias resistor, connected between the Bias pin and GND to set currents in a series of current mirrors used by the analog sections of the chip. The nominal external bias current requirement is $15 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$, which can be set by a $390 \mathrm{k} \Omega$ to $510 \mathrm{k} \Omega$ resistor if $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$, or a $510 \mathrm{k} \Omega$ to $680 \mathrm{k} \Omega$ resistor if $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$. A precision resistor is not required, $\pm 5 \%$ meets device requirements.

5.3 Clock Oscillator

The clock oscillator of the HV9110/HV9112/HV9113 consists of a ring of CMOS inverters, timing capacitors, and a capacitor-discharge FET. A single external resistor between the OSCI and OSCO sets the oscillator frequency. (See Figure 2-4.)

The HV9110 and HV9112 include a frequency-dividing flip-flop that allows the part to operate with a 50% duty limit. Accordingly, the effective switching frequency of the power converter is half the oscillator frequency. (See Figure 2-4.)
An internal discharge FET resets the oscillator ramp at the end of the oscillator cycle. The discharge FET is externally connected to GND, by way of a resistor. The resistor programs the oscillator dead time at the end of the oscillator period.

The oscillator turns off during shutdown to reduce supply current by about $150 \mu \mathrm{~A}$.

5.4 Reference

The reference of the HV9110/HV9112/HV9113 consists of a band-gap reference, followed by a buffer amplifier, which scales the voltage up to 4 V . The scaling resistors of the buffer amplifier are trimmed during manufacture so that the output of the error amplifier, when connected in a gain of -1 configuration, is as close to 4 V as possible. This nulls out the input offset of the error amplifier. As a consequence, even though the observed reference voltage of a specific part may not be exactly 4 V , the feedback voltage required for proper regulation will be 4 V .

An approximately $50 \mathrm{k} \Omega$ resistor is located internally between the output of the reference buffer amplifier and the circuitry it feeds-reference output pin and non-inverting input to the error amplifier. This allows overriding the internal reference with a low impedance voltage source $\leq 6 \mathrm{~V}$. Using an external reference reinstates the input offset voltage of the error amplifier. Overriding the reference should seldom be necessary.

The reference of the HV9110/HV9112/HV9113 is a high-impedance node, and usually there will be significant electrical noise nearby. Therefore, a bypass capacitor between the reference pin and GND is strongly recommended. The reference buffer amplifier is compensated to be stable with a capacitive load of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$.

5.5 Error Amplifier

The error amplifier on HV9110/HV9112/HV9113 is a low-power, differential-input, operational amplifier. A PMOS input stage is used, so the common mode range includes ground and the input impedance is high.

5.6 Current Sense Comparators

The HV9110/HV9112/HV9113 use a dual-comparator system with independent comparators for modulation and current limiting. This provides the designer greater latitude in compensation design, as there are no clamps, except ESD protection, on the compensation pin.

5.7 Remote Shutdown

The NSD and RST pins control the shutdown latch. These pins have internal current-source pull-ups so they can be driven from open drain logic. When not used they should be left open or connected to V_{DD}.

5.8 Output Buffer

The output buffer of HV9110/HV9112/HV9113 is of standard CMOS construction P-channel pull-up and N channel pull-down. Thus, the body-drain diodes of the output stage can be used for spike clipping. External Schottky diode clamping of the output is not required.

FIGURE 5-1: Shutdown Timing Waveforms.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Example

Legend:	XX...X	Product Code or Customer-specific information
	Y	Year code (last digit of calendar year)
	WW	Year code (last 2 digits of calendar year)
	NNN	Alphanumeric traceability code (week of

14-Lead SOIC (Narrow Body) Package Outline (NG)

$8.65 \times 3.90 \mathrm{~mm}$ body, 1.75 mm height (max), 1.27 mm pitch

Top View

View B

View A-A

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging

Note:

1. This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	01
Dimension (mm)	MIN	1.35*	0.10	1.25	0.31	8.55*	5.80*	3.80*	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	8.65	6.00	3.90		-	-			-	-
	MAX	1.75	0.25	1.65*	0.51	8.75*	6.20*	4.00*		0.50	1.27			8°	15°

JEDEC Registration MS-012, Variation AB, Issue E, Sept. 2005.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.

HV9110/HV9112/HV9113

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2016)

- Merged Supertex Doc \#s DSFP-HV9110, DSFPHV9112 and DSFP-DSFP-HV9113 to Microchip DS20005505A.
- Revised Electrical Characteristics to accommodate the merged products.
- Updated pin names to reflect new naming convention.
- Significant text changes to Detailed Description.
- Minor text changes throughout.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

DS20005505AInformation contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its $P I C^{\circledR}$ MCUs and dsPIC® DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0736-2

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/ support
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China-Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea-Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
AZ7500EP-E1 NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81205MNTXG SJE6600 SMBV1061LT1G SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C MAX8778ETJ+ NTBV30N20T4G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NTC6600NF TC105333ECTTR NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP81101MNTXG IFX81481ELV NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1251FSN65T1G NCP1246BLD065R2G NTE7154 NTE7242 LTC7852IUFD-1\#PBF LTC7852EUFD-1\#PBF MB39A136PFT-G-BNDERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G MCP1633T-E/MG NCV1397ADR2G AZ494AP-E1 UTC3843D XDPL8219XUMA1

