PNP SILICON SWITCHING TRANSISTOR
 Qualified per MIL-PRF-19500/512

DEVICES

2N4029

2N4033
2N4033UA
2N4033UB

LEVELS

JAN
JANTX JANTXV JANS

ABSOLUTE MAXIMUM RATINGS ($T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameters / Test Conditions		Symbol	Value	Unit
Collector-Emitter Voltage		$\mathrm{V}_{\text {CEO }}$	80	Vdc
Collector-Base Voltage		$\mathrm{V}_{\text {CBO }}$	80	Vdc
Emitter-Base Voltage		$\mathrm{V}_{\text {Ebo }}$	5.0	Vdc
Collector Current		I_{C}	1.0	Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$	$\begin{aligned} & \hline \text { 2N4029 } \\ & \text { 2N4033 } \\ & \text { 2N4033UA, } \mathrm{UB}^{3} \\ & \hline \end{aligned}$	P_{T}	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.5 \\ & \hline \end{aligned}$	W
Operating \& Storage Junction Temperature Range		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Case	$\begin{aligned} & \text { 2N4029 } \\ & \text { 2N4033 } \end{aligned}$	$\mathrm{R}_{\theta \mathrm{JC}}$	$\begin{aligned} & 80 \\ & 40 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

1. Derate linearly $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$
2. Derate linearly $4.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$
3. For UB package and use $\mathrm{R}_{\theta \mathrm{JC}}$ or see thermal curves in $/ 512$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS				
Collector-Base Cutoff Current				
$\mathrm{V}_{\mathrm{CB}}=80 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{CBO}}$		10	$\mu \mathrm{Adc}$
$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{Vdc}$		10	$\eta \mathrm{Adc}$	
$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$			25	$\mu \mathrm{Adc}$
Emitter-Base Cutoff Current	$\mathrm{I}_{\mathrm{EBO}}$		10	$\mu \mathrm{Adc}$
$\mathrm{V}_{\mathrm{EB}}=5.0 \mathrm{Vdc}$		25	$\eta \mathrm{Adc}$	
$\mathrm{V}_{\mathrm{EB}}=3.0 \mathrm{Vdc}$			25	$\eta \mathrm{Adc}$
Collector-Emitter Cutoff Current				
$\mathrm{V}_{\mathrm{BE}}=2.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CE}}=60 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{CEX}}$			

TO-18 (TO-206AA) 2N4029

TO-39 (TO-205AD) 2N4033

UA Package

UB Package

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ${ }^{(3)}$				
$\begin{aligned} & \text { Forward-Current Transfer Ratio } \\ & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 50 \\ 100 \\ 70 \\ 25 \\ 30 \end{gathered}$	300	
Collector-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{mAdc}$	$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$		$\begin{gathered} 0.15 \\ 0.50 \\ 1.0 \end{gathered}$	Vdc
Base-Emitter Voltage $\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}$	$\mathrm{V}_{\text {BE(sat) }}$		$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}$	$\mathrm{h}_{\mathrm{fe}} \mid$			
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		6.0	
Input Capacitance $\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{ibo}}$		20	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
On-Time $V_{C C}=31.9 V d c ; ~$ C$=500 \mathrm{mAdc} ; \mathrm{I}_{\mathrm{B} 1}=50 \mathrm{mAdc}$	${ }^{\mathrm{t}} \mathrm{d}$		15	
Rise Time $\mathrm{V}_{\mathrm{CC}}=31.9 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc} ; \mathrm{I}_{\mathrm{B} 1}=50 \mathrm{mAdc}$	${ }^{\mathrm{t}} \mathrm{r}$		25	
Storage Time $\mathrm{V}_{\mathrm{CC}}=31.9 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{madc}, \mathrm{I}_{\mathrm{B} 1}=50 \mathrm{mAdc}$	${ }^{\mathrm{t}} \mathrm{S}$		$\eta \mathrm{s}$	
Fall Time $\mathrm{V}_{\mathrm{CC}}=31.9 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{madc}, \mathrm{I}_{\mathrm{B} 1}=50 \mathrm{mAdc}$	${ }^{\mathrm{t}} \mathrm{f}$		175	$\eta \mathrm{~s}$

(4) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

PACKAGE DIMENSIONS

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	.178	.195	4.52	4.95	
CH	.170	.210	4.32	5.34	
HD	.209	.230	5.31	5.84	
LC	.100 TP	2.54 TP		6	
LD	.016	.021	0.41	0.53	7,8
LL	.500	.750	12.70	19.05	$7,8,12$
LU	.016	.019	0.41	0.48	7,8
$\mathrm{~L}_{1}$.050		1.27	7,8
$\mathrm{~L}_{2}$.250		6.35		7,8
Q		.040		1.02	5
TL	.028	.048	0.71	1.22	3,4
TW	.036	.046	0.91	1.17	3
r		.010		0.25	10
P	.100		2.54		
α	$45^{\circ} \mathrm{TP}$				

NOTES:

1 Dimension are in inches.
2 Millimeters equivalents are given for general information only.
3 Beyond r (radius) maximum, TW shall be held for a minimum length of $.011(0.28 \mathrm{~mm})$.
4 Dimension TL measured from maximum HD.
5 Body contour optional within zone defined by HD, CD, and Q.
6 Leads at gauge plane $.054+.001-.000$ inch ($1.37+0.03-0.00 \mathrm{~mm}$) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC . The device may be measured by direct methods.
7 Dimension LU applies between L_{1} and L_{2}. Dimension LD applies between L_{2} and minimum. Diameter is uncontrolled in L_{1} and beyond LL minimum.
8 All three leads.
9 The collector shall be internally connected to the case.
10 Dimension r (radius) applies to both inside corners of tab.
11 In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
12 For "L" suffix devices, dimension LL is $1.50(38.10 \mathrm{~mm})$ minimum, $1.75(44.45 \mathrm{~mm})$ maximum.
FIGURE 1. Physical dimensions for 2N4029 (TO-18).

6 Lake Street, Lawrence, MA 01841
1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http://www.microsemi.com

Gort Road Business Park, Ennis, Co. Clare, Ireland.
Tel: +353 (0) 656840044 Fax: +353 (0) 656822298

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
CH	.240	.260	6.10	6.60	
HD	.335	.370	8.51	9.40	
LC	.200 TP	5.08 TP		6	
LD	.016	.021	0.41	0.53	7,8
LL	.500	.750	12.70	19.05	$7,8,12$
LU	.016	.019	0.41	0.48	7,8
$\mathrm{~L}_{1}$.050		1.27	7,8
$\mathrm{~L}_{2}$.250		6.35		7,8
Q		.050		1.27	5
TL	.029	.045	0.74	1.14	3,4
TW	.028	.034	0.71	0.86	3
r		.010		0.25	10
P	.100		2.54		
α	$45^{\circ} \mathrm{TP}$				

NOTES:

1 Dimension are in inches.
2 Millimeters equivalents are given for general information only.
3 Beyond r (radius) maximum, TW shall be held for a minimum length of $.011(0.28 \mathrm{~mm})$.
4 Dimension TL measured from maximum HD.
5 Body contour optional within zone defined by HD, CD, and Q.
6 Leads at gauge plane . $054+.001-.000$ inch ($1.37+0.03-0.00 \mathrm{~mm}$) below seating plane shall be within .007 inch $(0.18 \mathrm{~mm})$ radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods.
7 Dimension LU applies between L_{1} and L_{2}. Dimension LD applies between L_{2} and minimum. Diameter is uncontrolled in L_{1} and beyond LL minimum.
8 All three leads.
9 The collector shall be internally connected to the case.
10 Dimension r (radius) applies to both inside corners of tab.
11 In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
12 For "L" suffix devices, dimension LL is $1.50(38.10 \mathrm{~mm})$ minimum, $1.75(44.45 \mathrm{~mm})$ maximum.
FIGURE 2. Physical dimensions for 2N4033 (TO-39).

Ltr.	Dimensions				Note	Ltr.	Dimensions				Note
	Inches		Millimeters				Inches		Millimeters		
	Min	Max	Min	Max			Min	Max	Min	Max	
A	. 061	. 075	1.55	1.91	3	D_{2}	. 0375 BSC		0.952 BSC		
A_{1}	. 029	. 041	0.74	1.04		D_{3}		. 155		3.94	
B_{1}	. 022	. 028	0.56	0.71		E	. 215	. 225	5.46	5.72	
B_{2}	. 075 REF		1.91 REF			E_{3}		. 225		5.72	
B_{3}	. 006	. 022	0.15	0.56	5	L_{1}	. 032	. 048	0.81	1.22	
D	. 145	. 155	3.68	3.93		L_{2}	. 072	. 088	1.83	2.24	
D_{1}	. 045	. 055	1.14	1.39		L_{3}	. 003	. 007	0.08	0.18	5

NOTES:

1 Dimensions are in inches.
2 Millimeters equivalents are given for general information only.
3 Dimension "A" controls the overall package thickness. When a window lid is used, dimension "A" must increase by a minimum of .010 inch $(0.254 \mathrm{~mm})$ and a maximum of .040 inch $(1.020 \mathrm{~mm})$.
4 The corner shape (square, notch, radius, etc) may vary at the manufacturer's option, from that shown on the drawing.
5 Dimensions "B3" minimum and "L3" minimum and the appropriately castellation length define an unobstructed threedimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on bottom two layers, optional on top ceramic layer.) Dimension "B3" maximum and "L3" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder dipping.
6 In accordance with ASME Y14.5M, diameters are equivalent to $\varphi \mathrm{x}$ symbology.

FIGURE 3. Physical dimensions, surface mount (UA version).

Symbol	Dimensions				Note
	Inches		Millimeters		
	Min	Max	Min	Max	
BH	.046	.056	1.17	1.42	
BL	.115	.128	2.92	3.25	
BW	.085	.108	2.16	2.74	
CL		.128		3.25	
CW		.108		2.74	
LL1	.022	.038	0.56	0.96	
LL2	.017	.035	0.43	0.89	

Symbol	Dimensions				Note
	Inches		Millimeters		
	Min	Max	Min	Max	
LS1	.036	.040	0.91	1.02	
LS2	.071	.079	1.81	2.01	
LW	.016	.024	0.41	0.61	
r		.008		.203	
r1		.012		.305	
r2		.022		.559	

NOTES:

1 Dimensions are in inches.
2 Millimeters are given for general information only.
3 Hatched areas on package denote metalized areas.
4 Pad $1=$ Base, Pad $2=$ Emitter, Pad $3=$ Collector, Pad $4=$ Shielding connected to the lid.
5 In accordance with ASME Y14.5M, diameters are equivalent to $\phi \mathrm{x}$ symbology.

FIGURE 4. Physical dimensions, surface mount (UB version).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001

