ROHS
Available on commercial versions

NPN/PNP Silicon Complementary Small Signal Dual Transistor Qualified per MIL-PRF-19500/421

DESCRIPTION

This 2N4854 device in a 6-pin TO-78 package is military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N4854.
- JAN, JANTX, and JANTXV qualifications also available per MIL-PRF-19500/421.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Compact package design.
- Lightweight.

Qualified Levels: JAN, JANTX, and JANTXV

TO-78 Package

Also available in:
6-Pin U package
2N4854U
6-Pin Flatpack package 2N3838

MSC - Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600

Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Au over Ni plated kovar, pure nickel cap.
- TERMINALS: Au over Ni plated kovar.
- MARKING: Manufacturer's ID, part number, date code.
- POLARITY: See case outline.
- WEIGHT: 0.856 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS \& DEFINITIONS

SYMBOLS \& DEFINITIONS	
Symbol	Definition
I_{B}	Base Current, dc.
I_{C}	Collector Current, dc.
I_{E}	Emitter Current, dc.
I_{O}	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.
V_{CB}	Collector-Base Voltage (dc).
V_{CE}	Collector-Emitter Voltage, dc.
V_{EB}	Emitter-Base Voltage (dc).

ELECTRICAL CHARACTERISTICS @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Current $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$ (pulsed)	$V_{\text {(BR)CEO }}$	40		V
Collector-Base Cutoff Current $V_{C B}=60 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CBO}}(1)$		10	$\mu \mathrm{A}$
Collector-Base Cutoff Current $V_{C B}=50 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CBO}}(2)$		10	nA
$\begin{aligned} & \hline \text { Emitter-Base Cutoff Current } \\ & \mathrm{V}_{\mathrm{EB}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EB}}=3.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{EBO}(1)} \\ & \mathrm{I}_{\mathrm{EBO}(2)} \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\underset{\mathrm{nA}}{\mu \mathrm{~A}}$

ON CHARACTERISTICS

Forward-Current Transfer Ratio				
$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$				
$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		50		
$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		35		
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		50		
$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		75		
$\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		100	300	
Collector-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CE}(\mathrm{sat})}$		0.40	V
Base-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{BE}(\mathrm{sat)}}$	0.80	1.25	V

DYNAMIC CHARACTERISTICS

Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}$	hfe	60	300	
Forward Current Transfer Ratio, Magnitude $\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$	\|hfel	2.0	10	
Small-Signal Common Emitter Input Impedance $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}$	hie	1.5	9.0	$\mathrm{k} \Omega$
Small-Signal Common Emitter Output Admittance $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}$	hoe		50	$\mu \mathrm{hmo}$
Open Circuit Output Capacitance $V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	Cobo		8.0	pF
Noise Figure $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=1.0 \mathrm{k} \Omega$	NF		8.0	dB

SWITCHING CHARACTERISTICS

Turn-On Time (Saturated) (Reference MIL-PRF-19500/421, figure 7)	t_{on}		45	ns
Turn-Off Time (Saturated) (Reference MIL-PRF-19500/421, figure 8)	$\mathrm{t}_{\mathrm{off}}$		300	ns
Pulse Response (Non-Saturated) (Reference MIL-PRF-19500/421, figure 9)	$\mathrm{t}_{\text {on }}+\mathrm{t}_{\mathrm{off}}$		18	ns
Collector-Emitter Non-Latching Voltage	$\mathrm{V}_{\text {CEO }}$	40		V

FIGURE 3
Thermal impedance graph (RøJA)

PACKAGE DIMENSIONS

Ltr	Dimensions				Notes
	Inch		Millimeters		
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
CH	.140	.260	3.56	6.60	
HD	.335	.370	8.51	9.40	
HT	.009	.125	0.23	3.18	
LD	.016	.021	0.41	0.53	3,7
LL	.500	1.750	12.70	44.45	7

Ltr	Dimensions				Notes
	Inch		Millimeters		
	Min	Max	Min	Max	
LS1	.0707 Nom.		1.796 Nom.		5
LS2	.1000 Nom.	2.540 Nom		5	
LU	.016	.019	0.41	0.48	4,7
TL	.029	.045	0.74	1.14	6
TW	.028	.034	0.71	0.86	

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Measured in the zone beyond .250 inch $(6.35 \mathrm{~mm})$ from the seating plane.
4. Measured in the zone .050 inch (1.27 mm) and .250 inch (6.35 mm) from the seating plane.
5. When measured in a gauging plane $.054+.001,-.000$ inch $(1.37+0.03,-0.00 \mathrm{~mm})$ below the seating plane of the transistor, maximum diameter leads shall be within .007 inch $(0.18 \mathrm{~mm})$ of their true location relative to a maximum width tab. Smaller diameter leads shall fall within the outline of the maximum diameter lead tolerance.
6. Measured from the maximum diameter of the actual device.
7. All six leads.
8. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15

