KS8997/KSZ8997

8-Port 10/100 Integrated Switch

 with PHY and Frame BufferRev 1.1

General Description

The KS8997 contains eight 10/100 physical layer transceivers, eight MAC (Media Access Control) units with an integrated layer 2 switch. The device runs as an eight port integrated switch.
The KS8997 is designed to reside in an unmanaged design not requiring processor intervention. This is achieved through I/O strapping or EEPROM programming at system reset time.

On the media side, the KS8997 supports 10BaseT and 100BaseTX through auto-negotiation as specified by the IEEE 802.3 committee.
Physical signal transmission and reception are enhanced through use of analog circuitry that makes the design more efficient and allows for lower power consumption and smaller chip die size.
Data sheets and support documentation can be found on Micrel's web site at www.micrel.com.

Functional Diagram

[^0]
Features

- 8 -port $10 / 100$ integrated switch with 8 physical layer transceivers
- $32 \mathrm{~K} x 32$ of SRAM on chip for frame buffering
- 2.0Gbps high performance memory bandwidth
- 10BaseT and 100BaseTX modes of operation
- Superior analog technology for reduced power and die size
- Single 2.0 V power supply with options for 2.5 V and 3.3 V I/O
- $900 \mathrm{~mA}(1.80 \mathrm{~W})$ including physical transmit drivers
- Supports port based VLAN
- Supports DiffServ priority, 802.1p based priority or port based priority
- Indicators for link, activity, full/half-duplex and speed
- Unmanaged operation via strapping or EEPROM at system reset time
- Hardware based $10 / 100$, full/half, flow control and auto negotiation
- Wire speed reception and transmission
- Integrated address look-up engine, supports 1 K absolute MAC addresses
- Automatic address learning, address aging and address migration
- Broadcast storm protection
- Full-duplex IEEE 802.3x flow control
- Half-duplex back pressure flow control
- Comprehensive LED support
- Supports MDI/MDI-X auto crossover
- Commercial temperature range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Supports lead free product (KSZ8997) for commercial temperature range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Available in 128 -pin PQFP package

Applications

- Small workgroup switches
- VoIP infrastructure switches

Ordering Information

Part Number	Temp. Range	Package
KS8997	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	128 -Pin PQFP
KSZ8997	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	128 -Pin PQFP

Revision History

Revision	Date	Summary of Changes
1.00	$11 / 27 / 00$	Document origination.
1.01	$04 / 02 / 01$	Update maximum frame size. Update EEPROM priority descriptions. Update I/O descriptions. Update Electrical Characteristics.
1.02	$05 / 11 / 01$	Add MDI/MDI_X description/
1.03	$06 / 22 / 01$	Change electrical requirements.
1.04	$06 / 25 / 01$	Correct I/O descriptions.
1.05	$07 / 25 / 01$	Update PLL clock information.
1.06	$05 / 29 / 02$	Correct LED[1:8][3] mode 2 description.
1.07	$08 / 29 / 03$	Convert to new format.
1.1	$02 / 27 / 07$	Added lead free commercial temperature package.

Contents

System Level Applications 6
Pin Description 7
I/O Grouping 11
I/O Descriptions 11
Pin Configuration 14
Functional Overview: Physical Layer Transceiver 15
100BaseTX Transmit 15
100BaseTX Receive 15
PLL Clock Synthesizer 15
Scrambler/De-Scrambler (100BaseTX only) 15
10BaseT Transmit 15
10BaseT Receive 15
Power Management 15
Power Save Mode 15
MDI/MDI-X Auto Crossover 16
Auto-Negotiation 16
Functional Overview: Switch Core 17
Address Look-Up 17
Learning 17
Migration 17
Aging 17
Forwarding 17
Switching Engine 17
MAC (Media Access Controller) Operation 18
Inter-Packet Gap (IPG) 18
Backoff Algorithm 18
Late Collision 18
Illegal Frames 18
Flow Control 18
Half-Duplex Back Pressure 18
Broadcast Storm Protection 18
Programmable Features 19
Priority Schemes 19
Per Port Method 19
802.1p Method 19
IPv4 DSCP Method 19
Other Priority Considerations 19
VLAN Operation 20
Station MAC Address (control frames only) 21
EEPROM Operation 21
EEPROM Memory Map 21
General Control Register 21
Priority Classification Control - 802.1p tag field 21
Port 1 Control Register 22
Port 2 Control Register 22
Port 3 Control Register. 22
Port 4 Control Register 23
Port 5 Control Register 23
Port 6 Control Register. 23
Port 7 Control Register 24
Port 8 Control Register 24
Reserved Register. 25
Port 1 VLAN Mask Register 25
Port 2 VLAN Mask Register 25
Port 3 VLAN Mask Register 26
Port 4 VLAN Mask Register 26
Port 5 VLAN Mask Register 26
Port 6 VLAN Mask Register 27
Port 7 VLAN Mask Register 27
Port \& VLAN Mask Register 28
Reserved Register. 28
Port 1 VLAN Tag Insertion Value Registers 28
Port 2 VLAN Tag Insertion Value Registers 28
Port 3 VLAN Tag Insertion Value Registers 28
Port 4 VLAN Tag Insertion Value Registers 29
Port 5 VLAN Tag Insertion Value Registers 29
Port 6 VLAN Tag Insertion Value Registers 29
Port 7 VLAN Tag Insertion Value Registers 29
Port 8 VLAN Tag Insertion Value Registers 29
Reserved Register. 29
Diff Serv Code Point Registers 29
Station MAC Address Registers (all ports - MAC control frames only) 30
Absolute Maximum Ratings 31
Operating Ratings 31
Electrical Characteristics 31
Timing Diagrams 33
Reference Circuit 34
4B/5B Coding 35
MLT3 Coding 36
MAC Frame for 802.3 36
Selection of Isolation Transformer 37
Selection of Reference Oscillator/Crystal 37
Package Information 38

System Level Applications

The KS8997 can be configured to fit in an eight port 10/100 application. The major benefits of using the KS8997 are the lower power consumption,
unmanaged operation, flexible configuration, built in frame buffering, VLAN abilities and traffic priority control. An application is depicted below.

8 Port Stand Alone

Pin Description

Pin Number	Pin Name	Type(1)	Port	Pin Function
1	VDD_RX	Pwr		2.0V for equalizer
2	GND_RX	Gnd		Ground for equalizer
3	GND_RX	Gnd		Ground for equalizer
4	VDD_RX	Pwr		2.0V for equalizer
5	RXP[3]	1	3	Physical receive signal + (differential)
6	RXM[3]	1	3	Physical receive signal - (differential)
7	GND-ISO	Gnd		Analog ground
8	TXP[3]	0	3	Physical transmit signal + (differential)
9	TXM[3]	0	3	Physical transmit signal - (differential)
10	GND_TX	Gnd		Ground for transmit circuitry
11	VDD_TX	Pwr		2.0V for transmit circuitry
12	TXP[4]	0	4	Physical receive signal + (differential)
13	TXM[4]	0	4	Physical receive signal - (differential)
14	GND_TX	Gnd		Ground for transmit circuitry
15	RXP[4]	I	4	Physical receive signal + (differential)
16	RXM[4]	I	4	Physical receive signal - (differential)
17	GND_RX	Gnd		Ground for equalizer
18	VDD_RX	Pwr		2.0V for equalizer
19	ISET			Set physical transmit output current
20	GND-ISO	Gnd		Analog ground
21	VDD_RX	Pwr		2.0V for equalizer
22	GND_RX	Gnd		Ground for equalizer
23	RXP[5]	I	5	Physical receive signal + (differential)
24	RXM[5]	1	5	Physical receive signal - (differential)
25	GND_TX	Gnd		Ground for transmit circuitry
26	TXP[5]	0	5	Physical receive signal + (differential)
27	TXM[5]	0	5	Physical receive signal - (differential)
28	VDD_TX	Pwr		2.0 V for transmit circuitry
29	GND_TX	Gnd		Ground for transmit circuitry
30	TXP[6]	0	6	Physical receive signal + (differential)
31	TXM[6]	0	6	Physical receive signal - (differential)
32	GND-ISO	Gnd		Analog ground
33	RXP[6]	I	6	Physical receive signal + (differential)
34	RXM[6]	1	6	Physical receive signal - (differential)
35	VDD_RX	Pwr		2.0V for equalizer
36	GND_RX	Gnd		Ground for equalizer
37	GND_RX	Gnd		Ground for equalizer
38	VDD_RX	Pwr		2.0V for equalizer

Pin Number	Pin Name	Type(1)	Port	Pin Function
39	GND-ISO	Gnd		Analog ground
40	RXP[7]	I	7	Physical receive signal + (differential)
41	RXM[7]	1	7	Physical receive signal - (differential)
42	GND_TX	Gnd		Ground for transmit circuitry
43	TXP[7]	0	7	Physical receive signal + (differential)
44	TXM[7]	0	7	Physical receive signal - (differential)
45	VDD_TX	Pwr		2.0V for transmit circuitry
46	VDD_TX	Pwr		2.0V for transmit circuitry
47	TXP[8]	0	8	Physical receive signal + (differential)
48	TXM[8]	0	8	Physical receive signal - (differential)
49	GND_TX	Gnd		Ground for transmit circuitry
50	RXP[8]	I	8	Physical receive signal + (differential)
51	RXM[8]	1	8	Physical receive signal - (differential)
52	GND_RX	Gnd		Ground for equalizer
53	VDD_RX	Pwr		2.0V for equalizer
54	GND_RCV	Gnd		Ground for clock recovery circuit
55	VDD_RCV	Pwr		2.0V for clock recovery circuit
56	GND_RCV	Gnd		Ground for clock recovery circuit
57	VDD_RCV	Pwr		2.0V for clock recovery circuit
58	RLPBK	1		Enable loop back for testing
59	T[1]	I		Factory test pin - float for normal operation
60	EN1P	I		Enable 802.1p for all ports
61	SDA	I/O		Serial data from EEPROM or processor
62	SCL	I/O		Clock for EEPROM or from processor
63	VDD	Pwr		2.0V for core digital circuitry
64	GND	Gnd		Ground for core digital circuitry
65	VDD-IO	Pwr		$2.0 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V for I/O circuitry
66	GND	Gnd		Ground for digital circuitry
67	GND	Gnd		Ground for core digital circuitry
68	VDD	Pwr		2.0V for core digital circuitry
69	BIST	1		Built-in self test-tie low for normal operation
70	RST\#	I		Reset
71	LED[1][3]	I/O	1	LED indicator 3
72	LED[1][2]	I/O	1	LED indicator 2
73	LED[1][0]	I/O	1	LED indicator 0
74	LED[2][3]	I/O	2	LED indicator 3
75	LED[2][2]	I/O	2	LED indicator 2
76	LED[2][0]	I/O	2	LED indicator 0
77	VDD-IO	Pwr		$2.0 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V for I/O circuitry

Pin Number	Pin Name	Type(1)	Port	Pin Function
78	GND	Gnd		Ground for digital circuitry
79	LED[3][3]	I/O	3	LED indicator 3
80	LED[3][2]	I/O	3	LED indicator 2
81	LED[3][0]	I/O	3	LED indicator 0
82	LED[4][3]	1/O	4	LED indicator 3
83	LED[4][2]	I/O	4	LED indicator 2
84	LED[4][0]	I/O	4	LED indicator 0
85	VDD	Pwr		2.0V for core digital circuitry
86	GND	Gnd		Ground for core digital circuitry
87	LED[5][3]	I/O	5	LED indicator 3
88	LED[5][2]	1/O	5	LED indicator 2
89	LED[5][0]	I/O	5	LED indicator 0
90	LED[6][3]	I/O	6	LED indicator 3
91	LED[6][2]	I/O	6	LED indicator 2
92	LED[6][0]	I/O	6	LED indicator 0
93	LED[7][3]	I/O	7	LED indicator 3
94	LED[7][2]	I/O	7	LED indicator 2
95	VDD-IO	Pwr		2.0V, 2.5 V or 3.3 V for I/O circuitry
96	LED[7][0]	I/O	7	LED indicator 0
97	LED[8][3]	I/O	8	LED indicator 3
98	LED[8][2]	I/O	8	LED indicator 2
99	LED[8][0]	I/O	8	LED indicator 0
100	GND	Gnd		Ground for digital circuitry
101	GND	Gnd		Ground for core digital circuitry
102	VDD	Pwr		2.0V for core digital circuitry
103	MODESEL[1]	I		Selects LED modes
104	MODESEL[0]	I		Selects LED modes
105	T[5]	I		Factory test pin - float for normal operation
106	X1	1		Crystal or clock input
107	X2	0		Connect to crystal
108	VDD_PLLTX	Pwr		2.0V for phase locked loop circuit
109	GND_PLLTX	Gnd		Ground for phase locked loop circuit
110	VDD_RCV	Pwr		2.0V for clock recovery circuit
111	GND_RCV	Gnd		Ground for clock recovery circuit
112	VDD_RCV	Pwr		2.0V for clock recovery circuit
113	GND_RCV	Gnd		Ground for clock recovery circuit
114	VDD_RX	Pwr		2.0V for equalizer
115	GND_RX	Gnd		Ground for equalizer
116	RXP[1]	I	1	Physical receive signal + (differential)

Pin Number	Pin Name	Type(1)	Port	Pin Function
117	RXM[1]	I	1	Physical receive signal - (differential)
118	GND_TX	Gnd		Ground for transmit circuitry
119	TXP[1]	O	1	Physical transmit signal + (differential)
120	TXM[1]	O	1	Physical transmit signal - (differential)
121	VDD_TX	Pwr		2.0 V for transmit circuitry
122	VDD_TX	Pwr		2.0 V for transmit circuitry
123	TXP[2]	O	2	Physical transmit signal + (differential)
124	TXM[2]	O	2	Physical transmit signal - (differential)
125	GND_TX	Gnd		Ground for transmit circuitry
126	RXP[2]	I	2	Physical transmit signal + (differential)
127	RXM[2]	I	2	Physical transmit signal - (differential)
128	GND-ISO	Gnd		Analog ground

Notes:

1. Pwr = Power supply

I = Input
$\mathrm{O}=$ Output
I/O = Bi-directional
Gnd $=$ Ground

I/O Grouping

Group Name	Description
PHY	Physical interface
IND	LED Indicators
UP	Unmanaged Programmable
CTRL	Control and Miscellaneous
TEST	Test (Factory)
PWR/GND	Power and Ground

I/O Descriptions

Group	I/O Names	Active Status	Description
	BIST	H	Factory test input: tie low for normal operation
PWR/GND	VDD_RX		2.0 V for equalizer
	GND_RX		Ground for equalizer
	VDD_TX		2.0 V for transmit circuitry
	GND_TX		Ground for transmit circuitry
	VDD_RCV		2.0 V for clock recovery circuitry
	GND_RCV		Ground for clock recovery
	VDD_PLLTX		2.0 V for phase locked loop circuitry
	GND_PLLTX		Ground for phase locked loop circuitry
	GND-SIO		Analog ground
	VDD		2.0 V for core digital circuitry
	VDD-IO		$2.0 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3V digital for I/O circuitry
	GND		Ground for digital circuitry

Note:

1. All unmanaged programming takes place at reset time only. For unmanaged programming: $F=F l o a t, D=P u l l-d o w n, U=P u l l-u p$, $\mathrm{H}=$ Hold pin state after reset. See "Reference Circuits" section.

Pin Configuration

Functional Overview: Physical Layer Transceiver

100BaseTX Transmit

The 100BaseTX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ to NRZI conversion, MLT3 encoding and transmission. The circuit starts with a parallel to serial conversion, which converts the MII data from the MAC into a 125 MHz serial bit stream. The data and control stream is then converted into 4B/5B coding followed by a scrambler.
The serialized data is further converted from NRZ to NRZI format, and then transmitted in MLT3 current output. The output current is set by an external $1 \% 3.01 \mathrm{k} \Omega$ resistor for the $1: 1$ transformer ratio. It has a typical rise/fall time of 4 ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot and timing jitter. The wave-shaped 10BaseT output is also incorporated into the 100BaseTX transmitter.

100BaseTX Receive

The 100BaseTX receiver function performs adaptive equalization, DC restoration, MLT3 to NRZI conversion, data and clock recovery, NRZI to NRZ conversion, de-scrambling, 4B/5B decoding and serial to parallel conversion. The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Since the amplitude loss and phase distortion is a function of the length of the cable, the equalizer has to adjust its characteristics to optimize the performance. In this design, the variable equalizer will make an initial estimation based on comparisons of incoming signal strength against some known cable characteristics, then it tunes itself for optimization. This is an ongoing process and can self adjust against environmental changes such as temperature variations.
The equalized signal then goes through a DC restoration and data conversion block. The DC restoration circuit is used to compensate for the effect of base line wander and improve the dynamic range. The differential data conversion circuit converts the MLT3 format back to NRZI. The slicing threshold is also adaptive.
The clock recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then used to convert the NRZI signal into the NRZ format. The signal is then sent through the de-scrambler followed by the 4B/5B decoder.
Finally, the NRZ serial data is converted to the MII format and provided as the input data to the MAC.

PLL Clock Synthesizer

The KS8997 generates $125 \mathrm{MHz}, 62 \mathrm{MHz}$, 25MHz and 10MHz clocks for system timing. Internal clocks are generated from an external 25 MHz crystal.

Scrambler/De-Scrambler (100BaseTX only)

The purpose of the scrambler is to spread the power spectrum of the signal in order to reduce EMI and baseline wander. The data is scrambled through the use of an 11-bit wide linear feedback shift register (LFSR). This can generate a 2047-bit non-repetitive sequence. The receiver will then de-scramble the incoming data stream with the same sequence at the transmitter.

10BaseT Transmit

The output 10BaseT driver is incorporated into the 100BaseT driver to allow transmission with the same magnetics. They are internally wave-shaped and pre-emphasized into outputs with a typical 2.3 V amplitude.

10BaseT Receive

On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit and a PLL perform the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data. A squelch circuit rejects signals with levels less than 400 mV or with short pulse widths in order to prevent noises at the RXP or RXM input from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KS8997 decodes a data frame. The receiver clock is maintained active during idle periods in between data reception.

Power Management

Power-Save Mode
The KS8997 will turn off everything except for the Energy Detect and PLL circuits when the cable is not installed on an individual port basis. In other words, the KS8997 will shutdown most of the internal circuits to save power if there is no link.

MDI/MDI-X Auto Crossover

The KS8997 supports MDI/MDI-X auto crossover. This facilitates the use of either a straight connection CAT-5 cable or a crossover CAT-5 cable. The auto-sense function will detect remote transmit and receive pairs, and correctly assign the transmit and receive pairs from the Micrel device. This can be highly useful when end users are unaware of cable types and can also save on an additional uplink configuration connection.
The auto MDI/MDI-X is achieved by the Micrel device listening for the far end transmission channel and assigning transmit/receive pairs accordingly.

Auto-Negotiation

The KS8997 conforms to the auto-negotiation protocol as described by the 802.3 committee. Auto-negotiation allows UTP (Unshielded Twisted Pair) link partners to select the best common mode of operation. In auto-negotiation the link partners advertise capabilities across the link to each other. If auto-negotiation is not supported or the link partner to the KS8997 is forced to bypass auto-negotiation, then the mode is set by observing the signal at the receiver. This is known as parallel mode because while the transmitter is sending auto-negotiation advertisements, the receiver is listening for advertisements or a fixed signal protocol.
The flow for the link set up is depicted below. Note that the KS8997 only supports auto-negotiation and not forced modes.

Figure 4. Auto-Negotiation

Functional Overview: Switch Core

Address Look-Up

The internal look-up table stores MAC addresses and their associated information. It contains 1 K full CAM with 48 -bit address plus switching information. The KS8997 is guaranteed to learn 1 K addresses and distinguishes itself from hash-based lookup tables which, depending on the operating environment and probabilities, may not guarantee the absolute number of addresses it can learn.

Learning

The internal look-up engine will update its table with a new entry if the following conditions are met:

- The received packet's SA (Source Address) does not exist in the look-up table.
- The received packet is good; the packet has no receiving errors, and is of legal length.

The look-up engine will insert the qualified SA into the table, along with the port number, time stamp. If the table is full, the last entry of the table will be deleted first to make room for the new entry.

Migration

The internal look-up engine also monitors whether a station is moved. If it happens, it will update the table accordingly. Migration happens when the following conditions are met:

- The received packet's SA is in the table but the associated source port information is different.
- The received packet is good; the packet has no receiving errors, and is of legal length.

The look-up engine will update the existing record in the table with the new source port information.

Aging

The look-up engine will update time stamp information of a record whenever the corresponding SA appears. The time stamp is used in the aging process. If a record is not updated for a period of time, the look-up engine will then remove the record from the table. The look-up engine constantly performs the aging process and will continuously remove aging records. The aging period is 300 seconds. This feature can be enabled or disabled by external pull-up or pull-down resistors.

Forwarding

The KS8997 will forward packets as follows:

- If the DA look-up result is a "match", the KS8997 will use the destination port information to determine where the packet goes.
- If the DA look-up result is a "miss", the KS8997 will forward the packet to all other ports except the port that received the packet.
- All the multicast and broadcast packets will be forwarded to all other ports except the source port.

The KS8997 will not forward the following packets:

- Error packets. These include framing errors, FCS errors, alignment errors, and illegal size packet errors.
- $802.3 x$ pause frames. The KS8997 will intercept these packets and do the appropriate actions.
- "Local" packets. Based on destination address (DA) look-up. If the destination port from the look-up table matches the port where the packet was from, the packet is defined as "local".

Switching Engine

The KS8997 has a very high performance switching engine to move data to and from the MAC's, packet buffers. It operates in store and forward mode, while the efficient switching mechanism reduces overall latency.
The KS8997 has an internal buffer for frames that is 32 Kx 32 (128 KB). This resource could be shared between the nine ports and is programmed at system reset time by using the unmanaged program mode (I/O strapping).
Each buffer is sized at 128B and therefore there are a total of 1024 buffers available. The buffers are adaptively allocated up to 512 to a single port based on loading.

MAC (Media Access Controller) Operation

The KS8995X strictly abides by IEEE 802.3 standards to maximize compatibility.
Inter-Packet Gap (IPG)
If a frame is successfully transmitted, the 96 bit time IPG is measured between the two consecutive MTXEN. If the current packet is experiencing collision, the 96 bit time IPG is measured from MCRS and the next MTXEN.

Backoff Algorithm

The KS8997 implements the IEEE Std 802.3 binary exponential back-off algorithm, and optional "aggressive mode" back off. After 16 collisions, the packet will be optionally dropped depending on the chip configuration in Register 3. See "Register 3."

Late Collision

If a transmit packet experiences collisions after 512-bit times of the transmission, the packet will be dropped.

Illegal Frames

The KS8997 discards frames less than 64 bytes and can be programmed to accept frames up to 1536 bytes. Since the KS8997 supports VLAN tags, the maximum sizing is adjusted when these tags are present.

Flow Control

The KS8997 supports standard $802.3 x$ flow control frames on both transmit and receive sides. On the receive side, if the KS8997 receives a pause control frame, the KS8997 will not transmit the next normal frame until the timer, specified in the pause control frame, expires. If another pause frame is received before the current timer expires, the timer will be updated with the new value in the second pause frame. During this period (being flow controlled), only flow control packets from the KS8997 will be transmitted. On the transmit side, the KS8997 has intelligent and efficient ways to determine when to invoke flow control. The flow control is based on availability of the system resources, including available buffers, available transmit queues and available receive queues.
The KS8997 will flow control a port, which just received a packet, if the destination port resource is being used up. The KS8997 will issue a flow control frame (XOFF), containing the maximum pause time defined in IEEE standard $802.3 x$. Once the resource is freed up, the KS8997 will send out the other flow control frame (XON) with zero pause time to turn off the flow control (turn on transmission to the port). A hysteresis feature is provided to prevent flow control mechanism from being activated and deactivated too many times. The KS8997 will flow control all ports if the receive queue becomes full.

Half-Duplex Back Pressure

Half duplex back pressure option (Note: not in 802.3 standards) is also provided. The activation and deactivation conditions are the same as the above in full-duplex mode. If back pressure is required, the KS8997 will send preambles to defer other stations' transmission (carrier sense deference). To avoid jabber and excessive deference defined in 802.3 standard, after a certain time it will discontinue the carrier sense but it will raise the carrier sense quickly. This short silent time (no carrier sense) is to prevent other stations from sending out packets and keeps other stations in carrier sense deferred state. If the port has packets to send during a back pressure situation, the carrier sense type back pressure will be interrupted and those packets will be transmitted instead. If there are no more packets to send, carrier sense type back pressure will be active again until switch resources free up. If a collision occurs, the binary exponential back-off algorithm is skipped and carrier sense is generated immediately, reducing the chance of further colliding and maintaining carrier sense to prevent reception of packets.

Broadcast Storm Protection

The KS8997 has an intelligent option to protect the switch system from receiving too many broadcast packets. Broadcast packets will be forwarded to all ports except the source port, and thus will use too many switch resources (bandwidth and available space in transmit queues). The KS8997 will discard broadcast packets if the number of those packets exceeds the threshold (configured by strapping during reset and EEPROM settings) in a preset period of time. If the preset period expires it will then resume receiving broadcast packets until the threshold is reached. The options are 5% of network line rate for the maximum broadcast receiving threshold or unlimited (feature off).

Programmable Features

Priority Schemes

The KS8997 can determine priority through three different means at the ingress point. The first method is a simple per port method, the second is via the 802.1 p frame tag and the third is by viewing the DSCP (TOS) field in the IPv4 header. Of course for the priority to be effective, the high and low priority queues must be enabled on the destination port or egress point.

Per Port Method

General priority can be specified on a per port basis. In this type of priority all traffic from the specified input port is considered high priority in the destination queue. This can be useful in IP phone applications mixed with other data types of traffic where the IP phone connects to a specific port. The IP phone traffic would be high priority (outbound) to the wide area network. The inbound traffic to the IP phone is all of the same priority to the IP phone.

802.1p Method

This method works well when used with ports that have mixed data and media flows. The inbound port examines the priority field in the tag and determines the high or low priority. Priority profiles are setup in the Priority Classification Control in the "EEPROM Memory Map" section.

IPv4 DSCP Method

This is another per frame way of determining outbound priority. The DSCP (Differentiated Services Code PointRFC\#2474) method uses the TOS field in the IP header to determine high and low priority on a per code point basis. Each fully decoded code point can have either a high or low priority. A larger spectrum of priority flows can be defined with this larger code space.
More specific to implementation, the most significant 6 bits of the TOS field are fully decoded into 64 possibilities, and the singular code that results is compared against the corresponding bit in the DSCP register. If the register bit is a 1 , the priority is high and if 0 , the priority is low.

Other Priority Considerations

When setting up the priority scheme, one should consider other available controls to regulate the traffic. One of these is Priority Control Scheme (register 2 bits 2-3) which controls the interleaving of high and low priority frames. Options allow from a $2: 1$ ratio up to a setting that sends all the high priority first. This setting controls all ports globally. Another global feature is Priority Buffer Reserve (register 2 bit 1). If this is set, there is a 6 KB (10\%) buffer dedicated to high priority traffic, otherwise if cleared the buffer is shared between all traffic.
On an individual port basis there are controls that enable DSCP, 802.1p, port based and high/low priority queues. These are contained in registers $4-11$ bits $5-3$ and 0 . It should be noted that there is a special pin that generally enables the 802.1 p priority for all ports (pin 60). When this pin is active (high) all ports will have the 802.1 p priority enabled unless specifically disabled by EEPROM programming (bit 4 of registers $4-11$). Default high priority is a value of ' 100 ' and above in the VLAN tag with low priority being a value of ' 011 ' and below.

The table below briefly summarizes priority features. For more detailed settings see "EEPROM Memory Map" section.

Register(s)	Bit(s)	Global/Port	Description
2	3-2	Global	General
			Priority Control Scheme: Transmit buffer high/low interleave control
2	1	Global	Priority Buffer Reserve: Reserves 6KB of the buffer for high priority traffic
4-11	0	Port	Enable Port Queue Split: Splits the transmit queue on the desired port for high and low priority traffic
4-11	5	Port	DSCP Priority
			Enable Port DSC: Looks at DSCP field in IP header to decide high or low priority
40-47	7-0	Global	DSCP Priority Points: Fully decoded 64-bit register used to determine priority from DSCP field (6 bits) in the IP header
4-11	4	Port	802.1p Priority
			Enable Port 802.1p Priority: Uses the 802.1 p priority tag (3 bits) to determine frame priority
3	7-0	Global	Priority Classification: Determines which tag values have high priority
4-11	3	Port	Per Port Priority
			Enable Port Priority: Determines which ports have high priority traffic

Table 1. Priority Control

VLAN Operation

The VLAN's are setup by programming the VLAN Mask Registers in the "EEPROM Memory Map" section. The perspective of the VLAN is from the input port and which output ports it sees directly through the switch. For example if port 1 only participated in a VLAN with ports 2 and 8 then one would set bits 0 and 6 in register 13 (Port 1 VLAN Mask Register). Note that different ports can be setup independently. An example of this would be where a router is connected to port 8 and each of the other ports would work autonomously. In this configuration ports 1 through 7 would only set the mask for port 8 and port 8 would set the mask for ports 1 through 7 . In this way the router could see all ports and each of the other individual ports would only communicate with the router.
All multicast and broadcast frames adhere to the VLAN configuration. Unicast frame treatment is a function of register 2 bit 0 . If this bit is set then unicast frames only see ports within their VLAN. If this bit is cleared unicast frames can traverse VLAN's.
VLAN tags can be added or removed on a per port basis. Further, there are provisions to specify the tag value to be inserted on a per port basis.
The table below briefly summarizes VLAN features. For more detailed settings see "EEPROM Memory Map" section.

Register(s)	Bit(s)	Global/Port	Description
$4-11$	2	Port	Insert VLAN Tags: If specified, will add VLAN tags to frames without existing tags
$4-11$	1	Port	Strip VLAN Tags: If specified, will remove VLAN tags from frames if they exist
2	0	Global	VLAN Enforcement: Allows unicast frames to adhere or ignore the VLAN configuration
$13-20$	$7-0$	Port	VLAN Mask Registers: Allows configuration of individual VLAN grouping
$22-38$	$7-0$	Port	VLAN Tag Insertion Values: Specifies the VLAN tag to be inserted if enabled (see above)

Table 2. VLAN Control

Station MAC Address (control frames only)

The MAC source address can be programmed as used in flow control frames. The table below briefly summarizes this progammable feature.

Register(s)	Bit(s)	Global/Port	Description
$48-53$	$7-0$	Global	Station MAC Address: Used as source address for MAC control frames as used in full-duplex flow control mechanisms.

Table 3. Misc. Control

EEPROM Operation

The EEPROM interface utilizes 2 pins that provide a clock and a serial data path. As part of the initialization sequence, the KS8997 reads the contents of the EEPROM and loads the values into the appropriate registers. Note that the first two bytes in the EEPROM must be " 55 " and " 99 " respectively for the loading to occur properly. If these first two values are not correct, all other data will be ignored.
Data start and stop conditions are signaled on the data line as a state transition during clock high time. A high to low transition indicates start of data and a low to high transition indicates a stop condition. The actual data that traverses the serial line changes during the clock low time.
The KS8997 EEPROM interface is compatible with the Atmel AT24C01A part. Further timing and data sequences can be found in the Atmel AT24C01A specification.

EEPROM Memory Map

Address	Name	Description	Default (chip) Value
0	$7-0$	Signature byte 1. Value $=" 55 "$	0×55
1	$7-0$	Signature byte 2. Value $=" 99 "$	0×99

General Control Register

2	$7-4$	Reserved - set to zero	0000
2	$3-2$	Priority control scheme (all ports) $00=$ Transmit all high priority before any low priority $01=$ Transmit high and low priority at a 10:1 ratio $10=$ Transmit high and low priority at a 5:1 ratio $11=$ Transmit high and low priority at a 2:1 ratio	00
2	1	Priority buffer reserve for high priority traffic $1=$ Reserve 6KB of buffer space for high priority $0=$ None reserved	0
2	0	VLAN enforcement $1=$ All Unicast frames adhere to VLAN configuration $0=$ Unicast frames ignore VLAN configuration	0

Priority Classification Control - 802.1p tag field

3	7	1 = State " 111 " is high priority $0=$ State " 111 " is low priority	1
3	6	1 = State " 110 " is high priority $0=$ State " 110 " is low priority	1
3	5	1 = State " 101 " is high priority $0=$ State " 101 " is low priority	1
3	4	$\begin{aligned} & 1=\text { State " } 100 \text { " is high priority } \\ & 0=\text { State " } 100 \text { " is low priority } \end{aligned}$	1
3	3	1 = State " 011 " is high priority $0=$ State "011" is low priority	0
3	2	1 = State " 010 " is high priority $0=$ State " 010 " is low priority	0
3	1	1 = State "001" is high priority	0

Address	Name	Description	Default (chip) Value
		$0=$ State "001" is low priority	
3	0	$1=$ State "000" is high priority $0=$ State " 000 " is low priority	0

Port 1 Control Register

4	7-6	Reserved - set to zero	00
4	5	$\begin{aligned} & \text { TOS priority classification enable for port } 1 \\ & 1=\text { Enable } \\ & 0=\text { Disable } \\ & \hline \end{aligned}$	0
4	4	802.1p priority classification enable for port 1 $\begin{aligned} & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$	0
4	3	Port based priority classification for port 1 $1 \text { = High priority }$ $0=\text { Low priority }$	0
4	2	$\begin{aligned} & \text { Insert VLAN tags for port } 1 \text { if non-existent } \\ & 1=\text { Enable } \\ & 0=\text { Disable } \\ & \hline \end{aligned}$	0
4	1	$\begin{aligned} & \text { Strip VLAN tags for port } 1 \text { if existent } \\ & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$	0
4	0	Enable high and low output priority queues for port 1 $\begin{aligned} & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$	0

Port 2 Control Register

5	$7-6$	Reserved - set to zero	00
5	5	TOS priority classification enable for port 2 $1=$ Enable $0=$ Disable	0
5	4	802.1 p priority classification enable for port 2 $1=$ Enable $0=$ Disable	0
5	3	Port babed priority classification for port 2 $1=$ High priority $0=$ Low priority	0
5	2	Insert VLAN tags for port 2 if non-existent $1=$ Enable = Disable	0
5	1	Strip VLAN tags for port 2 if existent $1=$ Enable O Disable	0
5	0	Enable high and low output priority queues for port 2 $1=$ Enable $0=$ Disable	0

Port 3 Control Register

6	$7-6$	Reserved - set to zero	00
6	5	TOS priority classification enable for port 3 $1=$ Enable $0=$ Disable	0
6	4	802.1 p priority classification enable for port 3 $1=$ Enable $0=$ Disable	0
6	3	Port based priority classification for port 3 $1=$ High priority	0

Address	Name	Description	Default (chip) Value
		$0=$ Low priority	0
6	2	Insert VLAN tags for port 3 if non-existent $1=$ Enable $0=$ D Disable	0
6	1	Strip VLAN tags for port 3 if existent = Enable $0=$ Disable	Enable high and low output priority queues for port 3 $1=$ Enable = Disable

Port 4 Control Register

7	$7-6$	Reserved - set to zero	00
7	5	TOS priority classification enable for port 4 $1=$ Enable $0=$ Disable	0
7	4	802.1p priority classification enable for port 4 $1=$ Enable $0=$ Disable	0
7	3	Port based priority classification for port 4 = High priority $0=$ L Low priority	0
7	2	Insert VLAN tags for port 4 if non-existent $1=$ Enable = Disable	0
7	1	Strip VVAN tags for port 4 if existent $1=$ Enable = Disable	0
7	0	Enable high and low output priority queues for port 4 $1=$ Enable = Disable	0

Port 5 Control Register

8	7-6	Reserved - set to zero	00
8	5	$\begin{aligned} & \text { TOS priority classification enable for port } 5 \\ & 1=\text { Enable } \\ & 0=\text { Disable } \\ & \hline \end{aligned}$	0
8	4	802.1p priority classification enable for port 5 $1 \text { = Enable }$ $0=\text { Disable }$	0
8	3	Port based priority classification for port 5 1 = High priority 0 = Low priority	0
8	2	$\begin{aligned} & \text { Insert VLAN tags for port } 5 \text { if non-existent } \\ & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$	0
8	1	Strip VLAN tags for port 5 if existent $1 \text { = Enable }$ $0=\text { Disable }$	0
8	0	Enable high and low output priority queues for port 5 $1 \text { = Enable }$ $0=\text { Disable }$	0
Port 6 Control Register			
9	7-6	Reserved - set to zero	00

Address	Name	Description	Default (chip) Value
9	5	TOS priority classification enable for port 6 $1=$ Enable $0=$ Disable	0
9	4	802.1 p priority classification enable for port 6 $1=$ Enable $0=$ Disable	0
9	2	Port based priority classification for port 6 $1=$ High priority $0=$ Low priority	0
9	1	Insert VLAN tags for port 6 if non-existent $1=$ Enable $0=$ Disable	Strip VLAN tags for port 6 if existent $1=$ Enable $0=$ Disable
9	0	Enable high and low output priority queues for port 6 $1=$ Enable $0=$ Disable	0
9	2		0

Port 7 Control Register

10	$7-6$	Reserved - set to zero	00
10	5	TOS priority classification enable for port 7 $1=$ Enable $0=$ Disable	0
10	3	802.1 p priority classification enable for port 7 $1=$ Enable $0=$ Disable	0
10	2	Port based priority classification for port 7 $1=$ High priority $0=$ Low priority	Insert VLAN tags for port 7 if non-existent $1=$ Enable $0=$ Disable
10	1	Strip VLAN tags for port 7 if existent $1=$ Enable $0=$ Disable	0
10	0	Enable high and low output priority queues for port 7 $1=$ Enable $0=$ Disable	0
10	3	0	

Port 8 Control Register

11	$7-6$	Reserved - set to zero	00
11	5	TOS priority classification enable for port 8 $1=$ Enable $0=$ Disable	0
11	4	802.1p priority classification enable for port 8 $1=$ Enable $0=$ Disable	0
11	3	Port based priority classification for port 8 $1=$ High priirity = Low priority	0
11	2	Insert VLAN tags for port 8 if non-existent $1=$ Enable $0=$ Disable	0
11	1	Strip VLAN tags for port 8 if existent $1=$ Enable $0=$ Disable	0

Address	Name	Description	$\begin{gathered} \text { Default } \\ \text { (chip) Value } \\ \hline \end{gathered}$
11	0	Enable high and low output priority queues for port 8 1 = Enable 0 = Disable	0
Reserved Register			
12	7-0	Reserved	0×00
Port 1 VLAN Mask Register			
13	7	Reserved	1
13	6	Port 8 inclusion $1=$ Port 8 in the same VLAN as port 1 $0=$ Port 8 not in the same VLAN as port 1	1
13	5	Port 7 inclusion 1 = Port 7 in the same VLAN as port 1 $0=$ Port 7 not in the same VLAN as port 1	1
13	4	Port 6 inclusion $1=$ Port 6 in the same VLAN as port 1 $0=$ Port 6 not in the same VLAN as port 1	1
13	3	Port 5 inclusion 1 = Port 5 in the same VLAN as port 1 $0=$ Port 5 not in the same VLAN as port 1	1
13	2	Port 4 inclusion 1 = Port 4 in the same VLAN as port 1 $0=$ Port 4 not in the same VLAN as port 1	1
13	1	Port 3 inclusion $1=$ Port 3 in the same VLAN as port 1 $0=$ Port 3 not in the same VLAN as port 1	1
13	0	Port 2 inclusion 1 = Port 2 in the same VLAN as port 1 $0=$ Port 2 not in the same VLAN as port 1	1

Port 2 VLAN Mask Register

14	7	Reserved	1
14	6	5	Port 8 inclusion $1=$ Port 8 in the same VLAN as port 2 $0=$ Port 8 not in the same VLAN as port 2
14	4	Port 7 inclusion $1=$ Port 7 in the same VLAN as port 2 $0=$ Port 7 not in the same VLAN as port 2	1
14	3	2	Port 6 inclusion $1=$ Port 6 in the same VLAN as port 2 $0=$ Port 6 not in the same VLAN as port 2
14	1	Port 5 inclusion $1=$ Port 5 in the same VLAN as port 2 $0=$ Port 5 not in the same VLAN as port 2	1
14	Port 4 inclusion $1=$ Port 4 in the same VLAN as port 2 $0=$ Port 4 not in the same VLAN as port 2	1	
14	0	Port 3 inclusion $1=$ Port 3 in the same VLAN as port 2 $0=$ Port 3 not in the same VLAN as port 2	1
14		Port 2 inclusion $1=$ Port 2 in the same VLAN as port 2 $0=$ Port 2 not in the same VLAN as port 2	1

Address	Name	Description	Default (chip) Value
Port 3 VLAN Mask Register			
15	7	Reserved	1
15	6	Port 8 inclusion $1=$ Port 8 in the same VLAN as port 3 $0=$ Port 8 not in the same VLAN as port 3	
15	5	Port 7 inclusion $1=$ Port 7 in the same VLAN as port 3 $0=$ Port 7 not in the same VLAN as port 3	1
15	3	Port 6 inclusion $1=$ Port 6 in the same VLAN as port 3 $0=$ Port 6 not in the same VLAN as port 3	1
15	2	Port 5 inclusion $1=$ Port 5 in the same VLAN as port 3 $0=$ Port 5 not in the same VLAN as port 3	1
15	1	Port 4 inclusion $1=$ Port 4 in the same VLAN as port 3 $0=$ Port 4 not in the same VLAN as port 3	1
15	0	Port 3 inclusion $1=$ Port 3 in the same VLAN as port 3 $0=$ Port 3 not in the same VLAN as port 3	1
15	Port 2 inclusion $1=$ Port 2 in the same VLAN as port 3 $0=$ Port 2 not in the same VLAN as port 3	1	

Port 4 VLAN Mask Register

16	7	Reserved	1
16	6	Port 8 inclusion $1=$ Port 8 in the same VLAN as port 4 $0=$ Port 8 not in the same VLAN as port 4	1
16	5	Port 7 inclusion 1 = Port 7 in the same VLAN as port 4 $0=$ Port 7 not in the same VLAN as port 4	1
16	4	Port 6 inclusion 1 = Port 6 in the same VLAN as port 4 $0=$ Port 6 not in the same VLAN as port 4	1
16	3	Port 5 inclusion $1=$ Port 5 in the same VLAN as port 4 $0=$ Port 5 not in the same VLAN as port 4	1
16	2	Port 4 inclusion $1=$ Port 4 in the same VLAN as port 4 $0=$ Port 4 not in the same VLAN as port 4	1
16	1	Port 3 inclusion $1=$ Port 3 in the same VLAN as port 4 $0=$ Port 3 not in the same VLAN as port 4	1
16	0	Port 2 inclusion $1=$ Port 2 in the same VLAN as port 4 $0=$ Port 2 not in the same VLAN as port 4	1

Port 5 VLAN Mask Register

17	7	Reserved	1
17	6	Port 8 inclusion $1=$ Port 8 in the same VLAN as port 5 $0=$ Port 8 not in the same VLAN as port 5	1
17	5	Port 7 inclusion $1=$ Port 7 in the same VLAN as port 5 $0=$ Port 7 not in the same VLAN as port 5	1

Address	Name	Description	Default (chip) Value
17	4	Port 6 inclusion $1=$ Port 6 in the same VLAN as port 5 $0=$ Port 6 not in the same VLAN as port 5	1
17	3	Port 5 inclusion $1=$ Port 5 in the same VLAN as port 5 $0=$ Port 5 not in the same VLAN as port 5	1
17	2	Port 4 inclusion $1=$ Port 4 in the same VLAN as port 5 $0=$ Port 4 not in the same VLAN as port 5	1
17	1	Port 3 inclusion $1=$ Port 3 in the same VLAN as port 5 $0=$ Port 3 not in the same VLAN as port 5	1
17	0	Port 2 inclusion $1=$ Port 2 in the same VLAN as port 5 $0=$ Port 2 not in the same VLAN as port 5	1

Port 6 VLAN Mask Register

18	7	Reserved	1
18	6	Port 8 inclusion 1 = Port 8 in the same VLAN as port 6 $0=$ Port 8 not in the same VLAN as port 6	1
18	5	Port 7 inclusion 1 = Port 7 in the same VLAN as port 6 $0=$ Port 7 not in the same VLAN as port 6	1
18	4	Port 6 inclusion $1=$ Port 6 in the same VLAN as port 6 $0=$ Port 6 not in the same VLAN as port 6	1
18	3	Port 5 inclusion $1=$ Port 5 in the same VLAN as port 6 $0=$ Port 5 not in the same VLAN as port 6	1
18	2	Port 4 inclusion 1 = Port 4 in the same VLAN as port 6 $0=$ Port 4 not in the same VLAN as port 6	1
18	1	Port 3 inclusion $1=$ Port 3 in the same VLAN as port 6 $0=$ Port 3 not in the same VLAN as port 6	1
18	0	Port 2 inclusion $1=$ Port 2 in the same VLAN as port 6 $0=$ Port 2 not in the same VLAN as port 6	1

Port 7 VLAN Mask Register

19	7	Reserved	1
19	6	Port 8 inclusion $1=$ Port 8 in the same VLAN as port 7 $0=$ Port 8 not in the same VLAN as port 7	1
19	5	Port 7 inclusion $1=$ Port 7 in the same VLAN as port 7 $0=$ Port 7 not in the same VLAN as port 7	1
19	3	Port 6 inclusion $1=$ Port 6 in the same VLAN as port 7 $0=$ Port 6 not in the same VLAN as port 7	1
19	2	Port 5 inclusion $1=$ Port 5 in the same VLAN as port 7 $0=$ Port 5 not in the same VLAN as port 7	1
19	Port 4 inclusion $1=$ Port 4 in the same VLAN as port 7 $0=$ Port 4 not in the same VLAN as port 7	1	

Address	Name	Description	Default (chip) Value
19	1	Port 3 inclusion $1=$ Port 3 in the same VLAN as port 7 $0=$ Port 3 not in the same VLAN as port 7	1
19	0	Port 2 inclusion $1=$ Port 2 in the same VLAN as port 7 $0=$ Port 2 not in the same VLAN as port 7	1

Port \& VLAN Mask Register

20	7	Reserved	1
20	6	Port 8 inclusion 1 = Port 8 in the same VLAN as port 8 $0=$ Port 8 not in the same VLAN as port 8	1
20	5	Port 7 inclusion $1=$ Port 7 in the same VLAN as port 8 $0=$ Port 7 not in the same VLAN as port 8	1
20	4	Port 6 inclusion 1 = Port 6 in the same VLAN as port 8 $0=$ Port 6 not in the same VLAN as port 8	1
20	3	Port 5 inclusion 1 = Port 5 in the same VLAN as port 8 $0=$ Port 5 not in the same VLAN as port 8	1
20	2	Port 4 inclusion $1=$ Port 4 in the same VLAN as port 8 $0=$ Port 4 not in the same VLAN as port 8	1
20	1	Port 3 inclusion $1=$ Port 3 in the same VLAN as port 8 $0=$ Port 3 not in the same VLAN as port 8	1
20	0	Port 2 inclusion $1=$ Port 2 in the same VLAN as port 8 $0=$ Port 2 not in the same VLAN as port 8	1
Reserved Register			
21	7-0	Reserved	0xFF

Port 1 VLAN Tag Insertion Value Registers

22	$7-5$	User priority [2:0]	000
22	4	CFI	0
22	$3-0$	VID [11:8]	VID [7:0]
23	$7-0$	0×0	

Port 2 VLAN Tag Insertion Value Registers

24	$7-5$	User priority [2:0]	000
24	4	CFI	VID $[11: 8]$
24	$3-0$	VID $[7: 0]$	0
25	$7-0$	0×0	

Port 3 VLAN Tag Insertion Value Registers

26	$7-5$	User priority [2:0]	000
26	4	CFI	0
26	$3-0$	VID $[11: 8]$	VID $[7: 0]$
27	$7-0$	0×0	

Address	Name	Description	Default (chip) Value

Port 4 VLAN Tag Insertion Value Registers

28	$7-5$	User priority [2:0]	000
28	4	CFI	VID $[11: 8]$
28	$3-0$	VID $[7: 0]$	0×0
29	$7-0$		0×00

Port 5 VLAN Tag Insertion Value Registers

30	$7-5$	User priority $[2: 0]$	000
30	4	CFI	0
30	$3-0$	VID [11:8]	VID [7:0]
31	$7-0$	0×0	

Port 6 VLAN Tag Insertion Value Registers

32	$7-5$	User priority [2:0]	000
32	4	CFI	VID [11:8]
32	$3-0$	VID $[7: 0]$	0×0
33	$7-0$		0×00

Port 7 VLAN Tag Insertion Value Registers

34	$7-5$	User priority $[2: 0]$	000
34	4	CFI	0
34	$3-0$	VID $[11: 8]$	VID $[7: 0]$
35	$7-0$		0×0

Port 8 VLAN Tag Insertion Value Registers

36	7-5	User priority [2:0]	000
36	4	CFI	0
36	3-0	VID [11:8]	0x0
37	7-0	VID [7:0]	0x00
Reserved Register			
38	7-0	Reserved	0x00
Diff Serv Code Point Registers			
40	7-0	DSCP[63:56]	0x00
41	7-0	DSCP[55:48]	0x00
42	7-0	DSCP[47:40]	0x00
43	7-0	DSCP[39:32]	0x00
44	7-0	DSCP[31:24]	0x00
45	7-0	DSCP[23:16	0x00
46	7-0	DSCP[15:8]	0x00
47	7-0	DSCP[7:0]	0x00

Address	Name	Description	Default (chip) Value
Station MAC Address Registers (all ports - MAC control frames only)			
48	$7-0$	MAC address [47:40]	0×00
49	$7-0$	MAC address [39:32]	0×40
50	$7-0$	MAC address [31:24]	0×05
51	$7-0$	MAC address [23:16]	MAC address [15:8]
52	$7-0$	$7-0$	MAC address [7:0]

Note: The MAC address is reset to the value in the above table, but can set to any value via the EEPROM interface. This MAC address is used as the source address in MAC control frames that execute flow control between link peers.

Absolute Maximum Ratings ${ }^{(1)}$

Operating Ratings ${ }^{(2)}$

Supply Voltage
(VDD_RX, VDD_TX, VDD_RCV, VDD,
VDD_PLLTX) +2.0 V to +2.3 V
(VDDIO)+2.0V to +2.3 V or +3.0 V to +3.6 V
Ambient Temperature (TA) $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Package Thermal Resistance ${ }^{(3)}$
PQFP (θ_{JA}) No Air Flow $42.91^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ${ }^{(4)}$
VDD $=2.0 \mathrm{~V}$ to $2.3 \mathrm{~V} ; \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
Vdd	Supply Voltage		2.00	2.10	2.30	V
100BaseTX Operation						
	100BaseTX (Total)			0.61		A
IDX	100BaseTX (Transmitter)			0.35		A
IDA	100BaseTX (Analog)			0.18		A
IDD	100BaseTX (Digital)			0.08		A
10BaseTX Operation-All Ports 100\% Utilization						
	10BaseTX (Total)			0.90		A
IDX	10BaseTX (Transmitter)			0.72		A
IdDC	10BaseTX (Analog)			0.11		A
Iddio	10BaseTX (Digital)			0.07		A
TTL Inputs						
VIH	Input High Voltage		$\begin{gathered} \hline \text { (1/2 VDDIO) } \\ +0.4 \mathrm{v} \end{gathered}$			V
VIL	Input Low Voltage				(1/2 Vddio) -0.4	V
IIN	Input Current	$\mathrm{VIN}=\mathrm{GND} \sim \mathrm{VDD}$	-10		10	$\mu \mathrm{A}$

TTL Outputs

VOH	Output High Voltage	IOH $=-4 \mathrm{~mA}$	VDDIO -0.4			
Vol	Output Low Voltage	IOL $=4 \mathrm{~mA}$			0.4	
\|IOz		Output Tri-State Leakage			V	

100BaseTX Transmit (measured differentially after 1:1 transformer)

Vo	Peak Differential Output Voltage	50Ω from each output to $V_{D D}$	0.95		1.05
V ImB, tt	Output Voltage Imbalance	Rise/Fall Time	50Ω from each output to $V_{D D}$		
	Rise/Fall Time Imbalance		3		5

Symbol	Parameter	Condition	Min	Typ	Max	Units
	Duty Cycle Distortion				± 0.5	ns
	Overshoot				5	\%
Vset	Reference Voltage of ISET			0.75		V
	Output Jitters	Peak-to-peak		0.7	1.4	ns
10BaseT Receive						
VsQ	Squelch Threshold	5 MHz square wave		400		mV
10BaseT Transmit (measured differentially after 1:1 transformer) VDDAT= 2.5V						
Vp	Peak Differential Output Voltage	50Ω from each output to $V_{D D}$		2.3		V
	Jitters Added	50Ω from each output to $V_{\text {DD }}$			± 3.5	V
	Rise/Fall Times			28		ns

Notes:

1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating. Unused inputs must always be tied to an appropriate logic voltage level (Ground to VDD).
3. No HS (heat spreader) in package.
4. Specification for packaged product only.

Timing Diagrams

SCL

SDA

Figure 2. EEPROM Input Timing Diagram

Symbol	Parameter	Min	Typ	Max	Units
$t_{\text {CYC }}$	Clock Cycle		16384		ns
t_{S}	Set-Up Time	20			ns
t_{H}	Hold Time	20		ns	

Table 4. EEPROM Timing Parameters

Figure 3. EEPROM Output Timing Diagram

Symbol	Parameter	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{CYc}}$	Clock Cycle		16384		ns
t_{Ov}	Set-Up Time	4096	4112	4128	ns

Table 5. EEPROM Output Timing Parameters

Reference Circuit

See "I/O Description" section for pull-up/pull-down and float information.

Reference circuits for unmanaged programming through LED ports Note: For brighter LED operation use VDD-IO $=3.3 \mathrm{~V}$

Figure 4. Unmanaged Programming Circuit

4B/5B Coding

In 100BaseTX and 100BaseFX the data and frame control are encoded in the transmitter (and decoded in the receiver) using a $4 \mathrm{~B} / 5 \mathrm{~B}$ code. The extra code space is required to encode extra control (frame delineation) points. It is also used to reduce run length as well as supply sufficient transitions for clock recovery. The table below provides the translation for the 4B/5B coding.

Code Type	4B Code	5B Code	Value
Data	0000	11110	Data value 0
	0001	01001	Data value 1
	0010	10100	Data value 2
	0011	10101	Data value 3
	0100	01010	Data value 4
	0101	01011	Data value 5
	0110	01110	Data value 6
	0111	01111	Data value 7
	1000	10010	Data value 8
	1001	10011	Data value 9
	1010	10110	Data value A
	1011	10111	Data value B
	1100	11010	Data value C
	1101	11011	Data value D
	1110	11100	Data value E
	1111	11101	Data value F
Control	Not defined	11111	Idle
	0101	11000	Start delimiter part 1
	0101	10001	Start delimiter part 2
	Not defined	01101	End delimiter part 1
	Not defined	00111	End delimiter part 2
	Not defined	00100	Transmit error
Invalid	Not defined	00000	Invalid code
	Not defined	00001	Invalid code
	Not defined	00010	Invalid code
	Not defined	00011	Invalid code
	Not defined	00101	Invalid code
	Not defined	00110	Invalid code
	Not defined	01000	Invalid code
	Not defined	01100	Invalid code
	Not defined	10000	Invalid code
	Not defined	11001	Invalid code

Table 6. 4B/5B Coding

MLT3 Coding

For 100BaseTX operation the NRZI (Non-Return to Zero Invert on ones) signal is line coded as MLT3. The net result of using MLT3 is to reduce the EMI (Electro Magnetic Interference) of the signal over twisted pair media. In NRZI coding, the level changes from high to low or low to high for every " 1 " bit. For a " 0 " bit there is no transition. MLT3 line coding transitions through three distinct levels. For every transition of the NRZI signal the MLT3 signal either increments or decrements depending on the current state of the signal. For instance if the MLT3 level is at its lowest point the next two NRZI transitions will change the MLT3 signal initially to the middle level followed by the highest level (second NRZI transition). On the next NRZI change, the MLT3 level will decrease to the middle level. On the following transition of the NRZI signal the MLT3 level will move to the lowest level where the cycle repeats. The diagram below describes the level changes. Note that in the actual 100BaseTX circuit there is a scrambling circuit and that scrambling is not shown in this diagram.

Figure 5. MLT3 Coding

MAC Frame for 802.3

The MAC (Media Access Control) fields are described in the table below:

Field	Octect Length	Description
Preamble/SFD	8	Preamble and Start of Frame Delimiter
DA	6	48-bit Destination MAC Address
SA	6	48-bit Source MAC Address
802.1p tag	4	VLAN and priority tag (optional)
Length	2	Frame Length
Protocol/Data	46 to 1500	Higher Layer Protocol and Frame Data
Frame CRC	4	32-bit Cyclical Redundancy Check
ESD	1	End of Stream Delimiter
Idle	Variable	Inter Frame Idles

Table 7. MAC Frame for 802.3

Selection of Isolation Transformer ${ }^{(1)}$

One simple 1:1 isolation transformer is needed at the line interface. An isolation transformer with integrated commonmode choke is recommended for exceeding FCC requirements. The following table gives recommended transformer characteristics.

Characteristics Name	Value	Test Condition
Turns Ratio	$1 \mathrm{CT}: 1 \mathrm{CT}$	
Open-Circuit Inductance (min.)	$350 \mu \mathrm{H}$	$100 \mathrm{mV}, 100 \mathrm{KHz}, 8 \mathrm{~mA}$
Leakage Inductance (max.)	$0.4 \mu \mathrm{H}$	1 MHz (min.)
Inter-Winding Capacitance (max.)	12 pF	
D.C. Resistance (max.)	0.9Ω	
Insertion Loss (max.)	1.0 dB	0 MHz to 65 MHz
HIPOT (min.)	1500 Vrms	

Note:

1. The IEEE 802.3 u standard for 100 BaseTX assumes a transformer loss of 0.5 dB . For the transmit line transformer, insertion loss of up to 1.3 dB can be compensated by increasing the line drive current by means of reducing the ISET resistor value.

Selection of Reference Oscillator/Crystal

An oscillator or crystal with the following typical characteristics is recommended.

Characteristics Name	Value	Test Condition
Frequency	25.00000	MHz
Maximum Frequency Tolerance	± 100	ppm
Maximum Jitter	150	$\mathrm{ps}(\mathrm{pk}-\mathrm{pk})$

The following transformer vendors provide compatible magnetic parts for Micrel's device:

Type	4-Port Integrated		Single-Port	
	Vendor	Part	Vendor	Part
	Pulse	H1164	Pulse	H1102

Table 8. Qualified Magnetics Lists

Package Information

NOTES :

1. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE - $\mathrm{H}-$
2. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 mm TOTAL $\mathbb{I N}$ EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
3. THE DIAGRAMS DO NOT REPRESNET THE ACTUAL PIN COUNT.

BOTTOM VIEW

DETAILED VIEW

SYMBOL	millimeter			$\mathrm{INCH}^{\text {che }}$		
	MIN.	NOM.	max.	MIN.	NOM.	max.
A	-	-	3.40	-	-	0.134
A1	0.25	-	-	0.010	-	-
A2	2.50	2.72	2.90	0.098	0.107	0.114
D	23.20 BASIC			0.913 BASIC		
D1	20.00 BASIC			0.787 BASIC		
E	17.20 BASIC			0.677 BASIC		
E1	14.00 BASIC			0.551 BASIC		
R2	0.13	-	0.30	0.005	-	0.012
R1	0.13	-	-	0.005	-	-
θ	0 '	-	7	0	-	7
θ_{1}	0^{*}	-	-	0°	-	-
θ_{2}, θ_{3}	15' REF			15' REF		
C	0.11	0.15	0.23	0.004	0.006	0.009
L	0.73	0.88	1.03	0.029	0.035	0.041
L_{1}	1.60 REF			0.063 REF		
S	0.20	-	-	0.008	-	
b	0.170	0.200	0.270	0.007	0.008	0.011
e	0.50 BSC.			0.020 BSC		
D2	18.50			0.728		
E2	12.50			0.492		
TOLERANCES OF FORM AND POSITION						
aoo	0.20			0.008		
bbb	0.20			0.008		
ccc	0.08			0.003		
ddd	0.08			0.003		

COTROL DIMENSIONS ARE IN MILLIMETERS.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2003 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Ethernet ICs category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
EZFM6324A S LKA5 EZFM6364A S LKA7 12200BS23MM EZFM5224A S LKA3 VSC8522XJQ-02 WGI219LM SLKJ3 JL82599EN S R1ZS EZFM6348A S LKA6 WGI219V SLKJ5 BCM84793A1KFSBG BCM56680B1KFSBLG BCM53402A0KFSBG

BCM56960B1KFSBG BCM56842A1KFTBG BCM56450B1KFSBG EZX557AT S LKW4 RTL8211FS-CG CH395L VSC8562XKS-14
BCM56864A1IFSBG WGI219LM SLKJ2 KSZ8462FHLI KSZ8841-16MVLI KSZ8893MQL VSC8244XHG ADIN2111BCPZ
ADIN2111CCPZ-R7 FIDO2100BGA128IR0 FIDO5210CBCZ FIDO5210BBCZ FIDO5110CBCZ FIDO5200CBCZ ADIN1110BCPZ ADIN1110CCPZ ADIN1100BCPZ ADIN1110CCPZ-R7 ADIN1100CCPZ-R7 DM9000EP DM9161AEP HG82567LM S LAVY LAN9210ABZJ LAN9221-ABZJ LAN9221I-ABZJ LAN9211-ABZJ 1893CKLF EZFM4105F897C S LKAM EZFM4224F1433E S LKAD EZFM4224F1433I S LKAE FBFM2112F897C S LJLS JL82576GB S LJBM

[^0]: Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000•http://www.micrel.com

