LM2574

52kHz Simple 0.5A Buck Regulator

General Description

The LM2574 family is a series of easy to use fixed and adjustable switching voltage regulators. The LM2574 contains all of the active circuitry necessary to construct a stepdown (buck) switching regulator and requires a minimum of external components.

The LM2574 is available in 3.3 V and 5 V fixed output versions, or an adjustable version with an output voltage range of 1.23 V to 37 V . Output voltage is guaranteed to $\pm 4 \%$ for specified input and load conditions.
The LM2574 can supply 0.5A while maintaining excellent line and load regulation. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.
An external shutdown connection selects operating or standby modes. Standby current is less than $200 \mu \mathrm{~A}$.
Heat sinks are generally unnecessary due the regulator's high efficiency. Adequate heat transfer is usually provided by soldering all package pins to a printed circuit board.
The LM2574 includes internal frequency compensation and an internal 52 kHz fixed frequency oscillator guaranteed to $\pm 10 \%$ of the frequency.

Circuits constructed around the LM2574 use a standard series of inductors which are available from several different manufacturers.
All support documentation can be found on Micrel's web site at www.micrel.com.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output 1.23 V to $37 \mathrm{~V} \pm 4 \%$ max. over line and load conditions.
- Guaranteed 0.5 A output current
- Wide input voltage, up to 40 V
- Thermal shutdown and current limit protection
- Requires only 4 external components.
- Shutdown capability (standby mode)
- Low power standby mode < 200رA Typical
- High-efficiency
- 52 kHz fixed frequency internal oscillator
- Uses standard inductors

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (buck-boost)

Typical Application

Figure 1. Fixed Output Regulator Circuit

Ordering Information

Part Number		Junction Temp. Range	Package	
Standard	Pb-Free		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
LM2574BN	LM2574YN		8-pin Plastic DIP	
LM2574-3.3BN	LM2574-3.3YN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin Plastic DIP	
LM2574-5.0BN	LM2574-5.0YN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin Plastic DIP	

Pin Configuration

8-Pin DIP (N)

Absolute Maximum Ratings ${ }^{(1)}$
Maximum Supply Voltage
LM2574 \qquad 45V

OFF Pin Input Voltage $-0.3 \mathrm{~V} \leq \mathrm{V} \leq \mathrm{V}_{\text {IN }}$
Output Voltage to Ground (Steady State)......................-1V
Power Dissipation \qquad Internally Limited
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{S}}\right) \ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Minimum ESD Rating
\qquad
FB Pin 1 kV

Operating Ratings ${ }^{(1)}$

Supply Voltage
LM2574

Temperature Range

LM2574... $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right.$.
$150^{\circ} \mathrm{C}$

Electrical Characteristics ${ }^{(2)}$

Specifications with standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, and $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$.

Symbol	Parameter	Condition	Min	Typ	Max	Units
System Parameters, Adjustable Regulators ${ }^{(3)}$, Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	1.217	1.230	1.243	V
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage (LM2574)	$\begin{aligned} & 0.1 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 0.5 \mathrm{~A}, 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.193 \\ & 1.180 \end{aligned}$	1.230	$\begin{aligned} & 1.267 \\ & 1.280 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		78		\%
System Parameters, 3.3V Regulators ${ }^{(3)}$, Test Circuit Figure 3						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$	3.234	3.3	3.366	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage (LM2574-3.3)	$\begin{aligned} & 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.168 \\ & 3.135 \end{aligned}$	3.3	$\begin{aligned} & 3.432 \\ & 3.465 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}$		73		\%
System Parameters, 5V Regulators ${ }^{(3)}$, Test Circuit Figure 3						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	4.900	5.0	5.100	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage (LM2574-5.0)	$\begin{aligned} & 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}, 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.800 \\ & 4.750 \end{aligned}$	5.0	$\begin{aligned} & 5.200 \\ & 5.250 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{V}} \\ & \mathrm{~V} \end{aligned}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		78		\%

Notes:

1. "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. "Operating Ratings" indicate for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see "Electrical Characteristics."
2. All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via testing.
3. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in Figure 1 test circuit, system performance will be shown in system parameters section of "Electrical Characteristics."

Electrical Characteristics

Symbol	Parameter	Condition	Min	Typ	Max	Units
Device Parameters, Adjustable Regulator						
I_{B}	Feedback Bias Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$

Device Parameters, Fixed and Adjustable Regulators

f_{0}	Oscillator Frequency	Note 8	$\begin{aligned} & 47 \\ & 42 \end{aligned}$	52	$\begin{aligned} & 58 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline \mathrm{kHz} \\ & \mathrm{kH} 7 \end{aligned}$
$\overline{\mathrm{V}_{\text {SAT }}}$	Saturation Voltage	$\mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}^{(4)}$		0.8	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\overline{\text { DC }}$	Max Duty Cycle (ON)	Note 5	93	98		\%
${ }_{\mathrm{CL}}$	Current Limit	Peak Current, $\mathrm{t}_{\mathrm{ON}} \leq 3 \mu \mathrm{~s}^{(4)}$	$\begin{gathered} \hline 0.7 \\ 0.65 \end{gathered}$	1.0	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	A
I_{L}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \text {, Note 6, Output }=0 \mathrm{~V} \\ & \text { Note 6, Output }=-1 \mathrm{~V} \end{aligned}$		7.5	$\begin{gathered} 2 \\ 30 \end{gathered}$	mA
I_{Q}	Quiescent Current	Note 6		5	10	mA
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current	ON/OFF Pin = 5V (OFF)		50	200	$\mu \mathrm{A}$
$\theta_{\text {JA }}$	Thermal Resistance	N Package, Junction to Ambient ${ }^{(7)}$		85		${ }^{\circ} \mathrm{C} / \mathrm{W}$

On/Off Control, Fixed and Adjustable Regulators Test Circuit Figures 2, 3

V_{IH}	ON/OFF Input Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	2.2	1.4	
$\mathrm{~V}_{\mathrm{IL}}$	ON/OFF Input Level	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		V	
I_{IH}	ON/OFF Logic Current	ON/OFF = 5V (OFF)	1.2	1.0	V
I_{IL}	ON/OFF Logic Current	ON/OFF $=0 \mathrm{~V}(\mathrm{ON})$		4	30

Notes:

4. Output (pin 2) sourcing current. No diode, inductor, or capacitor connected to input.
5. Feedback (pin 4) removed from output and connected to $0 V$.
6. Feedback (pin 4) removed from output and connected to 12 V to force the output transistor OFF.
7. Junction-to-ambient thermal resistance with approximately 1 square inches of PC board copper surrounding the leads.

Test Circuit

Figure 2. Adjustable Regulator Test Circuit

Figure 3. Fixed Regulator Test Circuit

Typical Characteristics (Circuit of Figure 1)

Switch
Saturation Voltage

Typical Performance Characteristics (continued)

* Adjustable version only

Block Diagrams

Package Information

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify

Micrel for any damages resulting from such use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB MIC45116-1YMP-
T1 KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUXCE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC

