

52kHz Simple 0.5A Buck Regulator

General Description

The LM2574 family is a series of easy to use fixed and adjustable switching voltage regulators. The LM2574 contains all of the active circuitry necessary to construct a stepdown (buck) switching regulator and requires a minimum of external components.

The LM2574 is available in 3.3V and 5V fixed output versions, or an adjustable version with an output voltage range of 1.23V to 37V. Output voltage is guaranteed to $\pm 4\%$ for specified input and load conditions.

The LM2574 can supply 0.5A while maintaining excellent line and load regulation. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

An external shutdown connection selects operating or standby modes. Standby current is less than 200µA.

Heat sinks are generally unnecessary due the regulator's high efficiency. Adequate heat transfer is usually provided by soldering all package pins to a printed circuit board.

The LM2574 includes internal frequency compensation and an internal 52kHz fixed frequency oscillator guaranteed to ±10% of the frequency.

Circuits constructed around the LM2574 use a standard series of inductors which are available from several different manufacturers.

All support documentation can be found on Micrel's web site at www.micrel.com.

Features

- 3.3V, 5V, 12V, and adjustable output versions
- Adjustable version output 1.23V to 37V ±4% max. over line and load conditions.
- Guaranteed 0.5A output current
- · Wide input voltage, up to 40V
- Thermal shutdown and current limit protection
- Requires only 4 external components.
- Shutdown capability (standby mode)
- Low power standby mode < 200µA Typical
- High-efficiency
- · 52kHz fixed frequency internal oscillator
- · Uses standard inductors

Applications

- Simple high-efficiency step-down (buck) regulator
- · Efficient pre-regulator for linear regulators
- · On-card switching regulators
- Positive to negative converter (buck-boost)

Typical Application

Figure 1. Fixed Output Regulator Circuit

Ordering Information

Part Number		Junction			
Standard	Pb-Free	Temp. Range	Package		
LM2574BN	LM2574YN	–40°C to +85°C	8-pin Plastic DIP		
LM2574-3.3BN	LM2574-3.3YN	–40°C to +85°C	8-pin Plastic DIP		
LM2574-5.0BN	LM2574-5.0YN	-40°C to +85°C	8-pin Plastic DIP		

Pin Configuration

Absolute Maximum Ratings⁽¹⁾

7 110 0 0 1 11 11 11 11 11 11 11 11 11 11
Maximum Supply Voltage
LM257445V
OFF Pin Input Voltage –0.3V ≤ V ≤ V _{IN}
Output Voltage to Ground (Steady State)1V
Power DissipationInternally Limited
Storage Temperature Range (T _S)–65°C to +150°C
Minimum ESD Rating
$C = 100pF, R = 1.5k\Omega$
FB Pin1kV
Lead Temperature (soldering, 10 sec.) 260°C

Operating Ratings⁽¹⁾

Supply Voltage	
LM25744	1 0\
Temperature Range	
LM2574 40° C \leq T _J \leq +128	5°C
Maximum Junction Temperature (T _{.1})°C

Electrical Characteristics(2)

Specifications with standard typeface are for T_J = 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, V_{IN} = 12V, and I_{LOAD} = 100mA.

Symbol	Parameter	Condition	Min	Тур	Max	Units
System Para	imeters, Adjustable Regulators ⁽³⁾ , Te	st Circuit <i>Figur</i> e 2				
V_{OUT}	Feedback Voltage	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 5V	1.217	1.230	1.243	V
V _{OUT}	Feedback Voltage (LM2574)	$0.1A \le I_{LOAD} \le 0.5A, 7V \le V_{IN} \le 40V,$ $V_{OUT} = 5V$	1.193 1.180	1.230	1.267 1.280	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 5V		78		%
System Para	imeters, 3.3V Regulators ⁽³⁾ , Test Circu	uit <i>Figur</i> e 3				
V_{OUT}	Output Voltage	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 3.3V	3.234	3.3	3.366	V
V _{OUT}	Output Voltage (LM2574-3.3)	$0.1A \le I_{LOAD} \le 0.5A, 4.75V \le V_{IN} \le 40V,$ $V_{OUT} = 3.3V$	3.168 3.135	3.3	3.432 3.465	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 0.1A		73		%
System Para	imeters, 5V Regulators ⁽³⁾ , Test Circuit	Figure 3	•			
V_{OUT}	Output Voltage	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 5V	4.900	5.0	5.100	V
V _{OUT}	Output Voltage (LM2574-5.0)	$0.1A \le I_{LOAD} \le 0.5A, 7V \le V_{IN} \le 40V,$ $V_{OUT} = 5V$	4.800 4.750	5.0	5.200 5.250	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 5V		78		%

Notes:

- 1. "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. "Operating Ratings" indicate for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see "Electrical Characteristics."
- 2. All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via testing.
- External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.
 When the LM2574 is used as shown in Figure 1 test circuit, system performance will be shown in system parameters section of "Electrical Characteristics."

Electrical Characteristics

Device Para	meters, Adjustable Regulator		I	Тур	Max	Units
	inieters, Aujustable Negulatoi					
I _B	Feedback Bias Current	V _{OUT} = 5V		50	100 500	nA nA
Device Para	meters, Fixed and Adjustable Reg	gulators				
f _o	Oscillator Frequency	Note 8	47 42	52	58 63	kHz kHz
V _{SAT}	Saturation Voltage	I _{OUT} = 0.5A ⁽⁴⁾		0.8	1.2 1.4	V
DC	Max Duty Cycle (ON)	Note 5	93	98		%
I _{CL}	Current Limit	Peak Current, t _{ON} ≤ 3μs ⁽⁴⁾	0.7 0.65	1.0	1.6 1.8	А
I _L	Output Leakage Current	V _{IN} , Note 6 , Output = 0V Note 6 , Output = -1V		7.5	2 30	mA
$\overline{I_Q}$	Quiescent Current	Note 6		5	10	mA
I _{STBY}	Standby Quiescent Current	ON/OFF Pin = 5V (OFF)		50	200	μA
θ_{JA}	Thermal Resistance	N Package, Junction to Ambient ⁽⁷⁾		85		°C/W
On/Off Con	rol, Fixed and Adjustable Regulat	ors Test Circuit Figures 2, 3				
V _{IH}	ON/OFF Input Level	V _{OUT} = 0V	2.2 2.4	1.4		V
V _{IL}	ON/OFF Input Level	V _{OUT} = 5V		1.2	1.0 0.8	V
I _{IH}	ON/OFF Logic Current	ON/OFF = 5V (OFF)		4	30	μA
I _{IL}	ON/OFF Logic Current	ON/OFF = 0V (ON)		0.01	10	μA

Notes:

- 4. Output (pin 2) sourcing current. No diode, inductor, or capacitor connected to input.
- 5. Feedback (pin 4) removed from output and connected to 0V.
- 6. Feedback (pin 4) removed from output and connected to 12V to force the output transistor OFF.
- 7. Junction-to-ambient thermal resistance with approximately 1 square inches of PC board copper surrounding the leads.

Test Circuit

Figure 2. Adjustable Regulator Test Circuit

Figure 3. Fixed Regulator Test Circuit

Typical Characteristics (Circuit of Figure 1)

Typical Performance Characteristics (continued)

Block Diagrams

Package Information

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB MIC45116-1YMPT1 KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6#TR LTC3803ES6#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUXCE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC