LM2576

52kHz Simple 3A Buck Regulator

General Description

The LM2576 series of monolithic integrated circuits provide all the active functions for a step-down (buck) switching regulator. Fixed versions are available with a $3.3 \mathrm{~V}, 5 \mathrm{~V}$, or 12 V fixed output. Adjustable versions have an output voltage range from 1.23 V to 37 V . Both versions are capable of driving a 3A load with excellent line and load regulation.
These regulators are simple to use because they require a minimum number of external components and include internal frequency compensation and a fixed-frequency oscillator.
The LM2576 series offers a high efficiency replacement for popular three-terminal adjustable linear regulators. It substantially reduces the size of the heat sink, and in many cases no heat sink is required.
A standard series of inductors available from several different manufacturers are ideal for use with the LM2576 series. This feature greatly simplifies the design of switch-mode power supplies.
The feedback voltage is guaranteed to $\pm 2 \%$ tolerance for adjustable versions, and the output voltage is guaranteed to $\pm 3 \%$ for fixed versions, within specified input voltages and output load conditions. The oscillator frequency is guaranteed to $\pm 10 \%$. External shutdown is included, featuring less than $200 \mu \mathrm{~A}$ standby current. The output switch includes cycle-bycycle current limiting and thermal shutdown for full protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Voltage over specified line and load conditions:

Fixed version: $\pm 3 \%$ max. output voltage
Adjustable version: $\pm 2 \%$ max. feedback voltage

- Guaranteed 3A output current
- Wide input voltage range:

4 V to 40 V

- Wide output voltage range
1.23 V to 37 V
- Requires only 4 external components
- 52 kHz fixed frequency internal oscillator
- Low power standby mode I_{Q} typically < $200 \mu \mathrm{~A}$
- 80% efficiency (adjustable version typically $>80 \%$)
- Uses readily available standard inductors
- Thermal shutdown and current limit protection
- 100\% electrical thermal limit burn-in

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (inverting Buck-Boost)
- Isolated Flyback Converter using minimum number of external components
- Negative Boost Converter

Typical Applications

Note: Pin numbers are for TO-220 Package

Note: Pin numbers are for TO-220 Package
$V_{\text {OUT }}=1.23\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$

Fixed Regulator in Typical Application

Ordering Information

Part Number ${ }^{\ddagger}$		Range	Temperature Package
Standard	RoHS Compliant**		
LM2576BT*†	LM2576WT* ${ }^{\text {* }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
LM2576-3.3BT ${ }^{\dagger}$	LM2576-3.3WT ${ }^{\dagger}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
LM2576-5.0BT ${ }^{\dagger}$	LM2576-5.0WT ${ }^{\dagger}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
LM2576-12BT ${ }^{\dagger}$	LM2576-12WT ${ }^{\dagger}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-220-5
LM2576BU*	LM2576WU*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5
LM2576-3.3BU	LM2576-3.3WU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5
LM2576-5.0BU	LM2576-5.0WU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5
LM2576-12BU	LM2576-12WU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-263-5

* Adjustable output regulators.
**RoHS compliant with "hot-melting solder" exemption.
${ }^{\dagger}$ Contact factory for bent or staggered leads option.

Pin Configurations

Absolute Maximum Ratings (Note 1)

Maximum Supply Voltage
ON/OFF Pin Input Voltage
Output Voltage to Ground (Steady State)
Power Dissipation
Storage Temperature Range
Minimum ESD Rating
$C=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$
FB Pin
Lead Temperature (soldering, 10 sec .)
Maximum Junction Temperature

Operating Ratings

$\begin{array}{lr}\text { Temperature Range } & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+125^{\circ} \mathrm{C} \\ \text { Supply Voltage } & 40 \mathrm{~V}\end{array}$

Electrical Characteristics Specifications with standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{LOAD}}=500 \mathrm{~mA}$.

Symbol	Parameter	Conditions	Typ	LM2576	Limit (Note 2)

SYSTEM PARAMETERS, ADJUSTABLE REGULATORS (Note 3) Test Circuit Figure 1

$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	1.230	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	V $\mathrm{V}(\min)$ $\mathrm{V}(\max)$
$\overline{V_{\text {OUT }}}$	Feedback Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	82		\%

SYSTEM PARAMETERS, 3.3V REGULATORS (Note 3) Test Circuit Figure 1

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V} \end{aligned}$	3.3	$\begin{aligned} & 3.234 \\ & 3.366 \end{aligned}$	V (min) V (max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576-3.3	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, 6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V} \end{aligned}$	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	$\mathrm{V}(\min)$ V(max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	75		\%

SYSTEM PARAMETERS, 5V REGULATORS (Note 3) Test Circuit Figure 1

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$ $\mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	5.0	4.900	V $\mathrm{V}(\mathrm{min})$ $\mathrm{V}(\mathrm{max})$
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$	5.0	5.100	V
	LM2576-5.0	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		$4.800 / 4.750$	$\mathrm{~V}(\mathrm{~min})$
η				$5.200 / 5.250$	$\mathrm{~V}(\mathrm{max})$

SYSTEM PARAMETERS, 12V REGULATORS (Note 3) Test Circuit Figure 1

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V} \end{aligned}$	12	$\begin{aligned} & 11.760 \\ & 12.240 \end{aligned}$	
$\mathrm{V}_{\text {OUT }}$	Output Voltage LMLM2576-12	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V} \end{aligned}$	12	$\begin{aligned} & 11.520 / 11.400 \\ & 12.480 / 12.600 \end{aligned}$	V (min) $\mathrm{V}(\max)$
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

Electrical Characteristics (continued)

Symbol	Parameter	Conditions	Typ	LM2576	Units
		Limit		(Limits)	

DEVICE PARAMETERS, ADJUSTABLE REGULATOR

I_{B}	Feedback Bias Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	50	$100 / 500$	nA

DEVICE PARAMETERS, FIXED and ADJUSTABLE REGULATORS

f_{O}	Oscillator Frequency		52	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}($ Note 4)	1.4	1.8/2.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\max) \end{gathered}$
DC	Max Duty Cycle (ON)	(Note 5)	98	93	$\begin{gathered} \% \\ \%(\min) \end{gathered}$
${ }^{\text {CL }}$	Current Limit	Peak Current, $\mathrm{t}_{\mathrm{ON}} \leq 3 \mu \mathrm{~s}$ (Note 4)	5.8	$\begin{aligned} & 4.2 / 3.5 \\ & 6.9 / 7.5 \end{aligned}$	
I_{L}	Output Leakage Current	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V},(\text { Note } 6), & \text { Output }=0 \mathrm{~V} \\ \text { Output }=-1 \mathrm{~V} \\ \text { (Note 6) } & \text { Output }=-1 \mathrm{~V} \end{array}$	7.5	2 30	$\begin{gathered} \mathrm{mA}(\max) \\ \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
I_{Q}	Quiescent Current	(Note 6)	5	10	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current	ON/OFF Pin = 5V (OFF)	50	200	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{max}) \end{gathered}$
$\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Thermal Resistance	T,U Package, Junction to Ambient (Note 7) T,U Package, Junction to Ambient (Note 8) T,U Package, Junction to Case	$\begin{gathered} 65 \\ 45 \\ 2 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics (continued)

Symbol	Parameter	Conditions	Typ	LM2576	Units
		Limit			

ON/OFF CONTROL, FIXED and ADJUSTABLE REGULATORS Test Circuit Figure 1

$\mathrm{V}_{\text {IH }}$ $\mathrm{V}_{\text {IL }}$	ON/OFF Pin Logic Input Level	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \hline 2.2 / 2.4 \\ & 1.0 / 0.8 \end{aligned}$	$V(\min)$ V(max)
I_{IH}	ON /OFF Pin Logic Current	ON /OFF Pin = 5V (OFF)	4	30	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \end{gathered}$
I_{IL}		ON/OFF Pin = OV (ON)	0.01	10	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \end{gathered}$

Note 1: Absolute Maximum Rating indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extreme are guaranteed via testing.
Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2576/LM1576 is used as shown in Figure 1 test circuit, system performance will be shown in system parameters section of Electrical Characteristics.
Note 4: Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output.
Note 5: Feedback (pin 4) removed from output and connected to 0 V .
Note 6: Feedback (pin 4) removed from output and connected to 12 V to force the output transistor OFF.
Note 7: Junction to ambient thermal resistance (no external heat sink) for the 5-lead TO-220 package mounted vertically, with $1 / 2^{\prime \prime}$ leads in a socket, or on PC board with minimum copper area.
Note 8: Junction to ambient thermal resistance (no external heat sink) for the 5-lead TO-220 package mounted vertically, with $1 / 4$ " leads soldered to PC board containing approximately 4 square inches of copper area surrounding the leads.
Note 9: Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads. Additional copper will lower thermal resistance further.

Typical Performance Characteristics

Typical Performance Characteristics (continued) (Circuit of Figure 1)

Current Limit

Minimum Operating Voltage

Switch
Saturation Voltage

Line Regulation

Efficiency

Feedback Pin Current

$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}=45 \mathrm{~V}$
A: Output pin voltage $50 \mathrm{~V} /$ div
: Output pin current 2A/div
C : Inductor current $2 \mathrm{~A} /$ div
D: Output ripple voltage $50 \mathrm{mV} / \mathrm{div}$., AC coupled
Horizontal Time Base: $5 \mu \mathrm{~S} / \mathrm{div}$

Test Circuits and Layout Guidelines

Note: Pin numbers are for TO-220 Package
Figure 1.
As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal stray inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. Single-point grounding (as indicated) or ground plane construction should be used for best results.

Block Diagrams

Note: Pin numbers are for the TO-220 package

Fixed Regulator
Adjustable Regulator

Package Information

5-Lead TO-220 (T)

5-Lead TO-263 (U)

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P MP1470HGJ-P

