0.5A MOSFET Driver With Low Threshold Input And Enable

Features

- High Peak Output Current: 0.5A (typical)
- Wide Input Supply Voltage Operating Range:
- 4.5 V to 18 V
- Low Shoot-Through/Cross-Conduction Current in Output Stage
- High Capacitive Load Drive Capability:
- 1000 pF in 40 ns (typical)
- Short Delay Times: $33 \mathrm{~ns}\left(\mathrm{t}_{\mathrm{D} 1}\right), 24 \mathrm{~ns}\left(\mathrm{t}_{\mathrm{D} 2}\right)$ (typical)
- Low Supply Current: $375 \mu \mathrm{~A}$ (typical)
- Low Voltage Threshold Input and Enable with Hysteresis
- Latch-Up Protected: Withstands 500 mA Reverse Current
- Space-Saving Packages:
- 6L SOT-23
- 6L 2×2 DFN

Applications

- Switch Mode Power Supplies
- Pulse Transformer Drive
- Line Drivers
- Level Translator
- Motor and Solenoid Drive

General Description

The MCP14A0051/2 devices are high-speed MOSFET drivers that are capable of providing up to 0.5 A of peak current while operating from a single 4.5 V to 18 V supply. The inverting (MCP14A0051) or non-inverting (MCP14A0052) single-channel output is directly controlled from either TTL or CMOS (2 V to 18 V) logic. These devices also feature low shoot-through current, matched rise and fall times, and short propagation delays which make them ideal for high switching frequency applications.
The MCP14A0051/2 family of devices offer enhanced control with Enable functionality. The active-high Enable pin can be driven low to drive the output of the MCP14A0051/2 low regardless of the status of the Input pin. An integrated pull-up resistor allows the user to leave the Enable pin floating for standard operation.
Additionally, the MCP14A0051/2 devices feature separate ground pins ($\mathrm{A}_{\mathrm{GND}}$ and GND), allowing greater noise isolation between the level-sensitive Input/ Enable pins and the fast, high-current transitions of the push-pull output stage.
These devices are highly latch-up resistant under any condition within their power and voltage ratings. They can accept up to 500 mA of reverse current being forced back into their outputs without damage or logic upset. All terminals are fully protected against electrostatic discharge (ESD) up to 1.75 kV (HBM) and 100V (MM).

Package Types

MCP14A0051/2

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \dagger
V_{DD}, Supply Voltage... +20 V
V_{IN}, Input Voltage........... $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right.$) to (GND -0.3 V)
V_{EN}, Enable Voltage....... $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$ to (GND -0.3 V)
Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$)
6L SOT-23... 0.52 W
6L 2×2 DFN.. 1.09 W
ESD Protection on all Pins
1.75 kV (HBM)
.100V (MM)
\dagger Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.						
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Input						
Input Voltage Range	$\mathrm{V}_{\text {IN }}$	GND - 0.3V	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Logic '1' High Input Voltage	V_{IH}	2.0	1.6	-	V	
Logic '0' Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-	1.2	0.8	V	
Input Voltage Hysteresis	$\mathrm{V}_{\text {HYST(IN) }}$	-	0.4	-	V	
Input Current	$\mathrm{I}_{\text {IN }}$	-1	-	+1	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$
Enable						
Enable Voltage Range	$\mathrm{V}_{\text {EN }}$	GND - 0.3V	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Logic '1' High Enable Voltage	V_{EH}	2.0	1.6	-	V	
Logic '0' Low Enable Voltage	V_{EL}	-	1.2	0.8	V	
Enable Voltage Hysteresis	$\mathrm{V}_{\text {HYST(EN) }}$	-	0.4	-	V	
Enable Pin Pull-Up Resistance	$\mathrm{R}_{\text {ENBL }}$	-	1.8	-	$\mathrm{M} \Omega$	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{ENB}=\mathrm{A}_{\mathrm{GND}}$
Enable Input Current	I_{EN}	-	10	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{ENB}=\mathrm{A}_{\mathrm{GND}}$
Propagation Delay	$\mathrm{t}_{\mathrm{D} 3}$	-	35	43	ns	$V_{D D}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}$, see Figure 4-3, (Note 1)
Propagation Delay	$\mathrm{t}_{\mathrm{D} 4}$	-	23	31	ns	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}$, see Figure 4-3, (Note 1)
Output						
High Output Voltage	V_{OH}	$V_{D D}-0.025$	-	-	V	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$
Low Output Voltage	V_{OL}	-	-	0.025	V	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$
Output Resistance, High	R_{OH}	-	12.5	17	Ω	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$
Output Resistance, Low	R_{OL}	-	7.5	10	Ω	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=18 \mathrm{~V}$
Peak Output Current	$\mathrm{l}_{\text {PK }}$	-	0.5	-	A	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}$ (Note 1)
Latch-Up Protection Withstand Reverse Current	$\mathrm{I}_{\text {REV }}$	0.5	-	-	A	Duty cycle $\leq 2 \%, \mathrm{t} \leq 300 \mu \mathrm{~s}$ (Note 1)
Switching Time (Note 1)						
Rise Time	t_{R}	-	40	51	ns	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, see Figure 4-1, Figure 4-2 (Note 1)
Fall Time	t_{F}	-	28	39	ns	$V_{D D}=18 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, see Figure 4-1, Figure 4-2 (Note 1)

Note 1: Tested during characterization, not production tested.

MCP14A0051/2

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.						
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Delay Time	$\mathrm{t}_{\mathrm{D} 1}$	-	33	41	ns	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$, see Figure 4-1, Figure 4-2, (Note 1)
Delay Time	$t_{\text {D2 }}$	-	24	32	ns	$V_{D D}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$, see Figure 4-1, Figure 4-2, (Note 1)
Power Supply						
Supply Voltage	V_{DD}	4.5	-	18	V	
Power Supply Current	I_{DD}	-	330	560	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=3 \mathrm{~V}$
	I_{DD}	-	360	580	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=3 \mathrm{~V}$
	I_{DD}	-	360	580	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$
	I_{DD}	-	375	600	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$

Note 1: Tested during characterization, not production tested.

DC CHARACTERISTICS (OVER OPERATING TEMP. RANGE) (Note 1)

Electrical Specifications: Unless otherwise indicated, over the operating range with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Input						
Input Voltage Range	$\mathrm{V}_{\text {IN }}$	GND - 0.3V	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Logic '1' High Input Voltage	$\mathrm{V}_{\text {IH }}$	2.0	1.6	-	V	
Logic '0' Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-	1.2	0.8	V	
Input Voltage Hysteresis	$\mathrm{V}_{\mathrm{HYST} \text { (IN) }}$	-	0.4	-	V	
Input Current	I_{IN}	-10	-	+10	$\mu \mathrm{A}$	O
Enable						
Enable Voltage Range	V_{EN}	GND - 0.3V	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Logic '1' High Enable Voltage	V_{EH}	2.0	1.6	-	V	
Logic '0' Low Enable Voltage	V_{EL}	-	1.2	0.8	V	
Enable Voltage Hysteresis	$\mathrm{V}_{\text {HYST(EN) }}$	-	0.4	-	V	
Enable Input Current	I_{EN}	-	12	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{ENB}=\mathrm{A}_{\mathrm{GND}}$
Propagation Delay	$\mathrm{t}_{\mathrm{D} 3}$	-	33	41	ns	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C},$ see Figure 4-3
Propagation Delay	$t_{\text {D }}$	-	25	33	ns	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C},$ see Figure 4-3
Output						
High Output Voltage	V_{OH}	$V_{D D}-0.025$	-	-	V	DC Test
Low Output Voltage	V_{OL}	-	-	0.025	V	DC Test
Output Resistance, High	R_{OH}	-	-	24	Ω	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$
Output Resistance, Low	R_{OL}	-	-	15	Ω	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}$

Note 1: Tested during characterization, not production tested.

DC CHARACTERISTICS (OVER OPERATING TEMP. RANGE) (Note 1) (CONTINUED)

Electrical Specifications: Unless otherwise indicated, over the operating range with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.						
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Switching Time (Note 1)						
Rise Time	t_{R}	-	45	56	ns	$V_{D D}=18 \mathrm{~V}, C_{L}=1000 \mathrm{pF}$, $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$, see Figure 4-1, Figure 4-2
Fall Time	t_{F}	-	34	45	ns	$V_{D D}=18 \mathrm{~V}, C_{L}=1000 \mathrm{pF}$, $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$, see Figure 4-1, Figure 4-2
Delay Time	$\mathrm{t}_{\mathrm{D} 1}$	-	32	40	ns	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C},$ see Figure 4-1, Figure 4-2
Delay Time	$\mathrm{t}_{\mathrm{D} 2}$	-	27	35		$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C},$ see Figure 4-1, Figure 4-2
Power Supply						
Supply Voltage	V_{DD}	4.5	-	18	V	
Power Supply Current	I_{DD}	-	-	760	uA	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=3 \mathrm{~V}$
	IDD	-	-	780	uA	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=3 \mathrm{~V}$
	I_{DD}	-	-	780	uA	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$
	I_{DD}	-	-	800	uA	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$

Note 1: Tested during characterization, not production tested.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$

Parameter	Sym.	Min.	Typ.	Max.	Units	Comments
Temperature Ranges						
Specified Temperature Range	T_{A}	-40	-	+125	${ }^{\circ} \mathrm{C}$	
Maximum Junction Temperature	T_{J}	-	-	+150	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	T_{A}	-65	-	+150	${ }^{\circ} \mathrm{C}$	
Package Thermal Resistances						
Thermal Resistance, 6LD 2x2 DFN	θ_{JA}	-	91	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Thermal Resistance, 6LD SOT-23	θ_{JA}	-	192	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

MCP14A0051/2

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.

FIGURE 2-1: Rise Time vs. Supply
Voltage.

FIGURE 2-2: Rise Time vs. Capacitive Load.

FIGURE 2-3:
Fall Time vs. Supply
Voltage.

FIGURE 2-4: Fall Time vs. Capacitive Load.

FIGURE 2-5: Rise and Fall Time vs. Temperature.

FIGURE 2-6: Crossover Current vs.
Supply Voltage.

Note: Unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.

FIGURE 2-7: Input Propagation Delay vs. Supply Voltage.

FIGURE 2-8: Input Propagation Delay
Time vs. Input Amplitude.

FIGURE 2-9: Input Propagation Delay vs. Temperature.

FIGURE 2-10: Enable Propagation Delay vs. Supply Voltage.

FIGURE 2-11: Enable Propagation Delay Time vs. Enable Voltage Amplitude.

FIGURE 2-12: Enable Propagation Delay vs. Temperature.

MCP14A0051/2

Note: Unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.

FIGURE 2-13: Quiescent Supply Current vs. Supply Voltage.

FIGURE 2-14: Quiescent Supply Current vs. Temperature.

FIGURE 2-15: Input Threshold vs.
Temperature.

FIGURE 2-16: Input Threshold vs Supply Voltage.

FIGURE 2-17: Enable Threshold vs. Temperature.

FIGURE 2-18: Enable Threshold vs Supply Voltage.

Note: Unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.

FIGURE 2-19: Output Resistance (Output High) vs. Supply Voltage.

FIGURE 2-20: Output Resistance (Output Low) vs. Supply Voltage.

FIGURE 2-21: Supply Current vs.
Capacitive Load ($V_{D D}=18 \mathrm{~V}$).

FIGURE 2-22: Supply Current vs.
Capacitive Load ($V_{D D}=12 \mathrm{~V}$).

FIGURE 2-23: Supply Current vs.
Capacitive Load ($V_{D D}=6 \mathrm{~V}$).

FIGURE 2-24: Supply Current vs.
Frequency ($V_{D D}=18 \mathrm{~V}$).

MCP14A0051/2

Note: Unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$.

FIGURE 2-25: Supply Current vs.
Frequency ($V_{D D}=12 \mathrm{~V}$).

FIGURE 2-26: Supply Current vs.
Frequency ($\left.V_{D D}=6 \mathrm{~V}\right)$.

FIGURE 2-27: Enable Current vs. Supply
Voltage.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.
TABLE 3-1: PIN FUNCTION TABLE

Pin No.		Symbol	Description
6L 2x2 DFN	6L SOT-23		
1	6	OUT/OUT	Push-Pull Output
2	5	GND	Power Ground
3	4	EN	Device Enable
4	2	$\mathrm{A}_{\text {GND }}$	Analog Ground
5	3	IN	Control Input
6	1	V_{DD}	Supply Input
EP	-	EP	Exposed Thermal Pad (GND)

3.1 Output Pin (OUT, $\overline{\text { OUT }}$)

The Output is a CMOS push-pull output that is capable of sourcing and sinking 0.5 A of peak current $\left(V_{D D}=18 \mathrm{~V}\right)$. The low output impedance ensures the gate of the external MOSFET stays in the intended state even during large transients. This output also has a reverse current latch-up rating of 500 mA .

3.2 Power Ground Pin (GND)

GND is the device return pin for the output stage. The GND pin should have a low-impedance connection to the bias supply source return. When the capacitive load is being discharged, high peak currents will flow out of the ground pin.

3.3 Device Enable Pin (EN)

The MOSFET driver Device Enable is a highimpedance, TTL/CMOS compatible input. The Enable input also has hysteresis between the high and lowinput levels, allowing them to be driven from slow rising and falling signals and to provide noise immunity. Driving the Enable pin below the threshold will disable the output of the device, pulling OUT/OUT low, regardless of the status of the Input pin. Driving the Enable pin above the threshold allows normal operation of the OUT/OUT pin based on the status of the Input pin. The Enable pin utilizes an internal pull up resistor, allowing the pin to be left floating for standard driver operation.

3.4 Analog Ground Pin ($\mathrm{A}_{\text {GND }}$)

AGND is the device return pin for the input and enable stages of the MOSFET driver. The AGND pin should be connected to an electrically "quiet" ground node to provide a low noise reference for the input and enable pins.

3.5 Control Input Pin (IN)

The MOSFET driver Control Input is a high-impedance, TTL/CMOS compatible input. The Input also has hysteresis between the high and low-input levels, allowing them to be driven from slow rising and falling signals and to provide noise immunity.

3.6 Supply Input Pin (V_{DD})

$V_{D D}$ is the bias supply input for the MOSFET driver and has a voltage range of 4.5 V to 18 V . This input must be decoupled to ground with a local capacitor. This bypass capacitor provides a localized low-impedance path for the peak currents that are provided to the load.

3.7 Exposed Metal Pad Pin (EP)

The exposed metal pad of the DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane, or other copper plane on a printed circuit board, to aid in heat removal from the package.

4.0 APPLICATION INFORMATION

4.1 General Information

MOSFET drivers are high-speed, high-current devices which are intended to source/sink high peak currents to charge/discharge the gate capacitance of external MOSFETs or Insulated-Gate Bipolar Transistors (IGBTs). In high-frequency switching power supplies, the Pulse-Width Modulation (PWM) controller may not have the drive capability to directly drive the power MOSFET. A MOSFET driver such as the MCP14A0051/2 family can be used to provide additional source/sink current capability.

4.2 MOSFET Driver Timing

The ability of a MOSFET driver to transition from a fullyoff state to a fully-on state is characterized by the driver's rise time (t_{R}), fall time (t_{F}) and propagation delays ($t_{D 1}$ and $t_{D 2}$). Figure 4-1 and Figure 4-2 show the test circuit and timing waveform used to verify the MCP14A0051/2 timing.

FIGURE 4-1: Inverting Driver Timing Waveform.

FIGURE 4-2:
Non-Inverting Driver Timing
Waveform.

4.3 Enable Function

The enable pin (EN) provides additional control of the output pin (OUT). This pin is active high and is internally pulled up to $V_{D D}$ so that the pin can be left floating to provide standard MOSFET driver operation.
When the enable pin's voltage is above the Enable pin high-voltage threshold, $\left(\mathrm{V}_{\mathrm{EN}} \mathrm{H}\right)$, the output is enabled and allowed to react to the status of the Input pin. However, when the voltage applied to the Enable pin falls below the low threshold voltage ($\left.\mathrm{V}_{\mathrm{EN} _} \mathrm{L}\right)$, the driver output is disabled and doesn't respond to changes in the status of the Input pin. When the driver is disabled, the output is pulled down to a low state. Refer to Table 4-1 for enable pin logic. The threshold voltage levels for the Enable pin are similar to the threshold voltage levels of the Input pin, and are TTL and CMOS compatible. Hysteresis is provided to help increase the noise immunity of the enable function, avoiding false triggers of the enable signal during driver switching.

There are propagation delays associated with the driver receiving an enable signal and the output reacting. These propagation delays, $t_{D 3}$ and $t_{D 4}$, are graphically represented in Figure 4-3.

TABLE 4-1: ENABLE PIN LOGIC

ENB	IN	MCP14A0051 OUT	MCP14A0052 OUT
H	H	L	H
H	L	H	L
L	X	L	L

FIGURE 4-3:
Enable Timing Waveform.

4.4 Decoupling Capacitors

Careful PCB layout and decoupling capacitors are required when using power MOSFET drivers. Large current is required to charge and discharge capacitive loads quickly. For example, approximately 720 mA are needed to charge a 1000 pF load with 18 V in 25 ns .
To operate the MOSFET driver over a wide frequency range with low supply impedance, it is recommended to place $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ low ESR ceramic capacitors in parallel between the driver $V_{D D}$ and GND. These capacitors should be placed close to the driver to minimize circuit board parasitics and provide a local source for the required current.

4.5 PCB Layout Considerations

Proper Printed Circuit Board (PCB) layout is important in high-current, fast switching circuits to provide proper device operation and robustness of design. Improper component placement may cause errant switching, excessive voltage ringing or circuit latch-up. The PCB trace loop length and inductance should be minimized by the use of ground planes or traces under the MOSFET gate drive signal, separate analog and power grounds, and local driver decoupling.
Placing a ground plane beneath the MCP14A0051/2 devices will help as a radiated noise shield, as well as providing some heat sinking for power dissipated within the device.

4.6 Power Dissipation

The total internal power dissipation in a MOSFET driver is the summation of three separate power dissipation elements, as shown in Equation 4-1.

EQUATION 4-1:
$P_{T}=P_{L}+P_{Q}+P_{C C}$
Where:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{T}} & =\text { Total power dissipation } \\
\mathrm{P}_{\mathrm{L}} & =\text { Load power dissipation } \\
\mathrm{P}_{\mathrm{Q}} & =\text { Quiescent power dissipation } \\
\mathrm{P}_{\mathrm{CC}} & =\text { Operating power dissipation }
\end{aligned}
$$

4.6.1 CAPACITIVE LOAD DISSIPATION

The power dissipation caused by a capacitive load is a direct function of the frequency, total capacitive load and supply voltage. The power lost in the MOSFET driver for a complete charging and discharging cycle of a MOSFET is shown in Equation 4-2.

EQUATION 4-2:

Where:

$$
P_{L}=f \times C_{T} \times V_{D D}^{2}
$$

$$
\begin{aligned}
\mathrm{f} & =\text { Switching frequency } \\
\mathrm{C}_{\mathrm{T}} & =\text { Total load capacitance } \\
\mathrm{V}_{\mathrm{DD}} & =\text { MOSFET driver supply voltage }
\end{aligned}
$$

4.6.2 QUIESCENT POWER DISSIPATION

The power dissipation associated with the quiescent current draw depends on the state of the Input and Enable pins. Refer to Section 1.0 "Electrical Characteristics" for typical quiescent current draw values in different operating states. The quiescent power dissipation is shown in Equation 4-3.

EQUATION 4-3:
${ }_{\text {Where: }} P_{Q}=\left(I_{Q H} \times D+I_{Q L} \times(1-D)\right) \times V_{D D}$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{QH}} & =\text { Quiescent current in the High state } \\
\mathrm{D} & =\text { Duty cycle } \\
\mathrm{I}_{\mathrm{QL}} & =\text { Quiescent current in the Low state } \\
\mathrm{V}_{\mathrm{DD}} & =\text { MOSFET driver supply voltage }
\end{aligned}
$$

MCP14A0051/2

4.6.3 OPERATING POWER DISSIPATION

The operating power dissipation occurs each time the MOSFET driver output transitions because, for a very short period of time, both MOSFETs in the output stage are on simultaneously. This cross-conduction current leads to a power dissipation described in Equation 4-4.

EQUATION 4-4:

```
\(P_{C C}=C C \times f \times V_{D D}\)
Where:
    CC \(=\) Cross-Conduction constant
        (Ampere x second)
    \(\mathrm{f}=\) Switching frequency
    \(V_{D D}=\) MOSFET driver supply voltage
```


5.0 PACKAGING INFORMATION

5.1 Package Marking Information

6-Lead DFN ($2 \times 2 \times 0.9 \mathrm{~mm}$)

6-Lead SOT-23

Example

Example

Standard Markings for SOT-23	
Part Number	Code
MCP14A0051T-E/MAY	ABG
MCP14A0052T-E/MAY	ABH
MCP14A0051T-E/CH	AAAQY
MCP14A0052T-E/CH	AAARY

Legend: $X X$...X Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
e3) Pb -free JEDEC ${ }^{\circledR}$ designator for Matte Tin (Sn)

* This package is Pb-free. The Pb-free JEDEC designator (e3)
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

6-Lead Plastic Dual Flat, No Lead Package (MA[Y]) - 2x2x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-120C Sheet 1 of 2

6-Lead Plastic Dual Flat, No Lead Package (MA[Y]) - $2 \times 2 \times 0.9 \mathrm{~mm}$ Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

NOTE 2

	Units			
Dimension Limits		MIN		
	NILIMETERS			
Number of Pins	NOM	MAX		
Pitch	e	0.65 BSC		
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Overall Width	E	2.00 BSC		
Exposed Pad Length	D2	1.50	1.60	1.70
Exposed Pad Width	E2	0.90	1.00	1.10
Contact Width	b	0.25	0.30	0.35
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-120C Sheet 2 of 2

6-Lead Plastic Dual Flat, No Lead Package (MA) - $2 \times 2 \times 0.9 \mathrm{~mm}$ Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN		NOM
	MAX			
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	Y 2			1.00
Optional Center Pad Length	X 2			1.70
Contact Pad Spacing	C 1		2.10	
Contact Pad Width (X6)	X 1			0.35
Contact Pad Length (X6)	Y 1			0.65
Distance Between Pads	GX	0.20		
Distance Between Pads	G 1	1.10		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2120A

6-Lead Plastic Small Outline Transistor (CH) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimension Limits		MILLIMETERS		
	N	0.95 BSC		
Number of Pins	e	1.90 BSC		
Pitch	e 1		-	1.45
Outside Lead Pitch	A	0.90	-	1.30
Overall Height	A 2	0.89	-	0.15
Molded Package Thickness	A 1	0.00	-	3.20
Standoff	E	2.20	-	1.80
Overall Width	E 1	1.30	-	3.10
Molded Package Width	D	2.70	-	0.60
Overall Length	L	0.10	-	0.80
Foot Length	L1	0.35	-	30°
Footprint	ϕ	0°	-	0.26
Foot Angle	c	0.08	-	0.51
Lead Thickness	b	0.20	-	-
Lead Width				

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

6-Lead Plastic Small Outline Transistor (CH) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN		NOM
	MAX			
Contact Pitch	E	0.95 BSC		
Contact Pad Spacing	C		2.80	
Contact Pad Width (X6)	X			0.60
Contact Pad Length (X6)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2028A

APPENDIX A: REVISION HISTORY

Revision A (December 2014)

- Original Release of this Document.

PRODUCT IDENTIFICATION SYSTEM

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC ${ }^{32}$ logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-908-4

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

[^0]Microchip

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Asia Pacific Office	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Suites 3707-14, 37th Floor	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	Tower 6, The Gateway	Fax: 91-80-3090-4123	Fax: 43-7242-2244-393
Tel: 480-792-7200	Harbour City, Kowloon	India - New Delhi	Denmark - Copenhagen
Fax: 480-792-7277	Hong Kong	Tel: 91-11-4160-8631	Tel: 45-4450-2828
Technical Support:	Tel: 852-2943-5100	Fax: 91-11-4160-8632	Fax: 45-4485-2829
http://www.microchip.com/ support	Fax: 852-2401-3431	India - Pune	France - Paris
Web Address: www.microchip.com	Australia - Sydney Tel: 61-2-9868-6733	Tel: 91-20-3019-1500 Japan - Osaka	Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Atlanta	Fax: 61-2-9868-6755 China - Beijing	Tel: 81-6-6152-7160	Germany - Dusseldorf Tel: 49-2129-3766400
Tel: 678-957-9614 Fax: 678-957-1455	Tel: 86-10-8569-7000	Japan - Tokyo Tel: 81-3-6880-3770	Germany - Munich Tel: 49-89-627-144-0
Austin, TX Tel: 512-257-3370	China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889	Fax: 81-3-6880-3771 Korea - Daegu Tel 82-53-744-4301	Fax: 49-89-627-144-44 Germany - Pforzheim Tel: 49-7231-424750
Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088	China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500	Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200	Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781
Chicago Itasca, IL	China - Hangzhou Tel: 86-571-8792-8115	$\begin{aligned} & \text { Fax: 82-2-558-5932 or } \\ & 82-2-558-5934 \end{aligned}$	Italy - Venice Tel: 39-049-7625286
Tel: 630-285-0071 Fax: 630-285-0075	Fax: $86-571-8792-8116$ China - Hong Kong SAR	Malaysia - Kuala Lumpur Tel: 60-3-6201-9857	Netherlands - Drunen Tel: 31-416-690399
Cleveland	Tel: 852-2943-5100	Fax: 60-3-6201-9859	Fax: 31-416-690340
Independence, OH Tel: 216-447-0464 Fax: 216-447-0643	Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460	Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068	Poland - Warsaw Tel: 48-22-3325737 Spain - Madrid
Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924	Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205	Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore	Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654
Detroit Novi, MI Tel: 248-848-4000	China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066	Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu	UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820
Houston, TX Tel: 281-894-5983	China - Shenyang Tel: 86-24-2334-2829	Tel: 886-3-5778-366 Fax: 886-3-5770-955	
Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453	Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760	Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei Tel: 886-2-2508-8600	
Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608	China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118	Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351	
New York, NY Tel: 631-435-6000	China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256	Fax: 66-2-694-1350	
San Jose, CA Tel: 408-735-9110 Canada - Toronto Tel: 905-673-0699	China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130		
Fax: 905-673-6509	China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049		03/25/14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]: Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

