MD0105

4-Channel High-Voltage Protection T/R Switch

Features

- Up to $\pm 130 \mathrm{~V}$ Input Voltage Protection
- Low On-Resistance - 15Ω Typical
- Fast Switching Speed
- Four Electrically Isolated Channels
- No External Supplies Needed

Applications

- Medical Ultrasound Imaging
- NDT Applications
- Fast Resettable Fuses
- High-Side Switches
- Data Acquisition

General Description

The MD0105 is a high-voltage current-limiting protection device. It is designed to protect a low-noise receiver from high-voltage transmit pulses in ultrasound applications. The MD0105 is commonly referred to as a T/R (transmit-and-receive) switch.

The device can be considered as a normally closed switch with a typical switching resistance of 15Ω that allows small signals to pass. Once the voltage drop across the two terminals exceeds a nominal value of $\pm 2 \mathrm{~V}$, the device will turn off. In the OFF state, the MD0105 can withstand up to $\pm 130 \mathrm{~V}$ across its terminals. A small amount of current (typically $200 \mu \mathrm{~A}$) is allowed to flow through.
The MD0105 is not limited to just ultrasound applications. It can also be used as resettable fuses to protect power lines, for output short-circuit protection and to protect data acquisition instruments. The MD0105 is available in an 18-lead $5 \times 5 \mathrm{~mm}$ DFN package as a 4-channel device.

Package Type

18-lead DFN

(Top view)

See Table 2-1 for pin information. Pads are at the bottom of device.

MD0105

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \daggerDifferential Voltage, $\mathrm{V}_{\mathrm{A}-\mathrm{B}}$
\qquad . 0 V to +140 V
Maximum Junction Temperature, $\mathrm{T}_{\mathrm{J}} \ldots \ldots . ~+125^{\circ} \mathrm{C}$
\qquad
Power Dissipation: 18-lead DFN 1.6W
\dagger Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.
Note 1: Device is ESD sensitive. Handling precautions are recommended.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified.						
Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions
Maximum Differential Input Voltage from A to B	$\mathrm{V}_{\mathrm{A}-\mathrm{B}}$	± 130	-	-	V	$\mathrm{I}_{\mathrm{A}-\mathrm{B}}= \pm 1 \mathrm{~mA}$
Switch-On Resistance from A to B	$\mathrm{R}_{\text {SW }}$	-	15	-	Ω	$\mathrm{I}_{\mathrm{A}-\mathrm{B}}= \pm 5 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{A}-\mathrm{B}}$ Trip Point to Turn Off	$\mathrm{V}_{\text {TRIP }}$	-	± 1	± 2	V	
Switch Turn-Off Voltage	$\mathrm{V}_{\mathrm{OFF}}$	-	± 2	-	V	$\mathrm{I}_{\mathrm{A}-\mathrm{B}}= \pm 1 \mathrm{~mA}$
Switch-Off Current	$\mathrm{I}_{\mathrm{A}-\mathrm{B}(\mathrm{OFF})}$	-	± 200	± 300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{A}-\mathrm{B}}= \pm 130 \mathrm{~V}$

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified.						
Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions
Peak Switching Current	$\mathrm{I}_{\text {PEAK }}$	-	± 60	-	mA	
Turn-Off Time	$\mathrm{T}_{\mathrm{OFF}}$	-	-	20	ns	
Turn-On Time	T_{ON}	-	-	20	ns	
Switch-On Capacitance from A to B	$\mathrm{C}_{\text {SW(ON })}$	-	21	-	pF	$\mathrm{SW}=\mathrm{ON}$
Switch-Off Capacitance from A to B	$\mathrm{C}_{\text {SW(OFF) }}$	-	15	-	pF	$\mathrm{V}_{\mathrm{SW}}=25 \mathrm{~V}$
Small Signal Bandwidth	BW	-	100	-	MHz	$\mathrm{R}_{\mathrm{LOAD}}=50 \Omega$

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Junction Temperature	T_{J}	-40	-	+125	${ }^{\circ} \mathrm{C}$	
Storage Temperature	T_{S}	-65	-	+150	${ }^{\circ} \mathrm{C}$	
PACKAGE THERMAL RESISTANCE						
18-lead DFN	θ_{JA}	-	40	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Note 1

Note 1: Mounted on an FR4 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$

Typical I-V Characteristics

2.0 PIN DESCRIPTION

Functional descriptions for the pins are listed in
Table 2-1. See Package Type for the location of pins.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	
1	NC	Description
2	A1	Switch Terminal A1
3	NC	No internal connection
4	A2	Switch Terminal A2
5	NC	No internal connection
6	A3	Switch Terminal A3
7	NC	No internal connection
8	A4	Switch Terminal A4
9	NC	No internal connection
10	NC	No internal connection
11	B4	Switch Terminal B4
12	NC	No internal connection
13	B3	Switch Terminal B3
14	NC	No internal connection
15	B2	Switch Terminal B2
16	NC	No internal connection
17	B1	Switch Terminal B1
18	NC	No internal connection
	Center Tab	Connect to ground

3.0 DETAILED DESCRIPTION

The MD0105 can be considered as a normally closed switch controlled by a built-in control circuit. (See Functional Block Diagram.) The switch control circuit monitors the voltage drop across Terminals A and B. If the voltage difference is greater than $\pm 2 \mathrm{~V}$, the T / R switch opens. Once in the Open state, there is a small amount of current flowing through the T/R switch (200 $\mu \mathrm{A})$ to detect if the high voltage is still present. The T/R switch does not close until the voltage across Terminal A and Terminal B drops below $\pm 2 \mathrm{~V}$. A pair of back-to-back diodes, from the receiver side of the switch to ground is needed to complete the circuit and allow the peak current (about 60 mA) to flow through the switch. If the diodes are not present, there is no current path and the voltage drop across Terminals A and B becomes less than $\pm 2 \mathrm{~V}$. As a result, the switch remains in the closed position.

3.1 On Resistance

When the voltage across Terminals A and B is below $\pm 2 \mathrm{~V}$, the switch is in Receive mode and the R_{ON} is typically 15Ω. Once the voltage across Terminals A and B is greater than $\pm 2 \mathrm{~V}$, the switch is in Transmit mode and prevents high-voltage pulses from passing through to the receiver.

3.2 Switch Capacitance

The typical switch-on capacitance, $\mathrm{CSW}_{(\mathrm{ON})}$, is 21 pF . This is measured from Terminal A to Terminal B when the switch is turned on.
The switch-off capacitance is a function of the voltage across the T/R switch. The $\mathrm{C}_{\mathrm{SW}(\mathrm{OFF})}$ is about 12 pF to 19 pF for 10 V to 130 V of transmit voltage.

3.3 $\quad \mathrm{T}_{\text {ON }}$ and $\mathrm{T}_{\text {OFF }}$ Time

$\mathrm{T}_{\text {ON }}$ and $\mathrm{T}_{\text {OFF }}$ of the MD0105 are less than 20 ns , which provides a quick transition between Transmit Receive modes. The $\mathrm{T}_{\text {ON }}$ and $\mathrm{T}_{\text {OFF }}$ are proportional to the rise and fall times of the transmit pulses.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Example
MD0105
K6
(3)1823

- 513

Legend: $X X$...X Product Code or Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
e3) Pb-free JEDEC ${ }^{\circledR}$ designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

18-Lead DFN Package Outline (K6)

$5.00 \times 5.00 \mathrm{~mm}$ body, 1.00 mm height (max), 0.50 mm pitch

Top View

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Depending on the method of manufacturing, a maximum of 0.15 mm pullback (L1) may be present.
3. The inner tip of the lead may be either rounded or square.

Symbol		A	A1	A3	b	D	D2	E	E2	e	L	L1	θ
Dimension (mm)	MIN	0.80	0.00	$\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$	0.18	4.85*	$4.20{ }^{t}$	4.85*	3.50^{t}	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.30^{t}	0.00*	0°
	NOM	0.90	0.02		0.25	5.00	$4.35{ }^{t}$	5.00	$3.65{ }^{t}$		0.40^{t}		-
	MAX	1.00	0.05		0.30	5.15*	$4.45{ }^{t}$	5.15*	$3.75{ }^{t}$		$0.50{ }^{\text {t }}$	0.15	14°

JEDEC Registration MO-229, Variation VJJD-2, Issue C, Aug 2003.

* This dimension is not specified in the JEDEC drawing.
t This dimension differs from the JEDEC drawing.
Drawings not to scale.

MD0105

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (November 2018)

- Converted Supertex Doc\# DSFP-MD0105 to Microchip DS20005739A
- Changed the package marking format
- Changed the quantity of the 18 -lead DFN K6 M932 media type from 2500/Reel to 3300/Reel
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

$\frac{\text { PART NO. }}{\text { Device }}$	XX Package Options		Examples: a) MD0105K6-G:	4-Channel High-Voltage Protection T/R Switch
Device:	MD0105 =	4-Channel High-Voltage Protection T/R Switch	b) MD0105K6-G-M932:	4-Channel High-Voltage Protection T/R Switch 18-lead VDFN, 3300/Reel
Package:	$\mathrm{K} 6 \quad=$	18-lead VDFN		
Environmental:	G =	Lead (Pb)-free/RoHS-compliant Package		
Media Type:	(blank) =	490/Tray for a K6 Package		
	M932 =	3300/Reel for a K6 Package		

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC ${ }^{\circledR}$ MCUs and dsPIC ${ }^{\circledR}$ DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3904-2

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office 2355 West Chandler Blvd.
 Chandler, AZ 85224-6199
 Tel: 480-792-7200
 Fax: 480-792-7277
 Technical Support:
 http://www.microchip.com/ support
 Web Address:
 www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch ICs - Various category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
CPC7514Z BCM56440XB0IFSBG NL3S325FCT2G 89H48T12G2ZCBLG LTC1043CN\#PBF LTC1470ES8\#PBF LTC1470CS8\#PBF LTC1315CG\#PBF 74HC4053N 74HC139N 74HC138N XD74LS138 XD74LS139 XD74LS147 XD4051 XD4052 XD4053 XD14051 XD14052 XD14053 XD74LS151 XD74HC4514Z XD4514 XD14514 CPC7512Z CPC7592BCTR HT18LG-G MD0100DK6-G MIC25601YWM MIC2560-0YWM NJM2750M NJM2521M PCA9848PWJ FSA8009UMX FSA8028UMX FSA8039AUMSX FSA8049UCX FSA8108BUCX FSA850UCX BD3375KV-CE2 74F138D 74HC4051M/TR 74HC138M/TR 74HC4053M/TR 74HC4052M/TR XL74LS138 $\underline{\text { XL74LS139 XL74LS148 XL4514 XL4067 }}$

