

Programmable Current-Limit High-Side Switch

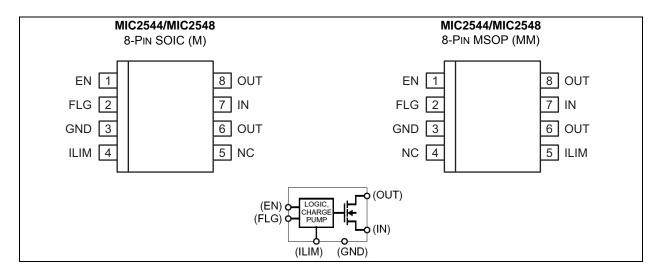
Features

- 2.7V to 5.5V Input
- · Adjustable Current-Limit up to 1.5A
- Reverse Current Flow Blocking (No "Body Diode")
- 75 μA Typical On-State Supply Current
- 1 μA Typical Off-State Supply Current
- 120 mΩ Maximum On-Resistance
- Open-Drain Fault Flag
- · Thermal Shutdown
- Thermal Shutdown Output Latch (MIC2548)
- · 2 ms (Slow) Turn-On and Fast Turn-Off
- · Available with Active-High or Active-Low Enable

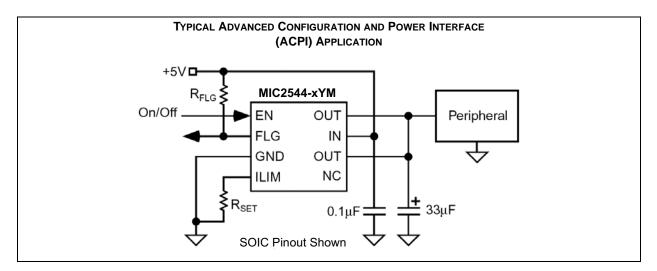
Applications

- · USB Power Distribution
- · PCI Bus Power Switching
- · Notebook PC
- · ACPI Power Distribution
- · PC Card Hot Swap Applications
- · Inrush Current-Limiting

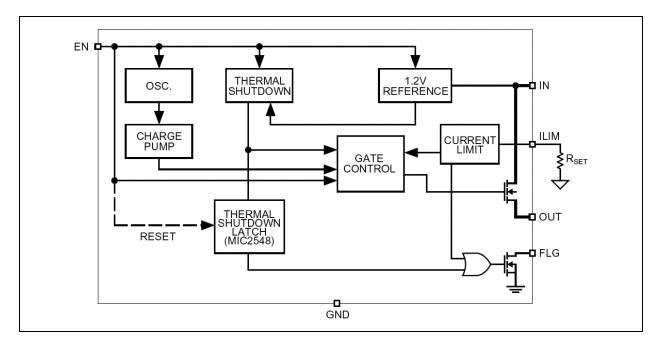
General Description


The MIC2544 and MIC2548 are integrated, high-side power switches optimized for low-loss DC power switching and other power management applications, including Advanced Configuration and Power Interface (ACPI). The MIC2544/48 are cost-effective, highly integrated solutions that require few external components to satisfy USB and ACPI requirements.

Load current management features include a precision resistor-programmable output current-limit and a soft-start circuit that minimizes inrush current when the switch is enabled. Thermal shutdown, along with current-limit, protects the switch and the attached device.


The MIC2544/48's open-drain flag output is used to indicate current-limiting or thermal shutdown to a local controller. The MIC2548 has an additional internal latch that turns the output off upon thermal shutdown, providing robust fault control. The enable signal is compatible with both 3V and 5V logic, and is also used as the thermal shutdown latch reset for the MIC2548.

The MIC2544 and MIC2548 are available in active-high and active-low enable versions in the 8-pin SOIC and 8-pin MSOP packages.


Package Types

Typical Application Circuit

Functional Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{IN})	+7.0V
Output Voltage (V _{OUT})	
Output Current (I _{OUT})	Internally Limited
Enable Input (V _{EN})	0.3V to V _{IN} +0.3V
Fault Flag Voltage (V _{FLG})	+7.0V
Fault Flag Current (I _{FLG})	50 mA
ESD Rating (Note 1)	

Operating Ratings ‡

Supply Voltage (V _{IN})	+2.7V to +5.5V
Current Limit Set Range	0.1A to 1.5A

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

‡ Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 k Ω in series with 100 pF.

TABLE 1-1: ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: V_{IN} = +5V; T_A = 25°C, bold values indicate –40°C to +85°C, unless noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Complex Command		_	0.75	5		Switch off, OUT = Open (Note 2)
Supply Current	I _{IN}	_	75	160	μA	Switch on, OUT = Open (Note 2)
Frakla konst Valtana	1/	2.4	1.7	_	V	Enable High, (Note 2)
Enable Input Voltage	V_{EN}	_	1.5	0.8	V	Enable Low, (Note 2)
Enable Input Capacitance			1		pF	Note 3
Switch Resistance	R _{DS(ON)}		80	120	mΩ	I _{OUT} = 500 mA
Current Limit Factor		184	230	276	V	I_{OUT} = 100 mA to 1A, V_{OUT} = 1V to 4V, (Note 4)
Odirent Limit i actor		161	230	299	٧	I _{OUT} = 500 mA to 1.5A, V _{OUT} = 1V to 4V, (Note 4)
Output Leakage Current			1	10	μA	Switch off
Output Turn-On Delay	t _{ON}	1	2	5	ms	R_L = 10 Ω , C_L = 1 μ F, Figure 4-2, Figure 4-3
Output Turn-On Rise Time	t _R	1	2	5	ms	R_L = 10 Ω , C_L = 1 μ F, Figure 4-2, Figure 4-3
Output Turn-Off Delay	t _{OFF}		22	l	μs	R_L = 10 Ω , C_L = 1 μ F, Figure 4-2, Figure 4-3
Output Turn-Off Fall Time	t _F		21	-	μs	R_L = 10 Ω , C_L = 1 μ F, Figure 4-2, Figure 4-3
Overtemperature			140		°C	T _J increasing
Threshold Shutdown			130)	T _J decreasing
Error Flag Output			4	15	Ω	$V_{IN} = 5V$, $I_{L} = 10 \mu A$
Resistance			5	20	12	V_{IN} = 3.3V, I_{L} = 10 μA
Error Flag Off Current			0.01	1	μA	V _{FLG} = 5V
EN Pulse Reset Width		5			μs	MIC2548 thermal shutdown latch
V _{IN} to EN Set-Up	_	0	_	_	μs	MIC2548, (Note 4)
Current-Limit Response Time			25	_	μs	V _{OUT} = 0V, (Note 4)
Overcurrent Flag Response Time	_	_	5	_	μs	$V_{OUT} = V_{IN}/2$ to FLG low.

Note 1: Specification for packaged product only.

^{2:} Off is ≤ 0.8V and on is ≥ 2.4V for the MIC2544-1 and MIC2548-1. Off is ≥ 2.4V and on is ≤ 0.8V for the MIC2544-2 and MIC2548-2. The enable input has about 200 mV of hysteresis.

^{3:} Guaranteed by design but not production tested.

^{4:} Current limit threshold is determined by $I_{LIMIT} = 230V/R_{SET}$, where R_{SET} is in ohms.

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Storage Temperature Range	T _S	-65	_	+150	°C	_
Lead Temperature	_	_	_	+260	°C	Soldering, 5 sec.
Junction Temperature	T _J	_	_	_	°C	Internally Limited
Ambient Temperature	T _A	-40	_	+85	°C	_
Package Thermal Resistance						
Thermal Resistance, 8-Ld SOIC	θ_{JA}	_	160	_	°C/W	_
Thermal Resistance, 8-Ld MSOP	θ_{JA}	_	206	_	°C/W	_

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

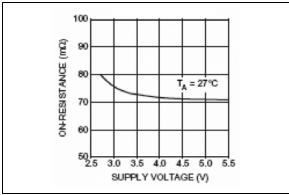
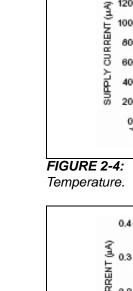



FIGURE 2-1: Output On-Resistance vs. Supply Voltage.

100

80

60

5.0V

20 40

TEMPERATURE (°C)

60 80

On-State Supply Current vs.

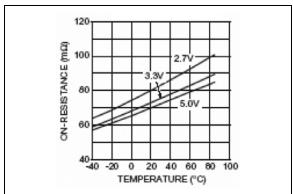


FIGURE 2-2: Output On-Resistance vs. Temperature.

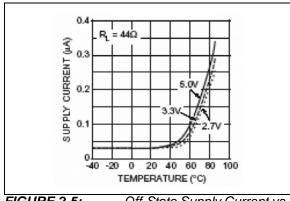
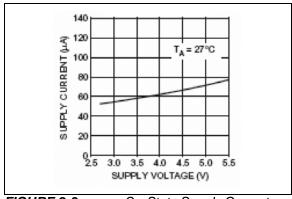



FIGURE 2-5: Off-State Supply Current vs. Temperature.

On-State Supply Current vs. FIGURE 2-3: Supply Voltage.

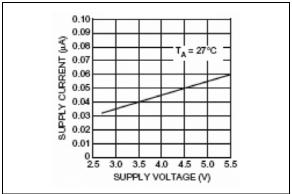


FIGURE 2-6: Off-State Supply Current vs. Supply Voltage.

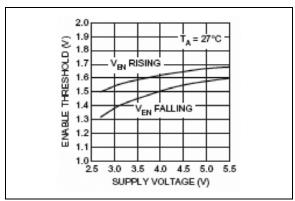


FIGURE 2-7: Enable Threshold Voltage vs. Supply Voltage.

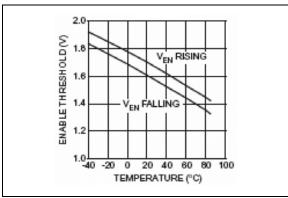


FIGURE 2-8: Enable Threshold Voltage vs. Temperature.

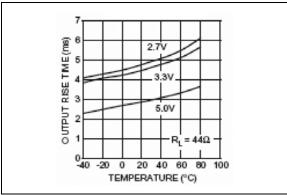


FIGURE 2-9: Rise Time vs. Temperature.

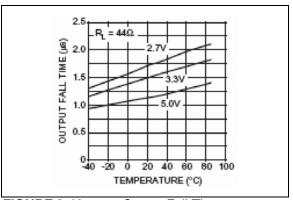


FIGURE 2-10: Output Fall Time vs. Temperature.

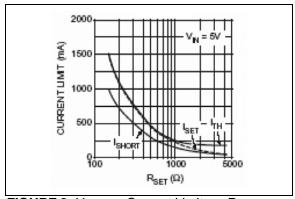


FIGURE 2-11: Current Limit vs. R_{SET}.

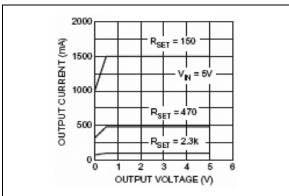
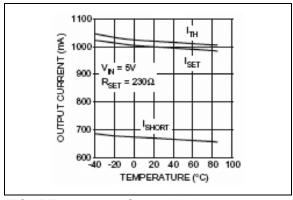
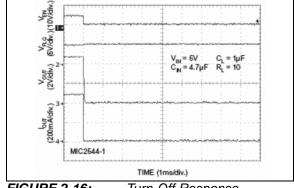
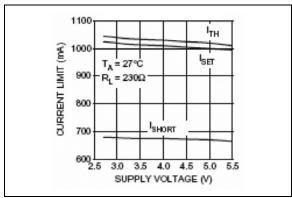
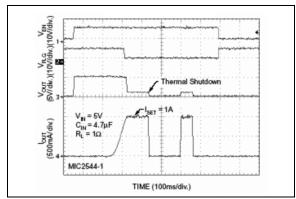




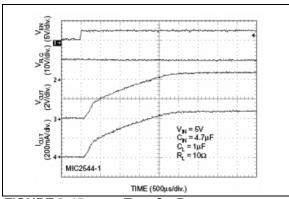
FIGURE 2-12: Output Current vs. Output Voltage.


FIGURE 2-13: Temperature.

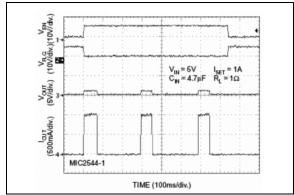
Current Limit vs.


FIGURE 2-16:

Turn-Off Response.


FIGURE 2-14: Voltage.

Current Limit vs. Supply


FIGURE 2-17:

Current-Limit Response.

FIGURE 2-15:

Turn-On Response.

FIGURE 2-18:

Enable Into Heavy Load.

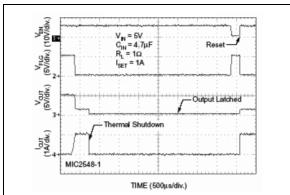


FIGURE 2-19: Enable Into Heavy Load.

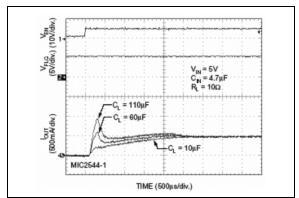


FIGURE 2-20: Inrush Current Response.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number 8-Pin MSOP	Pin Number 8-Pin SOIC	Pin Name	Description	
1	1	EN	Enable (Input): Logic-compatible enable input. Active-high (-1) or active-low (-2). High input >1.7V typical; low input <1.5V typical. Do not float. MIC2548 only: Also resets thermal shutdown latch.	
2	2	FLG	Fault Flag (Output): Active-low, open-drain output. Indicates overcurrent or thermal shutdown conditions. MIC2548 only: latched low on thermal shutdown.	
3	3	GND	Ground.	
5	4	ILIM	Current Limit: Sets current-limit threshold using an external resistor, R_{SET} , connected to ground. $154\Omega < R_{SET} < 2.29 \text{ k}\Omega$.	
7	7	IN	Input: Output MOSFET drain. Also powers internal circuitry.	
6, 8	6, 8	OUT	Switch (Output): Output MOSFET source. Pins 6 and 8 must be externally connected.	
4	5	NC	Not internally connected.	

4.0 TEST CIRCUIT AND TIMING DIAGRAMS



FIGURE 4-1: Functional Characteristics Test Circuit.

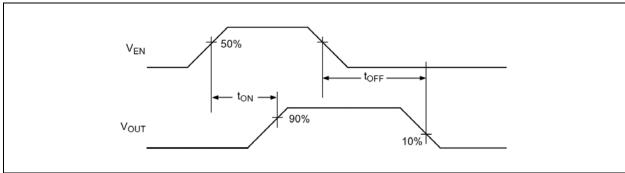


FIGURE 4-2: MIC2544/48-1 Timing Diagram.



FIGURE 4-3: MIC2544/48-2 Timing Diagram.

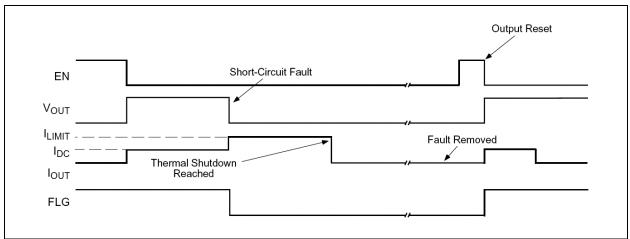


FIGURE 4-4: MIC2548-2 Timing: Output is Reset by Toggling EN.

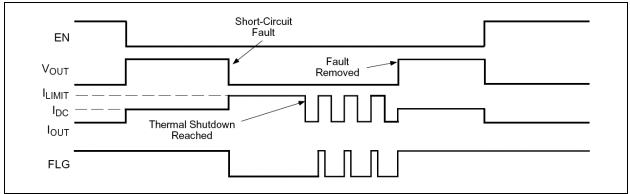


FIGURE 4-5: MIC2544-2 Timing Diagram.

5.0 FUNCTIONAL DESCRIPTION

The MIC2544 and MIC2548 are high-side N-channel switches available with active-high or active-low enable inputs. Fault conditions turn-off or inhibit turn-on of the output transistor and activate the open-drain error flag transistor making it sink current to ground.

5.1 Input and Output

IN is the power supply connection to the logic circuitry and the drain of the output MOSFET. OUT is the source of the output MOSFET. In a typical circuit, current flows from IN to OUT toward the load. If V_{OUT} is greater than V_{IN} , current will flow from OUT to IN because the switch is bidirectional when enabled.

The output MOSFET and driver circuitry are also designed to allow the MOSFET source to be externally forced to a higher voltage than the drain $(V_{OUT} > V_{IN})$ when the switch is disabled. In this situation, the MIC2544/48 avoids undesirable current flow from OUT to IN. Both OUT pins must be connected together.

5.2 Thermal Shutdown

Thermal shutdown shuts off the output MOSFET and signals the fault flag if the die temperature exceeds +140°C. 10°C of hysteresis prevents the switch from turning on until the die temperature drops to +130°C. Overtemperature detection functions only when the switch is enabled.

The MIC2548 features an internal latch which causes the part to remain off after thermal shutdown until a reset pulse is provided via the enable pin (pin 1). While in current-limit, the thermal shutdown latch prevents on/off cycling of the output.

Refer to Figure 4-4 and Figure 4-5 for timing diagrams. The flag remains low until reset.

5.3 Enable Input

EN must be driven logic high or logic low, or be pulled high or low for a clearly defined input. Floating the input may cause unpredictable operation. EN should not be allowed to go negative with respect to GND, and V_{EN} should be less than or equal to V_{IN} .

5.4 Adjustable Current-Limit

The short-circuit current-limit is user-adjustable with an external set resistor. Current-limit in the range of 100 mA to 1.5A is available with a set point accuracy of better than ±20%. The current-limit circuit prevents damage to the output MOSFET and external load.

The nominal current-limit value is set with an external resistor between ILIM and GND. For a desired current-limit, the value of the external set resistor is given by:

EQUATION 5-1:

$$R_{SET} = \frac{230V}{I_{LIMIT}}$$

Where:

$$154\Omega < R_{SET} < 2.29 \text{ k}\Omega$$

For example, to set a 1A nominal current-limit, $R_{\mbox{\footnotesize SET}}$ is calculated as:

EQUATION 5-2:

$$\frac{230V}{1A} = 230\Omega$$

Current through R_{SET} increases with OUT current. The voltage across R_{SET} could be monitored with a high impedance comparator to provide an indication of output current. R_{SET} should be between 154 Ω ±0.5% and 2.29 k Ω ±0.5%.

5.5 Short-Circuit Protection

In the event of a short circuit, the output current will fold back to approximately 80% of the short-circuit current-limit.

5.6 Fault Flag

FLG is an N-channel, open-drain MOSFET output. The fault flag is active (low) for current-limit or thermal shutdown conditions. The flag output MOSFET is capable of sinking a 10 mA load to typically 100 mV above ground.

6.0 APPLICATION INFORMATION

6.1 Supply Filtering

A 0.1 μ F to 1 μ F bypass capacitor from IN to GND, located near the MIC2544 and MIC2548, is strongly recommended to control supply transients. Without a bypass capacitor, an output short may cause sufficient ringing on the input (from supply lead inductance) to damage internal control circuitry.

Input transients must not exceed the absolute maximum supply voltage $(V_{IN(ABS_MAX)} = 7V)$ even for a short duration.

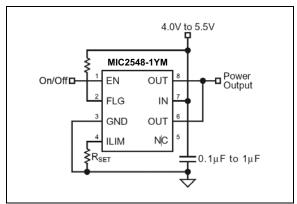


FIGURE 6-1:

Supply Bypassing.

6.2 Power Dissipation

The device's junction temperature depends on several factors such as the load, PCB layout, ambient temperature, and package type. Equations that can be used to calculate power dissipation and junction temperature are found below.

Calculation of power dissipation can be accomplished by the following equation:

EQUATION 6-1:

$$PD = R_{DS(ON)} \times (I_{OUT})^2$$

To relate this to junction temperature, use the following equation:

EQUATION 6-2:

 $T_J = P_D \times \theta_{JA} + T_A$

Where:

T_J Junction temperatureT_A Ambient temperature

 θ_{JA} Thermal resistance of the package

6.3 Transient Overcurrent Filter

The inrush current from the connection of a heavy capacitive load may cause the fault flag to fall for 10 μ s to 200 μ s while the switch is in a constant-current mode, charging the capacitance.

Adding an optional series resistor-capacitor (R_{SET2}) in parallel with R_{SET} , as shown in Figure 6-2, allows the transient current-limit to be set to a different value than steady state. A typical USB hot-plug inrush is 2A to 3A for 10 μs to 20 μs . If R_{SET} is 435 Ω (510 mA), an R_{SET2} of 88 Ω (2.5A) and C_{SET} of 1 μF (R_{C} = 100 μs) allows transient surge of 3A to pass for 100 μs without tripping the overcurrent flag (FLG).

6.4 USB Power Distribution

The MIC2544 is ideal for meeting USB power distribution requirements. Figure 6-2 depicts a USB Host application. R_{SET} should be set to a value providing a current-limit greater than 500 mA.

The accurate current-limit of the MIC2544 will reduce power supply current requirements. Also, fast reaction to short-circuit faults prevent voltage droop in mobile PC applications.

6.5 Printed Circuit Board Hot-Plug

The MIC2544/48 are ideal inrush current-limiters suitable for hot-plug applications. Due to the integrated charge pump, the MIC2544/48 presents a high impedance when off and slowly becomes a low impedance as it turns on.

This soft-start feature effectively isolates power supplies from highly capacitive loads by reducing inrush current during hot-plug events. Figure 6-3 shows how the MIC2544 may be used in a hot-plug application.

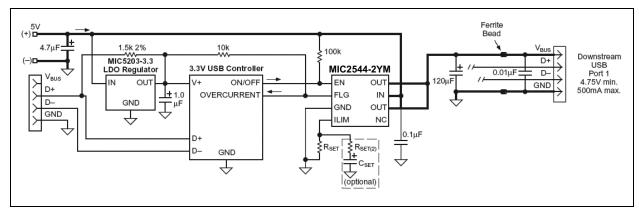


FIGURE 6-2: USB Host Application.

Please note that the MSOP package uses pin 5 for ILIM. Pin 4 is not connected (NC). Bold lines indicate 0.1" wide, 1 oz. copper high-current traces.

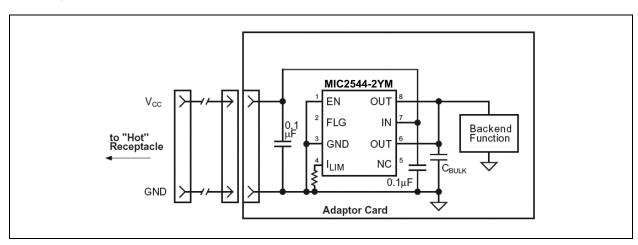


FIGURE 6-3: Hot Plug Application.

7.0 PACKAGING INFORMATION

7.1 Package Marking Information

SOIC-8*

XXXX -XXX WNNNA Example

2544 -1YM 6428A

Note: The "A" in line 3 of the SOIC package appears only on MIC2544.

MSOP-8*

×XXX -XX Example

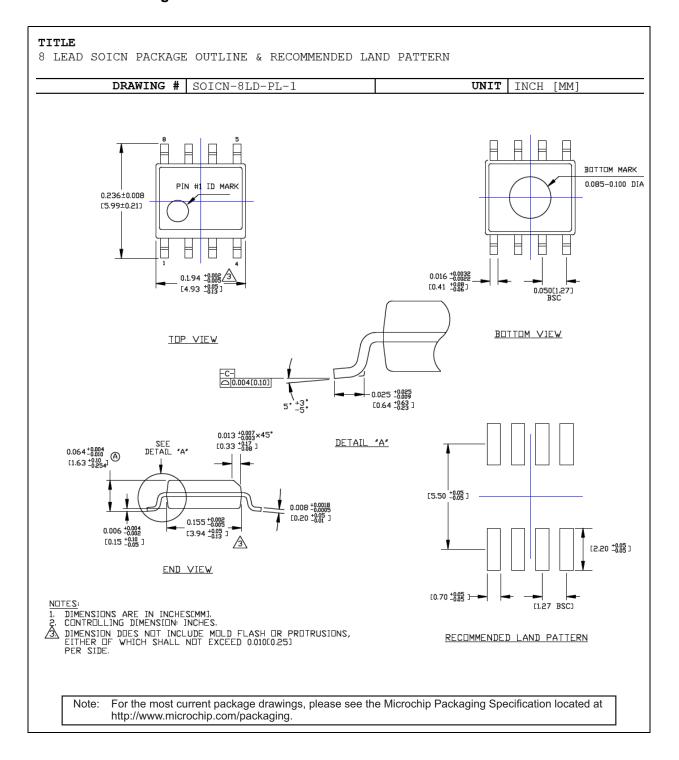
2548 -2Y

Legend: XX...X Product code or customer-specific information

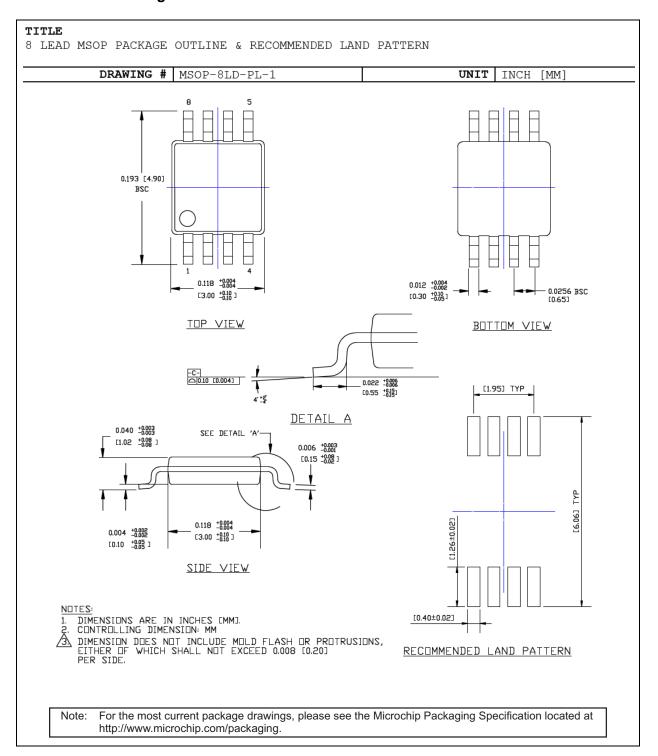
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

(e3) Pb-free JEDEC® designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).


Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (¯) symbol may not be to scale.

8-Lead SOIC Package Outline and Recommended Land Pattern

8-Lead MSOP Package Outline and Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision B (June 2017)

• Minor text changes in the Product Identification System section.

Revision A (March 2017)

- Converted Micrel document MIC2544/48 to Microchip data sheet DS20005725B.
- · Minor text changes throughout.
- Updated absolute maximum Output Voltage values in Absolute Maximum Ratings † section and Application Information section.
- Removed all references to discontinued leaded parts (B-designated parts).

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

DARTNO		Examples:
PART NO Device	Enable Temperature Package Media Type	a) MIC2544-1YM: Programmable Current-Limit High-Side Switch, Active-High-40°C to +125°C Temp. Rang 8-Lead SOIC, 95/Tube
Device:	MIC2544: Programmable Current-Limit High-Side Switch MIC2548: Programmable Current-Limit High-Side Switch with Thermal Shutdown Latch	b) MIC2544-1YM-TR: Programmable Current-Limit High-Side Switch, Active-High-40°C to +125°C Temp. Rang 8-Lead SOIC, 2,500/Reel
Enable:	1 = Active-High 2 = Active-Low	c) MIC2544-2YM: Programmable Current-Limit High-Side Switch, Active-Low –40°C to +125°C Temp. Rang 8-Lead SOIC, 95/Tube
Temperature: Package:	Y = -40°C to +125°C M = 8-Lead SOIC MM = 8-Lead MSOP	d) MIC2544-2YM-TR: Programmable Current-Limit High-Side Switch, Active-Low –40°C to +125°C Temp. Rang 8-Lead SOIC, 2,500/Reel
Media Type:	TR = 2,500/Reel (blank)= 95/Tube (SOIC) (blank)= 100/Tube (MSOP)	e) MIC2548-1YM: Programmable Current-Limit High-Side Switch, Thermal Shutdown Latch, Active-High, -40°C to +125°C Temp. Rang 8-Lead SOIC, 100/Tube
		f) MIC2548-1YM-TR: Programmable Current-Limit High-Side Switch, Thermal Shutdown Latch, Active-High, —40°C to +125°C Temp. Rang 8-Lead SOIC, 2,500/Reel
		g) MIC2548-2YM: Programmable Current-Limit High-Side Switch, Thermal Shutdown Latch, Active-Low, —40°C to +125°C Temp. Rang 8-Lead SOIC, 100/Tube
		h) MIC2548-2YM-TR: Programmable Current-Limit High-Side Switch, Thermal Shutdown Latch, Active-Low, —40°C to +125°C Temp. Rang 8-Lead SOIC, 2,500/Reel
		Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-1794-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393
China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR VNV35N07-E MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12