General Description

MIC2569 is designed to supply power to OpenCable ${ }^{\text {TM }}$ systems and CableCARD ${ }^{\text {M }}$ hosts. These CableCARDs are also known as Point of Distribution (POD) cards.

MIC2569 supports both Single and Multiple stream cards through a simple to control parallel interface. All voltage switching is soft-start at turn-on, and break-before-make when changing between different voltage supplies.

Built in current limiting protects all V_{CC} and V_{PP} output lines of the host system from card faults and accidental short circuits. MIC2569 provides a FAULT/ signal to indicate an over-current or fault condition exists and is equipped with internal thermal monitoring circuitry to protect the device itself in the event of a sustained over-current condition.

MIC2569 is offered in a space saving 16 pin QSOP packaging.

Data sheets and support documentation can be found on Micrel's web site at www.micrel.com.

Features

- $110 \mathrm{~m} \Omega$ maximum V_{Cc} on resistance
- $400 \mathrm{~m} \Omega$ maximum V_{PP} on resistance
- 3.0 V to 3.6 V for the 3.3 V IN operating range
- 3.0 V to 5.5 V for the 5 V IN operating range
- 1.3A minimum V_{CC} current limit
- 150 mA minimum V_{PP} current limit (150mA each)
- Compact 16-pin QSOP packaging
- Operating temperatures from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Low quiescent current
- Soft start turn-on
- Break-before-make voltage switching
- Short-circuit protection with thermal shutdown
- Input under voltage lock-out (UVLO)
- ESD protection
- No external components required

Applications

- Satellite / Cable / DVR / Television set top boxes
- Video recorders
- Game consoles

Typical Application

CableCARD is a trademark of CableLabs, Inc.
OpenCable is a trademark of Cable Television Laboratories, Inc.
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Ordering Information

Part Number	Marking	Pb-Free	Junction Temp. Range	Package
MIC2569YQS	MIC2569YQS	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-$ pin QSOP

Pin Configuration

16-Pin QSOP (QS)

Pin Description

Pin Number	Pin Name	Pin Function					
1	GND	Ground.					
2	NIC	No internal connection. A voltage or signal applied to this pin will have no effect on device operation.					
3	3.3 VIN	3V Supply input. Internal chip power is drawn from this supply.					
4	5 VIN	5 V Supply input.					
5	3.3 VIN	3V Supply input. Note: both 3.3 VIN inputs must be powered to insure rated current and R_{oN} is met.					
6	NIC	No internal connection. A voltage or signal applied to this pin will have no effect on device operation.					
7	C1	Control Pins			Outputs		
		C2	C1	C0	VCC	VPP1	VPP2
		0	0	0	3.3 V	3.3 V	3.3 V
8	C2	0	0	1	3.3 V	5.0 V	5.0 V
		0	1	0	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z
		0	1	1	Hi-Z	GND	Hi-Z
		1	0	0	3.3 V	GND	5.0 V
9	C0	1	0	1	3.3 V	5 V	GND
		1	1	0	3.3 V	GND	GND
		1	1	1	GND	GND	GND
10	FAULT/	FAULT/ indicates the occurrence of a fault. FAULT/ is an open drain LOW true output and goes low when any supply output is in current limit or if a thermal fault occurs.					
11	NIC	No internal connection. A voltage or signal applied to this pin will have no effect on device operation.					
12	VPP2	VPP2 output to CableCARD ${ }^{\text {TM }}$ card.					
13	VCC	VCC (3 V main supply) output to CableCARD ${ }^{\text {TM }}$ card. Both output pins should be connected together.					
14							
15	NIC	No internal connection. A voltage or signal applied to this pin will have no effect on device operation.					
16	VPP1	VPP1 output to CableCARD ${ }^{\text {TM }}$ card.					

Absolute Maximum Ratings ${ }^{(1)}$

Power Supply Voltage	
5VIN	-0.3V to +6.0V
3 SV ...-0.0. 3 V to +6.0 V	. V to +3.8 V
Voltage on any other pin..	
Continuous Output Current:	
VCC*)	
VPP	. Internally limited
Current Into/Out of any control pin: $\pm 10 \mathrm{~mA}$	
Junction Temperature ... $150^{\circ} \mathrm{C}$	

Operating Ratings ${ }^{(2)}$

Power Supply Voltage	
5 VIN	3.0 V to 5.5 V
3.3VIN	3.0 V to 3.6 V
Continuous Output Current	
VCC	3.3A
VPP ... 45	
Ambient Temperature (T_{A})....................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Thermal Resistance ($\theta_{\text {JJ }}$)............................... $100.8^{\circ} \mathrm{C} / \mathrm{W}$	
Soldering: QSOP Packages	
Infrared (10 to 20 se	

Electrical Characteristics ${ }^{(4)}$

$3.3 \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V} ; 5 \mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition			Min	Typ	Max	Units
3.3VIN	Operating input voltage				3.0	3.3	3.6	V
5VIN	Operating input voltage				3.0	5.0	5.5	V
IVIN	$\mathrm{I}_{3.3 \mathrm{VIN}}$ Supply Input Current	No Load$\mathrm{C} 2, \mathrm{C} 1, \mathrm{C0}=$	S-Mode	000		140	220	$\mu \mathrm{A}$
				001		110	200	$\mu \mathrm{A}$
			M-Mode	010		80	220	$\mu \mathrm{A}$
				100		100	220	$\mu \mathrm{A}$
				111		90	180	$\mu \mathrm{A}$
	$\mathrm{I}_{5 \mathrm{VIN}}$ Supply Input Current	No Load$\mathrm{C} 2, \mathrm{C} 1, \mathrm{C} 0=$	S-Mode	000		10	30	$\mu \mathrm{A}$
				001		50	150	$\mu \mathrm{A}$
			M-Mode	010		10	220	$\mu \mathrm{A}$
				100		35	220	$\mu \mathrm{A}$
				111		10	30	$\mu \mathrm{A}$
UVLO	Under Voltage Lock Out	3.3VIN rising			2.50	2.76	2.85	V
		3.3VIN falling			2.45	2.69	2.80	V
UVLO ${ }_{\text {HYS }}$	Hysteresis					80		mV
Power Switches								
$\mathrm{R}_{\text {DS_ON }}$	R ${ }_{\text {ON_vcc }}$ VCC Switch Resistance:	$\mathrm{l}_{\text {OUt }}=1000 \mathrm{~mA}$				80	110	$\mathrm{m} \Omega$
	Ron_VPP1 VPP1 Switch Resistance:	$\mathrm{I}_{\text {OUT }}=125 \mathrm{~mA} \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$				275	400	$m \Omega$
		$\mathrm{I}_{\text {OUT }}=125 \mathrm{~mA} \mathrm{~V}$ OUT $=5.0 \mathrm{~V}$				275	400	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {limit }}$	ILIMIT_VCC Output Current Limit: VCC	$\mathrm{VCC}=3.3 \mathrm{~V}$			1.3	2.3	3.3	A
	$\mathrm{I}_{\text {LIMIT VPP1 }}$ Output Current Limit: VPP ${ }_{1}$	$\mathrm{VPP} 1=3.3 \mathrm{~V}$ and $\mathrm{VPP} 1=5.0 \mathrm{~V}$			150	300	450	mA

I/O Logic	Condition	Min	Typ	Max	Units	
Symbol	Parameter				$\mathbf{1}$	V
V_{IL}	LOW-Level Input Voltage		$\mathbf{2}$			V
V_{IH}	HIGH-Level Input Voltage			100		mV
	Input Hysteresis	C2, C1, CO	-1		+1	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {IN_LGC }}$	Input leakage Current	Output OFF leakage current	FAULT/, $\mathrm{V}_{\text {FAULT/ }}=5 \mathrm{~V}$		4	$\mathbf{1 0}$
$\mathrm{I}_{\text {OFF }}$	FAULT/, I $\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$					
$\mathrm{~V}_{\text {OL_OD }}$	Open Drain Output LOW Voltage	FA	$\mathbf{0 . 2}$	V		

AC Characteristics

The S-Mode and M-Mode AC Characteristics are not tested in production, specified by design.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$t_{\text {D_FAULT/ }}$	Delay before asserting or deasserting FAULT/	Fault on VCC, VPP1, or VPP2	$\mathbf{4}$	12	$\mathbf{2 4}$	ms

S-Mode				
tpwrup_s-MODE_VCC	Power-up Rise Time	No Power to VIN Compliance Notes 5 \& 6	750	$\mu \mathrm{s}$
tpwrup_s-MODE_VPP			800	$\mu \mathrm{s}$
Ton_000-001_VPP	Output Turn On Delay Time	$\begin{aligned} & 000 \text { to } 001 \\ & \text { Notes } 8 \text { \& } 9 \end{aligned}$	800	$\mu \mathrm{s}$
tr_000-001_VPP	Output Rise Time		800	$\mu \mathrm{s}$
toFF_001-000_VPP	Output Turn-Off Delay	$\begin{aligned} & 001 \text { to } 000 \\ & \text { Notes } 8 \text { \& } 10 \end{aligned}$	35	$\mu \mathrm{s}$
$\mathrm{t}_{\text {_ } 001-000 _V P P}$	Output Fall Time		25	$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF_001-110_VPP }}$	Output Discharge Delay	001 to 110 Notes 8 \& 10	35	$\mu \mathrm{s}$
$t_{\text {F_001-110_VPP }}$	Output Discharge Time		25	$\mu \mathrm{s}$
$\mathrm{t}_{\text {ON_110-000_VPP }}$	Output Turn On Delay Time	$\begin{aligned} & 110 \text { to } 000 \\ & \text { Notes } 8 \& 9 \end{aligned}$	100	$\mu \mathrm{s}$
$\mathrm{t}_{\text {R_110-000_VPP }}$	Output Rise Time		800	$\mu \mathrm{s}$

M-Mode							
Symbol	Parameter	Condition		Min	Typ	Max	Units
$\mathrm{t}_{\text {ON_011-100_vcc }}$	Output Turn On Delay Time	Notes 5 \& 6	011 to 100		50		$\mu \mathrm{s}$
$t_{\text {R_011-100_vcc }}$	Output Rise Time				750		$\mu \mathrm{s}$
$\mathrm{t}_{\text {ON_011-100_VPP }}$	Output Turn On Delay Time	Notes 8 \& 9			800		$\mu \mathrm{s}$
$\mathrm{t}_{\text {R_011-100_VPP }}$	Output Rise Time				800		$\mu \mathrm{s}$
toFF_100-010_VCC	Output Turn-Off Delay	Notes 5 \& 7	100 to 010		35		$\mu \mathrm{s}$
$\mathrm{t}_{\text {F_100-010_VCC }}$	Output Fall Time				25		$\mu \mathrm{s}$
toFF_100-010_VPP	Output Turn-Off Delay	Notes 8 \& 10			35		$\mu \mathrm{s}$
$\mathrm{t}_{\text {_100-010_VPP }}$	Output Fall Time				25		$\mu \mathrm{s}$

Symbol	Parameter	Condition		Min	Typ	Max	Units
$\mathrm{t}_{\text {OFF_100-111_VCC }}$	Output Discharge Delay	Notes 5 \& 7	100 to 111		35		$\mu \mathrm{s}$
$\mathrm{t}_{\text {__100-111_Vcc }}$	Output Discharge Time				25		$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF_100-111_VPP }}$	Output Discharge Delay	Notes 8 \& 10			35		$\mu \mathrm{s}$
$\mathrm{t}_{\text {F_100-111_VPP }}$	Output Discharge Time				25		$\mu \mathrm{s}$

Notes:

1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 k in series with 100 pF .
4. Specification for packaged product only.
5. $R L=10 \Omega, C L=1 \mu F$, See Figures $1,2$.
6. Maximum transition time to 3.3 V compliance, from any state including VCC equal to GND.
7. Maximum transition time to GND, from any state including VCC equal to 3.6 V .
8. $R L=100 \Omega, C L=0.1 \mu F$, See Figures 1,2
9. Maximum transition time to 5 V compliance, from any state including VPP equal to GND.
10. Maximum transition time to GND, from any state including VPP equal to 5.5 V .

Timing Diagram

Figure 1. Turn-On and Turn-Off Delay

Figure 2. Rise and Fall Time

Typical Characteristics

$t_{\text {D_FAULT }}$
vs. Temperature

$t_{\text {OFF_VCC }}$
vs. Temperature

$\mathrm{t}_{\text {OFF }}$ vs. Temperature
State 010 to 100

VCC $R_{\text {Ds_on }}$

${ }^{\text {ton_vce }}$
vs. Temperature

$\mathrm{O}_{\mathrm{N}} \mathrm{vs}$. Temperature
State 010 to 100

t_{F} vs. Temperature
State 010 to 100

$t_{\text {F_VPP }}$
vs. Temperature

Output Leakage
vs. Temperature

Discharge Resistance
vs. Temperature

Functional Characteristics

MIC2569 Block Diagram

Functional Description

3.3VIN and 5.0VIN

3.3 VIN and 5 VIN are the input power supplies for the MIC2569. 3.3 VIN powers the MIC2569's internal functions; as well as, VCC, and VPP1 and VPP2. 5VIN provides power to VPP1 and VPP2. Tables 1 and 2 shows the control states which supply is provided to which output

C0, C1, C2 (States Controls)

C0, C1, and C2 control the output conditions for VCC, VPP1 and VPP2. C0, C1, and C2 are inputs to the MIC2569 provided by the host. See Tables 1 and 2 for a complete listing. Also see the Application Information section.

VCC

VCC provides the main 3.3 V supply to the CableCARD device. VCC is protected against high current conditions and short circuits. The minimum current limit is set to 1.3 A from 3.3 VIN . Break-before-make switching prevents crossed connections during state changes. The VCC output depends on the host / card combination. See Tables 1 and 2 for a complete listing. Also see the Application Information section.

VPP1, VPP2 (VPP1/2)

VPP1 and VPP2 provide the 3.3 V and 5.0 V supplies to the CableCARD device. VPP1 and VPP2 are protected against high current conditions and short circuits. The minimum current limit is set to a minimum of 150 mA . Note: VPP1 and VPP2 are powered separately with each having a current limit of 150 mA Break-before-make switching prevents crossed connections during state changes. The VPP1/2 output depends on the host / card combination. See Tables 1 and 2 for a complete listing. Also see the Application Information section.

Soft-Start

The VCC, VPP1 and VPP2 outputs are all slew rate
controlled insuring a soft-start turn-on characteristic. Soft-starting is in effect anytime a supply ramps from a OV condition or switches between voltages, as in the case of the VPP outputs.

Thermal Shutdown

Because electrical faults can cause significant heating in power switches, MIC2569 monitors its internal temperature and will shut down should the die temperature reach $140^{\circ} \mathrm{C}$. When the die temperature has dropped by about 10 degrees, MIC2569 will reactivate its outputs. If there is still a problem, the effected power switch will again get hot, shutting off all outputs. This power cycling action will continue as long as the fault persists. Once removed, MIC2569 will resume normal operation.

FAULTI

FAULT/ is a LOW true open drain output which signals an over current or over-temp condition. As an open drain device, this output can be wire OR'd with other FAULT/ outputs to a single input pin on the host. For proper operation this output must be pulled-up to the logic supply rail by an external resistor. This resistor can be large in value, but not so large that leakage currents caused by surface contamination can cause a false indication of a fault condition. For this reason it is recommended that the pull-up resistor be $300 \mathrm{k} \Omega$ or less.
FAULT/ is delayed with respect to an over current condition being detected. This is to prevent brief current spikes from triggering an interrupt to the system host. The delay is on the order of 12 ms . Any fault lasting over 8 ms triggers the FAULT/ output. There is no delay for thermal faults. Any over-temp condition is reported immediately.

UVLO (Under Voltage Lockout)

An under-voltage lock out (UVLO) circuit monitors the 3.3 VIN rail and keeps MIC2569 disabled until the input voltage reaches the minimum level needed for proper operation. Below this voltage the output switches are OFF and all functionality is disabled.

System State	S-Mode					M-Mode			
	State	VCC	VPP1	VPP2	State	VCC	VPP1	VPP2	
Power-up	000	3.3 V	3.3 V	3.3 V	010	$\mathrm{Hi}-Z$	$\mathrm{Hi}-Z$	$\mathrm{Hi}-Z$	
No Card	000	3.3 V	3.3 V	3.3 V	010	$\mathrm{Hi}-Z$	$\mathrm{Hi}-Z$	$\mathrm{Hi}-Z$	
Card Detect	000	3.3 V	3.3 V	3.3 V	011	$\mathrm{Hi}-Z$	GND	$\mathrm{Hi}-Z$	
After ID	000	3.3 V	3.3 V	3.3 V	100	3.3 V	GND	5 V	
CIS request	001	3.3 V	5 V	5 V	-	-	-	-	
Card removal	000	3.3 V	3.3 V	3.3 V	111	GND	GND	GND	
No Card	000	3.3 V	3.3 V	3.3 V	010	$\mathrm{Hi}-Z$	Hi-Z	Hi-Z	

Table 1 Output States for S and M type CableCARD ${ }^{\text {TM }} \mathbf{s}$

Control State	Control Pins			Outputs		
	C2	C1	C0	VCC	VPP1	VPP2
0	0	0	0	3.3 V	3.3V	3.3 V
1	0	0	1	3.3 V	5V	5 V
2	0	1	0	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z
3	0	1	1	Hi-Z	GND	Hi-Z
4	1	0	0	3.3 V	GND	5 V
5	1	0	1	3.3 V	5 V	GND
6	1	1	0	3.3 V	GND	GND
7	1	1	1	GND	GND	GND

Table 2 Output Control

Application Information

CableCARD ${ }^{\text {TM }}$ Operating Modes

The OpenCable system has a host component (S-Host or M-Host) and a card component (S-Card or M-Card). The host / card combination determines which operational mode is used i.e. S-Mode or M-Mode. This in turn determines the appropriate state diagram. Table 3 below shows all of the combinations and operating modes.

	S-Host	M-Host
S-Card	S-Mode	S-Mode or No power
M-Card	S-Mode	M-Mode

Table 3 Operating Mode Combinations
An M-Host has the choice to accept or not accept an SCard. If the M-Host accepts the S-Card then the M-Host will initiate a change from M-Mode to S-Mode. Otherwise, the M-Host will not power-up the S-Card.

S-Host

After power-up, the S-Host remains in state 0 [000] unless one of two events occurs:

1. CIS Request - The CableCard ${ }^{\text {TM }}$ may request that the Vpp outputs be provided with 5 VIN , that is, enter state 1 [001]. It is the S-Host decision whether to provide the Vpp outputs with 5VIN. The S-Host has two possible options.
a. If the S-Host refuses to provide 5 VIN , then the S-Host does not change to state 1 [001] and will remain in state 0 [000], even upon card removal. See paragraph 2 below.
b. If the S-Host grants 5 VIN , then S-Host changes to state 1 [001]. The S-Host remains in state 1 [001] without returning. See paragraph 2 below.
2. Card removal - Upon card removal, the S-Host has two possible options:
a. The S-Host changes directly to state 0 [000], regardless of the state at card was removed.
b. The S-Host has the option to pass through state 6 [110] to remove any excessive voltage or charge on the Vpp outputs. The S-Host then returns to state 0 [000].

Figure 1 shows S-Mode power state diagram.

Figure 1 S-Host Power State Diagram

M-Host

1. Power-up - Upon power-up, M-Host two options:
a. Move directly the state 2 [010]
b. Pass through state 7 [111] to remove any excess voltage or charge, then move to state 2 [010]
2. No Card - M-Host will remain in state 2 [010] until card insertion.
3. Card Detection - If the M-Host detects that the inserted card is an M-card, then the M- Host will change to state 3 [011]. This informs the card that the host is an M-Host.
4. Card ID - The M-Host uses the card identification process to determine what type of card it is and what modes the card can operate in. There are three options:
a. If the card is an M-Card, then the MHost will change to state 4 [100] and remain in state 4 [100] until card removal.
b. If the card is an S-Card able to support CH 1 , then the M-Host will reset the card and power-up in S-Mode. The card will remain in S-Mode until card removal.
c. If the card is not an M-Card, or an SCard not able to support Ch1, then power will not be provided to the card. The card will remain without power and not change state until card removal.
5. Card removal - Upon card removal the M-Host will pass through state 7 [111] to remove any excessive voltage or charge on the Vcc and Vpp outputs. The M-Host then returns to state 2 [010].
Figure 2 below shows M-Mode power state diagram.

Figure 2 M-Host Power State Diagram

Package Information

16-Pin QSOP (QS)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2007 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P FPF1018 DS1222 NCV380HMUAJAATBG TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK L9347LF-TR MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL L9352B-TR-LF BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513GJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR $\underline{\text { BTS500251TADATMA2 MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073 }}$

