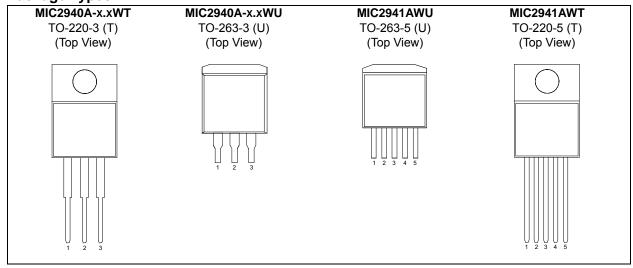


1.25A Low Dropout Voltage Regulator

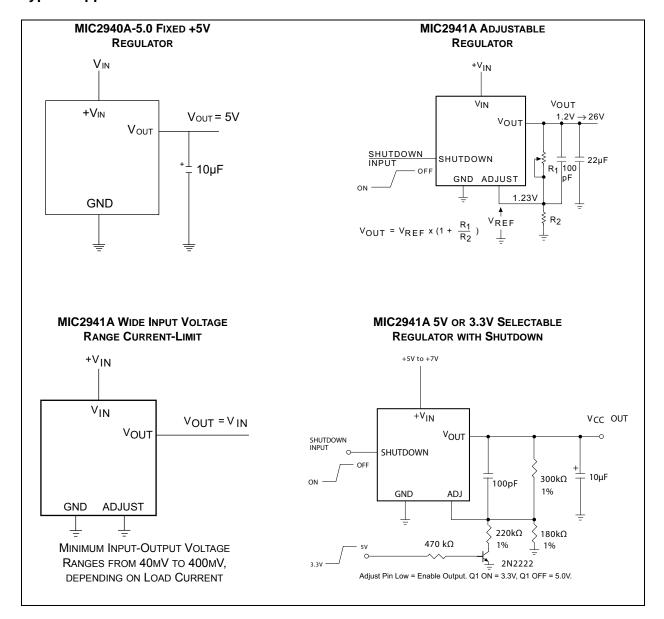
Features

- · High Output Voltage Accuracy
- · Guaranteed 1.25A Output
- · Low Quiescent Current
- · Low Dropout Voltage
- · Extremely Tight Load and Line Regulation
- · Very Low Temperature Coefficient
- · Current and Thermal Limiting
- Input Can Withstand –20V Reverse Battery and +60V Positive Transients
- · Logic-Controlled Electronic Shutdown
- Output Programmable from 1.24V to 26V (MIC2941A)
- Available in TO-220, TO-263, TO-220-5, and TO-263-5 Packages

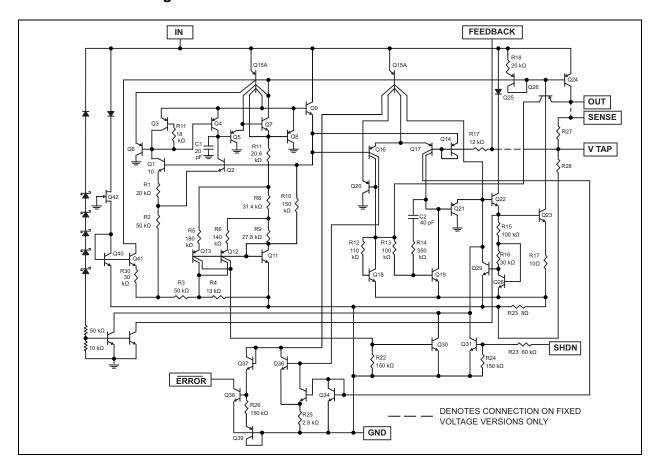
Applications


- · Battery-Powered Equipment
- · Cellular Telephones
- · Laptop, Notebook, and Palmtop Computers
- PCMCIA V_{CC} and V_{PP} Regulation/Switching
- · Barcode Scanners
- · Automotive Electronics
- SMPS Post-Regulator/DC-to-DC Modules
- Voltage Reference
- · High Efficiency Linear Power Supplies

General Description


The MIC2940A and MIC2941A are "bulletproof" efficient voltage regulators with very low dropout voltage (typically 40 mV at light loads and 350 mV at 1A), and low quiescent current (240 µA typical). The quiescent current of the MIC2940A increases only slightly in dropout, thus prolonging battery life. Key MIC2940A features include protection against reversed battery, fold-back current-limiting, and automotive "load dump" protection (60V positive transient).

The MIC2940A is available in both fixed voltage (3.3V, 5V, and 12V) and adjustable voltage configurations. The MIC2940A-xx devices are three pin, fixed-voltage regulators. A logic-compatible shutdown input is provided on the adjustable MIC2941A, which enables the regulator to be switched on and off.


Package Types

Typical Application Circuits

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Power Dissipation (P _D)	Internally Limited, Note 1
Input Supply Voltage	–20V to +60V
Adjust Input Voltage (Note 2, Note 3)	1.5V to +26V
Shutdown Input Voltage	
Error Comparator Output Voltage	0.3V to +30V
Operating Ratings ‡	
Input Supply Voltage (Note 4)	+2V to +26V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

‡ Notice: The device is not guaranteed to function outside its operating ratings.

- **Note 1:** The maximum allowable power dissipation of any T_A (ambient temperature) is $P_{D(max)} = (T_{J(max)} T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
 - 2: Circuit of MIC2941A Adjustable Regulator in the Typical Application Circuits section (upper right) with R1 ≥ 150 kΩ. V_{SHUTDOWN} ≥ 2V and V_{IN} ≤ 26V, V_{OUT} = 0.
 - **3:** When used in dual supply systems where the regulator load is returned to a negative supply, the output voltage must be diode clamped to ground.
 - **4:** Across the full operating temperature, the minimum input voltage range for full output current is 4.3V to 26V. Output will remain in regulation at lower output voltages and low current loads down to an input of 2V at 25°C.

TABLE 1-1: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Limits in standard typeface are for T_J = +25°C and limits in **boldface** apply over the full operating temperature range. Unless otherwise specified, V_{IN} = V_{OUT} + 1V, I_L = 1000 mA, C_L = 10 μ F. The MIC2941A is programmed to output 5V and has $V_{SHUTDOWN}$ 0.6V.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
		–1	_	1		_
Output Voltage Accuracy	Vo	-2	_	2	%	_
		-2.5		2.5		5mA ≤ I _L ≤ 1A
Output Voltage Temperature Coefficient	ΔV _O /ΔΤ	_	20	100	ppm/°C	Note 1
Line Regulation	ΔV _O /V _O	_	0.06	0.50	0/	$I_{O} = 10 \text{ mA},$ $(V_{OUT} + 1V) \le V_{IN} \le 26V$
Load Regulation		_	0.04	0.16	%	I _L = 5 mA to 1.25A
		_	_	0.20		I _L = 5 mA to 1A, Note 2
		_	60	150		I _I = 5 mA
		_	_	180		IL - 5 IIIA
		_	200	250		L = 250 mA
Dropout Voltage, Note 3	$V_{IN} - V_{O}$	_		320	mV	I _L = 250 mA
		_	350	450		I _I = 1000 mA
		_	_	600		- 1000 MA
		_	400	600		I _L = 1250 mA

TABLE 1-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Limits in standard typeface are for T_J = +25°C and limits in **boldface** apply over the full operating temperature range. Unless otherwise specified, V_{IN} = V_{OUT} + 1V, I_L = 1000 mA, C_L = 10 μ F. The MIC2941A is programmed to output 5V and has $V_{SHUTDOWN}$ 0.6V.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
		_	240	500	μA	I _L = 5 mA
		_	3	4.5		L = 250 mA
Ground Pin Current, Note 4		_	_	6		I _L = 250 mA
Glound Fill Culterit, Note 4	I _{GND}		22	35	mA	I _I = 1000 mA
				45		IL = 1000 IIIA
			35	70		I _L = 1250 mA
Ground Pin Current at Dropout, Note 4	I _{GNDDO}		330	600	μA	V_{IN} = 0.5V less than designed V_{OUT} (V_{OUT} 3.3), I_{L} = 5 mA
Current-Limit	I _{LIMIT}		1.6	3.5	Α	V _{OUT} = 0V, Note 5
Thermal Regulation	$\Delta V_O/\Delta P_D$	_	0.05	0.2	%/W	Note 6
Output Noise Voltage			400	_		C _L = 10 μF
(10 Hz to 100 kHz) I _L = 100 mA	e _n		260	_	μV _{RMS}	C _L = 33 µF
Electrical Characteristics for	MIC2941A	Only				
		1.223	1.235	1.247		
Reference Voltage	V_{REF}	1.210		1.260	V	Note 7
		1.204	_	1.266		
Adjust Pin Bias Current	1		20	40	nA	
Adjust Fill Blas Cullent	I _{BIAS}	_	_	60	IIA	_
Reference Voltage Temperature Coefficient	ΔV _{REF} /ΔΤ	_	20	_	ppm/°C	_
Adjust Pin Bias Current Temperature Coefficient	ΔI _{BIAS} /ΔΤ	_	0.1	_	nA/°C	_

TABLE 1-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Limits in standard typeface are for T_J = +25°C and limits in **boldface** apply over the full operating temperature range. Unless otherwise specified, V_{IN} = V_{OUT} + 1V, I_L = 1000 mA, C_L = 10 μ F. The MIC2941A is programmed to output 5V and has $V_{SHUTDOWN}$ 0.6V.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions		
Shutdown Input								
Input Logio Voltago	V _{IL}	_	1.3	0.7	V	Low (ON)		
Input Logic Voltage	V _{IH}	2.0			٧	High (OFF)		
			30	50		- 2 4)/		
Shutdown Pin Input Current	I _{SHDN}	_	_	100	μΑ	V _{SHUTDOWN} = 2.4V		
Shutdown Fin Input Current		_	450	600		V = 26V		
		_	_	750		V _{SHUTDOWN} = 26V		
Regulator Output Current in		_	3	30		Note 8		
Shutdown	IOUT(SHDN)		_	60	μA	Note o		

- **Note 1:** Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - 2: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
 - **3:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At low values of programmed output voltage, the minimum input supply voltage of 4.3V over temperature must be taken into account.
 - **4:** Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current plus the ground pin current.
 - 5: The MIC2940A features fold-back current limiting. The short-circuit (V_{OUT} = 0V) current-limit is less than the maximum current with normal output voltage.
 - 6: Thermal regulation is defined as the change in output voltage at a time (T) after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 200 mA load pulse at V_{IN} = 20V (a 4W pulse) for T = 10 ms.
 - 7: $V_{REF} \le V_{OUT} \le (V_{IN} 1 V)$, $4.3V \le V_{IN} 26V$, $5 \text{ mA} < I_L \le 1.25A$, $T_J \le T_{J(MAX)}$.
 - **8:** When used in dual supply systems where the regulator load is returned to a negative supply, the output voltage must be diode clamped to ground.

TEMPERATURE SPECIFICATIONS (Note 1)

•						
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Storage Temperature Range	T _S	-65	_	+150	°C	_
Junction Operating Temperature Range	TJ	-40	_	+125	°C	_
Lead Temperature	_	_	_	+260	°C	Soldering, 5s
Package Thermal Resistances						
Thermal Resistance TO-220	θ_{JC}	_	2	_	°C/W	_
Thermal Resistance TO-263	$\theta_{\sf JC}$	_	2	_	°C/W	_

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

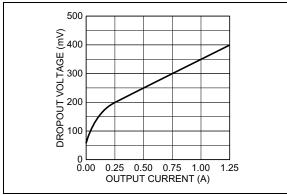


FIGURE 2-1: Dropout Voltage vs. Output Current.

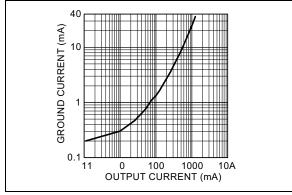
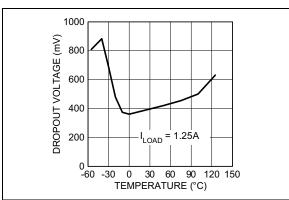



FIGURE 2-4: Ground Current vs. Output Current.

FIGURE 2-2: Dropout Voltage vs. Temperature.

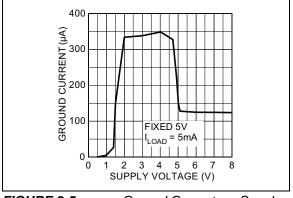


FIGURE 2-5: Ground Current vs. Supply Voltage.

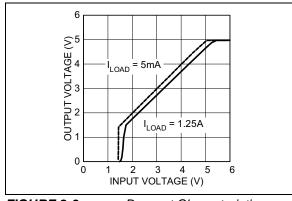


FIGURE 2-3: Dropout Characteristics.

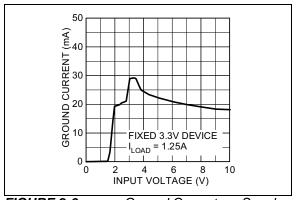


FIGURE 2-6: Ground Current vs. Supply Voltage.

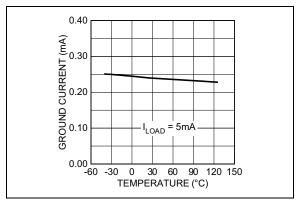


FIGURE 2-7: Temperature.

Ground Current vs.

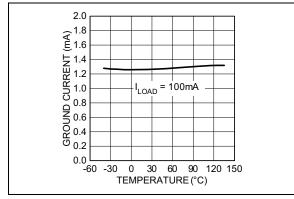
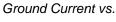
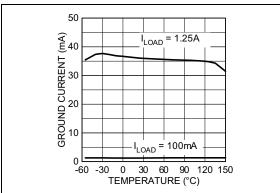



FIGURE 2-8: Temperature.



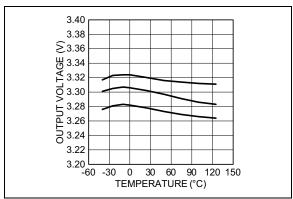
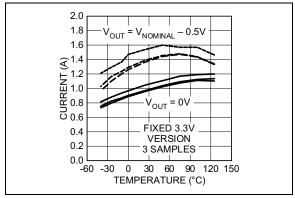
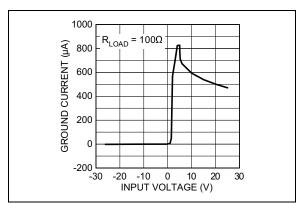


FIGURE 2-9: Temperature.




FIGURE 2-10:

Fixed 3.3V Output Voltage

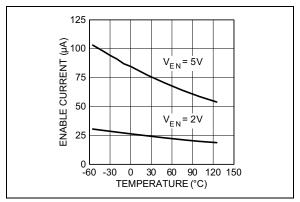


FIGURE 2-11: Short-Circuit and Maximum Current vs. Temperature.

FIGURE 2-12: Voltage.

Ground Current vs. Input

FIGURE 2-13: MIC2941A Shutdown Current vs. Temperature.

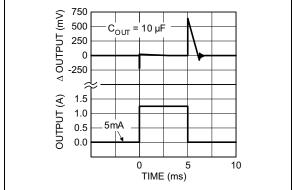


FIGURE 2-14: Load Transient.

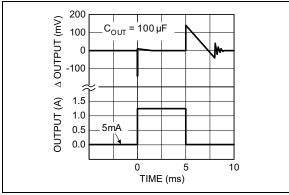


FIGURE 2-15: Load Transient.

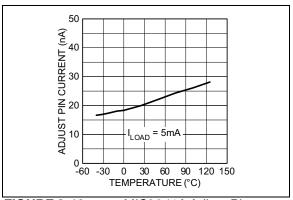


FIGURE 2-16: MIC2941A Adjust Pin Current vs. Temperature.

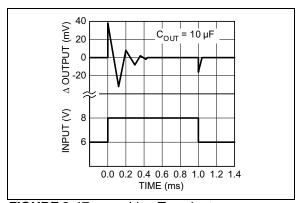


FIGURE 2-17: Line Transient.

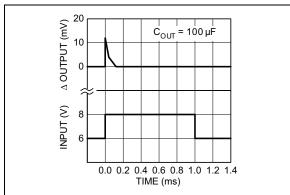


FIGURE 2-18: Line Transient.

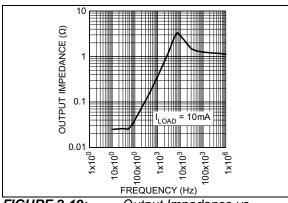


FIGURE 2-19:

Output Impedance vs.

Frequency.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

MIC2940A Pin Number	MIC2941A Pin Number	Pin Name	Description	
1	4	Input	Unregulated input supply.	
2	3	Ground	Ground.	
3	5	Output	Regulated output voltage.	
_	1	Adjust	Adjust (input): Connect to an external resistor voltage divider to set the output voltage.	
_	2	Shutdown	Shutdown/Enable (input): Logic level low = Enable. Logic level high = Shutdown.	

4.0 APPLICATION INFORMATION

4.1 **External Capacitors**

A 10 µF (or greater) capacitor is required between the MIC2940A output and ground to prevent oscillations due to instability. Most types of tantalum or aluminum electrolytics will be adequate; film types will work, but are costly and therefore not recommended. Many aluminum electrolytics have electrolytes that freeze at about -30°C, so solid tantalums are recommended for operation below -25°C. The important parameters of the capacitor are an effective series resistance of about 5Ω or less and a resonant frequency above 500 kHz. The value of this capacitor may be increased without limit.

At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to 3.3 µF for current below 100 mA or 2.2 µF for currents below 10 mA. Adjusting the MIC2941A to voltages below 5V runs the error amplifier at lower gains so that more output capacitance is needed. For the worst-case situation of a 1.25A load at 1.23V output (Output shorted to Adjust) a 22 µF (or greater) capacitor should be used.

The MIC2940A will remain stable and in regulation with load currents ranging from 5 mA on up to the full 1.25A rating. The external resistors of the MIC2941A version may be scaled to draw this minimum load current.

A 0.22 µF capacitor should be placed from the MIC2940A input to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery is used as the input.

4.2 **Programming the Output Voltage** (MIC2941A)

The MIC2941A may be programmed for any output voltage between its 1.235V reference and its 26V maximum rating. An external pair of resistors is required, as shown in the MIC2941A Adjustable Regulator Typical Application Circuit.

EQUATION 4-1:
$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right) - \left|I_{FB}\right| \times R1$$

 V_{REF} = The nominal 1.235V reference voltage. I_{FB} = The adjust pin bias current (nom. 20 nA).

The minimum recommended load current of 1 µA forces an upper limit of 1.2 M Ω on the value of R2, if the regulator must work with no load (a condition often found in CMOS in standby), I_{FB} will produce a -2% typical error in V_{OUT} which may be eliminated at room temperature by trimming R1. For better accuracy, choosing R2 = $100 \text{ k}\Omega$ reduces this error to 0.17% while increasing the resistor program current to 12 µA. Because the MIC2941A typically draws 100 µA at no load with SHUTDOWN open-circuited, this is a negligible addition.

4.3 **Reducing Output Noise**

In reference applications, it may be advantageous to reduce the AC noise present at the output. One method is to reduce the regulator bandwidth by increasing the size of the output capacitor. This is relatively inefficient, as increasing the capacitor from 1 µF to 220 µF only decreases the noise from 430 μV to 160 μV_{RMS} for a 100 kHz bandwidth at 5V output. Noise can be reduced by a factor of four with the MIC2941A by adding a bypass capacitor across R1.

EQUATION 4-2:

$$C_{BYPASS} = \frac{1}{2\pi \times R1 \times 200 Hz}$$

Pick a bypass capacitor of about 0.01 µF. When doing this, the output capacitor must be increased to 22 μ F to maintain stability. These changes reduce the output noise from 430 μV to 100 μV_{RMS} for a 100 kHz bandwidth at 5V output. With the bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

4.4 **Automotive Applications**

The MIC2940A is ideally suited for automotive applications for a variety of reasons. It will operate over a wide range of input voltages with very low dropout voltages (40 mV at light loads), and very low quiescent currents (240 µA typical). These features are necessary for use in battery powered systems, such as automobiles. It is a "bulletproof" device with the ability to survive both reverse battery (negative transients up to 20V below ground), and load dump (positive transients up to 60V) conditions. A wide operating temperature range with low temperature coefficients is yet another reason to use these versatile regulators in automotive designs.

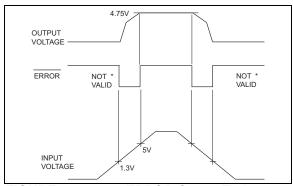
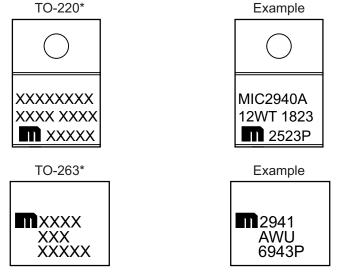



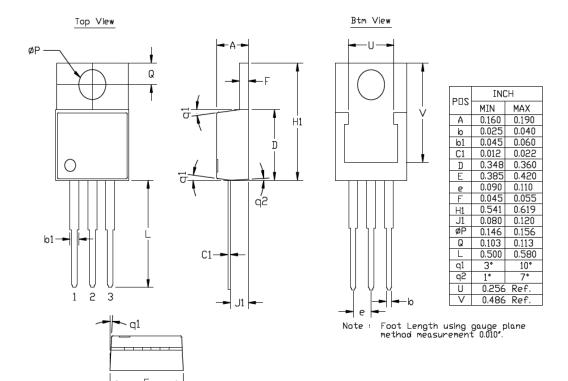
FIGURE 4-1: ERROR Output Timing.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

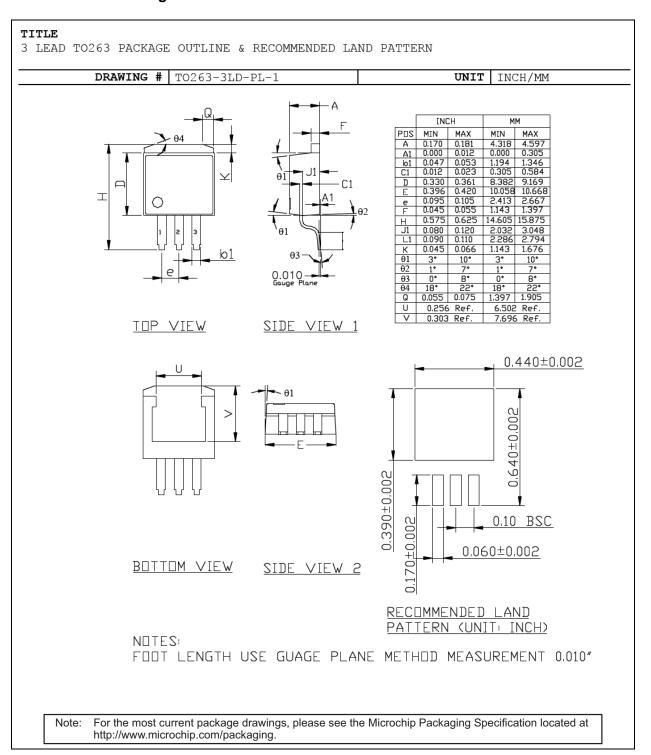
Legend: XX...X Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) ΥY WW Week code (week of January 1 is week '01') Alphanumeric traceability code NNN Pb-free JEDEC® designator for Matte Tin (Sn) (e3) This package is Pb-free. The Pb-free JEDEC designator (@3)) can be found on the outer packaging for this package. •, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.


Underbar () and/or Overbar () symbol may not be to scale.

3-Lead TO-220 Package Outline and Recommended Land Pattern

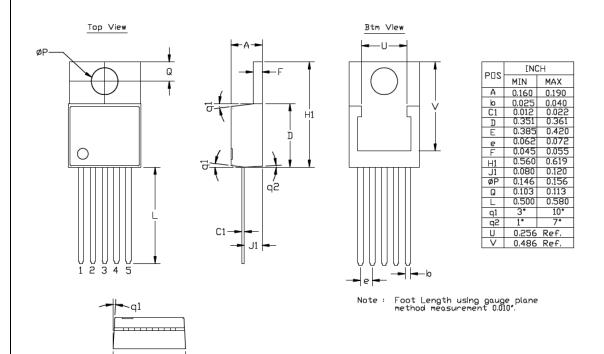
TITLE


3 LEAD TO220 PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

DRAWING #	TO220-3LD-PL-1	UNIT	INCH
Lead Frame	Copper Alloy	Lead Finish	Matte Tin

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

3-Lead TO-263 Package Outline and Recommended Land Pattern



5-Lead TO-220 Package Outline and Recommended Land Pattern

TTTTE.

5 LEAD TO220 PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

DRAWING #	TO220-5LD-PL-1	UNIT	INCH
Lead Frame	Copper Alloy	Lead Finish	Matte Tin

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

5-Lead TO-263 Package Outline and Recommended Land Pattern

TITLE

5 LEAD T0263 PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

DRAWING # T0263-5LD-PL-1 UNIT INCH/MM INCH MM MIN MAX MIN MAX 4.597 0.181 Α 0.170 4.318 A1 0.000 0.012 0.000 0.036 0.914 0.026 0.660 b 0.012 0.584 0.023 0.305 \bigcirc 0.330 0.361 8.392 9.169 D θ1 10.058 10.668 0.420 0.396 C1 0.062 0.072 1.575 1.829 0.045 0.055 1.143 1.397 \bigcirc A 14.605 15.875 0.575 0.625 Н 0.120 2.032 3.048 0.080 К 0.045 0.066 1.143 1.676 0.090 2,286 2.794 1 1 0.110 10° θ1 10 θ 3 θ2 0° 8° O° 8° θ3 0.10 θ4 18° 55. 18° 229 Gauge Plane 0,075 1,905 Q 0.055 1.397 TOP VIEW SIDE VIEW 1 0.256 Ref U 6.502 Ref. 0.305 Ref 7.747 Ref θ1 11.18 9.91 .32 BOTTOM VIEW SIDE VIEW 2 NOTE: 1. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL 1.70 TYP 1.02 RECOMMENDED LAND PATTERN 2. PACKAGE OUTLINE INCLUSIVE OF PLATING THICKNESS. 3. FOOT LENGTH USING GAUGE PLANE METHOD MEASUREMENT (UNIT: mm) A PACKAGE TOP MARK MAY BE IN TOP CENTER OR LOWER

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

LEFT CORNER

5. ALL DIMENSIONS ARE IN INCHES/MILLIMETERS.

APPENDIX A: REVISION HISTORY

Revision A (April 2018)

- Converted Micrel document MIC2940A/41A to Microchip data sheet DS20006000A.
- Minor text changes throughout.
- Corrected bold values in Table 1-1.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

					Example	es:	
Device Part No.	<u>-X.X</u> Output Voltage	X Junction Temp. Range	<u>X</u> Package	- <u>XX</u> Media Type	a) MIC29	40A-3.3WT:	MIC2940A, 3.3V Output Voltage, -40°C to +125°C Temperature Range, 3-Lead TO-220, 50/Tube
Device:	MIC2940A: 1.25A Low Dropout Voltage Regulator, Fixed Output Voltage MIC2941A: 1.25A Low Dropout Voltage Regulator, Adjustable Output Voltage + Shutdown			ixed Output Voltage .25A Low Dropout Voltage Regulator,			MIC2940A, 3.3V Output Voltage, -40°C to +125°C Temperature Range, 3-Lead TO-263, 750/Reel
Output Voltage:	3.3 = 5.0 = 12 =	3.3V (MIC2940, 5.0V (MIC2940, 12V (MIC2940,	A only) A only)		c) MIC29	40A-5.0WU:	MIC2940A, 5.0V Output Voltage, -40°C to +125°C Temperature Range, 3-Lead TO-263, 50/Tube
Junction Temperature	 <blank>= W =</blank>	Adjustable (MIC -40°C to +125°C,	,,	nt*	d) MIC29	40A-12WT:	MIC2940A, 12V Output Voltage, –40°C to +125°C Temperature Range, 3-Lead TO-220, 50/Tube
Range: Package:		3-Lead TO-220 (M 5-Lead TO-220 (M	IIC2941A)		e) MIC29	40A-12WU-TR:	MIC2940A, 12V Output Voltage, -40°C to +125°C Temperature Range, 3-Lead TO-263, 750/Reel
Media Type:	<black>=</black>		IIC2941A)		f) MIC294	1AWT:	MIC2941A, Adjustable Output Voltage, -40°C to +125°C Temperature Range, 3-Lead TO-220, 50/Tube
	RoHS-compliant with "high-melting solder" exemption.			g) MIC29	41AWU:	MIC2941A, Adjustable Output Voltage, -40°C to +125°C Temperature Range, 5-Lead TO-263, 50/Tube	
					h) MIC29	41AWU-TR:	MIC2941A, Adjustable Output Voltage, -40°C to +125°C Temperature Range, 5-Lead TO-263, 750/Reel
					Note 1:	catalog part num used for ordering the device packa	entifier only appears in the ber description. This identifier is purposes and is not printed on ge. Check with your Microchip backage availability with the otion.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2886-2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252 China - Xiamen

Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 LT1117CST-5 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5