6A Peak Low-Side MOSFET Driver Bipolar/CMOS/DMOS Process

Features

- CMOS Construction
- Latch-Up Protected: Will Withstand >500 mA Reverse Output Current
- Logic Input Withstands Negative Swing of Up to 5 V
- Matched Rise and Fall Times: 25 ns
- High Peak Output Current: 6A Peak
- Wide Operating Range: 4.5 V to 18 V
- High Capacitive Load Drive: 10,000 pF
- Low Delay Time: 55 ns (typ.)
- Logic High Input for Any Voltage from 2.4 V to V_{S}
- Low Equivalent Input Capacitance: 6 pF (typ.)
- Low Supply Current: $450 \mu \mathrm{~A}$ with Logic 1 Input
- Low Output Impedance: 2.5Ω
- Output Voltage Swing within 25 mV of Ground or V_{S}

Applications

- Switch Mode Power Supplies
- Motor Controls
- Pulse Transformer Driver
- Class-D Switching Amplifiers

General Description

MIC4420 and MIC4429 MOSFET drivers are tough, efficient, and easy to use. The MIC4429 is an inverting driver, while the MIC4420 is a non-inverting driver.
They are capable of 6A (peak) output and can drive the largest MOSFETs with an improved safe operating margin. The MIC4420/4429 accepts any logic input from 2.4 V to V_{S} without external speed-up capacitors or resistor networks. Proprietary circuits allow the input to swing negative by as much as 5 V without damaging the part. Additional circuits protect against damage from electrostatic discharge.
MIC4420/4429 drivers can replace three or more discrete components, reducing PCB area requirements, simplifying product design, and reducing assembly cost.
Modern BiCMOS/DMOS construction guarantees freedom from latch-up. The rail-to-rail swing capability insures adequate gate voltage to the MOSFET during power-up/down sequencing.
Note: See MIC4120/4129 for high power and narrow pulse applications.

Package Types

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \daggerSupply Voltage$+20 \mathrm{~V}$
Input Voltage $\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}$ to $\mathrm{GND}-5.0 \mathrm{~V}$
Input Current $\left(\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{S}}\right)$ 50 mAPower Dissipation $\left(\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}\right)$PDIP.960 mW
SOIC 1040 mW
5-Lead TO-220 2W
Power Dissipation ($\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$) 5-Lead TO-220 12.5 W
Derating Factors (to Ambient)
PDIP. $7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
SOIC $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
5-Lead TO-220 $17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Operating Ratings \ddagger

Supply Voltage
+4.5 V to +18 V
\dagger Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.
\ddagger Notice: The device is not guaranteed to function outside its operating ratings.

TABLE 1-1: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 18 \mathrm{~V}$, unless otherwise specified. Note 1

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
INPUT						
Logic 1 Input Voltage	$\mathrm{V}_{\text {IH }}$	2.4	1.4	-	V	-
Logic 0 Input Voltage	$\mathrm{V}_{\text {IL }}$	-	1.1	0.8	V	-
Input Voltage Range	$\mathrm{V}_{\text {IN }}$	-5	-	$\mathrm{V}_{\mathrm{S}}+0.3$	V	-
Input Current	I_{IN}	-10	-	10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{S}}$
OUTPUT						
Output High Voltage	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{S}}- \\ 0.025 \end{gathered}$	-	-	V	See Figure 1-1
Output Low Voltage	V_{OL}	-	-	0.025	V	See Figure 1-1
Output Resistance, Output Low	R_{OL}	-	1.7	2.8	Ω	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}$
Output Resistance, Output High	R_{OH}	-	1.5	2.5	Ω	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}$
Peak Output Current	$\mathrm{I}_{\text {PK }}$	-	6	-	A	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}$ (See Figure 4-3)
Latch-Up Protection Withstand Reverse Current	I_{R}	>500	-	-	mA	-
SWITCHING TIME (Note 2)						
Rise Time	t_{R}	-	12	35	ns	Figure 1-1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$
Fall Time	t_{F}	-	13	35	ns	Figure 1-1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$
Delay Time 1	$t_{\text {D1 }}$	-	18	75	ns	Figure 1-1
Delay Time 2	$t_{\text {D2 }}$	-	48	75	ns	Figure 1-1

MIC4420/9

TABLE 1-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 18 \mathrm{~V}$, unless otherwise specified. Note 1

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
POWER SUPPLY						
Power Supply Current						
		-	0.45	1.5	mA	$\mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}$
		-	90	150	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
Operating Input Voltage	V_{S}	4.5	-	18	V	-

Note 1: Specification for packaged product only.
2: Switching times guaranteed by design.

TABLE 1-2: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 18 \mathrm{~V}$, unless otherwise specified. Note 1

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
INPUT						
Logic 1 Input Voltage	$\mathrm{V}_{\text {IH }}$	2.4	-	-	V	-
Logic 0 Input Voltage	V_{IL}	-	-	0.8	V	-
Input Voltage Range	$\mathrm{V}_{\text {IN }}$	-5	-	$\mathrm{V}_{\mathrm{S}}+0.3$	V	-
Input Current	$\mathrm{I}_{\text {IN }}$	-10	-	10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {S }}$
OUTPUT						
Output High Voltage	V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}- \\ & 0.025 \end{aligned}$	-	-	V	See Figure 1-1
Output Low Voltage	V_{OL}	-	-	0.025	V	See Figure 1-1
Output Resistance, Output Low	R_{OL}	-	3	5	Ω	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}$
Output Resistance, Output High	R_{OH}	-	2.3	5	Ω	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}$
SWITCHING TIME (Note 2)						
Rise Time	t_{R}	-	32	60	ns	Figure 1-1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$
Fall Time	t_{F}	-	34	60	ns	Figure 1-1, $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$
Delay Time 1	$\mathrm{t}_{\mathrm{D} 1}$	-	50	100	ns	Figure 1-1
Delay Time 2	$\mathrm{t}_{\mathrm{D} 2}$	-	65	100	ns	Figure 1-1
POWER SUPPLY						
Power Supply Current	Is	-	0.45	3.0	mA	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$
		-	0.06	0.4	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
Operating Input Voltage	V_{S}	4.5	-	18	V	-

Note 1: Specification for packaged product only.
2: Switching times guaranteed by design.

Test Circuits

FIGURE 1-1: Inverting Driver Switching Time.

FIGURE 1-2: \quad Noninverting Driver Switching Time.

TEMPERATURE SPECIFICATIONS (Note 1)

| Parameters | Sym. | Min. | Typ. | Max. | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| Temperature Ranges | | | | | | |
| Storage Temperature Range | T_{S} | -65 | - | +150 | ${ }^{\circ} \mathrm{C}$ | - |
| Junction Operating Temperature | T_{J} | - | - | +150 | ${ }^{\circ} \mathrm{C}$ | - |
| Ambient Operating Temperature Range | T_{A} | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ | B Version |
| | | 0 | - | +70 | | C Version |
| Lead Temperature | - | - | - | +300 | ${ }^{\circ} \mathrm{C}$ | Soldering, 10 s |
| Package Thermal Resistances | | | | | | |
| Thermal Resistance, 8-Lead MSOP | θ_{JA} | - | 250 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | - |
| Thermal Resistance, 5-Lead TO-220 | θ_{JC} | - | 10 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | - |
| Thermal Resistance, 8-Lead PDIP | θ_{JA} | - | 125 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | - |
| Thermal Resistance, 8-Lead SOIC | θ_{JA} | - | 155 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | - |

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., $T_{A}, T_{J}, \theta_{\mathrm{JA}}$). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum $+150^{\circ} \mathrm{C}$ rating. Sustained junction temperatures above $+150^{\circ} \mathrm{C}$ can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Rise Time vs. Supply
Voltage.

FIGURE 2-2:
Fall Time vs. Supply
Voltage.

FIGURE 2-3: Rise and Fall Times vs.
Temperature.

FIGURE 2-4: Rise Time vs. Capacitive Load.

FIGURE 2-5: Fall Time vs. Capacitive Load.

FIGURE 2-6: Delay Time vs. Supply Voltage.

FIGURE 2-7: Propagation Delay Time vs.
Temperature.

FIGURE 2-8: Supply Current vs.
Capacitive Load.

FIGURE 2-9: Supply Current vs.
Frequency.

FIGURE 2-10: Quiescent Power Supply Voltage vs. Supply Current.

FIGURE 2-11: Quiescent Power Supply Current vs. Temperature.

FIGURE 2-12:
High-State Output Resistance.

FIGURE 2-13: Low-State Output
Resistance.

FIGURE 2-14: Effect of Input Amplitude on
Propagation Delay.

FIGURE 2-15: Crossover Area vs. Supply Voltage.

MIC4420/9

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number TO-220	Pin Number PDIP, SOIC, MSOP	Pin Name	Description
1	2	IN	Control input.
2,4	4,5	GND	Ground: Duplicate pins must be externally connected together.
3, TAB	1,8	V $_{S}$	Supply input: Duplicate pins must be externally connected together.
5	6,7	OUT	Output: Duplicate pins must be externally connected together.
-	3	NC	Not connected.

4.0 APPLICATION INFORMATION

4.1 Supply Bypassing

Charging and discharging large capacitive loads quickly requires large currents. For example, charging a 2500 pF load to 18 V in 25 ns requires a 1.8 A current from the device power supply.
The MIC4420/4429 has double bonding on the supply pins, the ground pins and output pins This reduces parasitic lead inductance. Low inductance enables large currents to be switched rapidly. It also reduces internal ringing that can cause voltage breakdown when the driver is operated at or near the maximum rated voltage.
Internal ringing can also cause output oscillation due to feedback. This feedback is added to the input signal because it is referenced to the same ground.
To guarantee low supply impedance over a wide frequency range, a parallel capacitor combination is recommended for supply bypassing. Low inductance ceramic disk capacitors with short lead lengths (less than 0.5 inch) should be used. A $1 \mu \mathrm{~F}$ low ESR film capacitor in parallel with two $0.1 \mu \mathrm{~F}$ low ESR ceramic capacitors, (such as AVX RAM GUARD ${ }^{\circledR}$), provides adequate bypassing. Connect one ceramic capacitor directly between pins 1 and 4. Connect the second ceramic capacitor directly between pins 8 and 5 .

4.2 Grounding

The high current capability of the MIC4420/4429 demands careful PC board layout for best performance Because the MIC4429 is an inverting driver, any ground lead impedance will appear as negative feedback which can degrade switching speed. Feedback is especially noticeable with slow-rise time inputs. The MIC4429 input structure includes 300 mV of hysteresis to ensure clean transitions and freedom from oscillation, but attention to layout is still recommended.
Figure 4-1 shows the feedback effect in detail. As the MIC4429 input begins to go positive, the output goes negative and several amperes of current flow in the ground lead. As little as 0.05Ω of PC trace resistance can produce hundreds of millivolts at the MIC4429 ground pins. If the driving logic is referenced to power ground, the effective logic input level is reduced and oscillation may result.
To ensure optimum performance, separate ground traces should be provided for the logic and power connections. Connecting the logic ground directly to the MIC4429 GND pins will ensure full logic drive to the input and ensure fast output switching. Both of the MIC4429 GND pins should, however, still be connected to power ground.

FIGURE 4-1:
Self-Contained Voltage Doubler.

4.3 Input Stage

The input voltage level of the 4429 changes the quiescent supply current. The N channel MOSFET input stage transistor drives a $450 \mu \mathrm{~A}$ current source load. With a logic "1" input, the maximum quiescent supply current is $450 \mu \mathrm{~A}$. Logic " 0 " input level signals reduce quiescent current to $55 \mu \mathrm{~A}$ maximum.
The MIC4420/4429 input is designed to provide 300 mV of hysteresis. This provides clean transitions, reduces noise sensitivity, and minimizes output stage
current spiking when changing states. Input voltage threshold level is approximately 1.5 V , making the device TTL compatible over the 4.5 V to 18 V operating supply voltage range. Input current is less than $10 \mu \mathrm{~A}$ over this range.
The MIC4429 can be directly driven by the TL494, SG1526/1527, SG1524, TSC170, MIC38HC42, and similar switch mode power supply integrated circuits. By offloading the power-driving duties to the

MIC4420/4429, the power supply controller can operate at lower dissipation. This can improve performance and reliability.
The input can be greater than the $+\mathrm{V}_{\mathrm{S}}$ supply, however, current will flow into the input lead. The propagation delay for $t_{\mathrm{D} 2}$ will increase to as much as 400 ns at room temperature. The input currents can be as high as 30 mA peak-to-peak ($6.4 \mathrm{~mA}_{\mathrm{RMS}}$) with the input, 6 V greater than the supply voltage. No damage will occur to MIC4420/4429 however, and it will not latch.
The input appears as a 7 pF capacitance, and does not change even if the input is driven from an AC source. Care should be taken so that the input does not go more than 5 volts below the negative rail.

FIGURE 4-2: Switching Time Degradation Due to Negative Feedback.

4.4 Power Dissipation

CMOS circuits usually permit the user to ignore power dissipation. Logic families such as 4000 and 74C have outputs which can only supply a few milliamperes of current, and even shorting outputs to ground will not force enough current to destroy the device. The MIC4420/4429 on the other hand, can source or sink several amperes and drive large capacitive loads at high frequency. The package power dissipation limit can easily be exceeded. Therefore, some attention should be given to power dissipation when driving low impedance loads and/or operating at high frequency.
The supply current vs. frequency and supply current vs. capacitive load characteristic curves aid in determining power dissipation calculations. Table 4-1 lists the maximum safe operating frequency for several power supply voltages when driving a 2500 pF load. More accurate power dissipation figures can be obtained by summing the three dissipation sources.
Given the power dissipation in the device, and the thermal resistance of the package, junction operating temperature for any ambient is easy to calculate. For example, the thermal resistance of the 8 -pin MSOP
package, from the data sheet, is $250^{\circ} \mathrm{C} / \mathrm{W}$. In a $25^{\circ} \mathrm{C}$ ambient, then, using a maximum junction temperature of $150^{\circ} \mathrm{C}$, this package will dissipate 500 mW .
Accurate power dissipation numbers can be obtained by summing the three sources of power dissipation in the device:

- Load power dissipation (P_{L})
- Quiescent power dissipation $\left(\mathrm{P}_{\mathrm{Q}}\right)$
- Transition power dissipation $\left(\mathrm{P}_{\mathrm{T}}\right)$

Calculation of load power dissipation differs depending on whether the load is capacitive, resistive or inductive.

TABLE 4-1: MIC4429 MAX. OPERATING FREQUENCY

$\mathbf{V}_{\mathbf{S}}$	Maximum Frequency
18 V	500 kHz
15 V	700 kHz
10 V	1.6 MHz

Note 1: Conditions: DIP package ($\theta_{\mathrm{JA}}=$ $\left.130^{\circ} \mathrm{C} / \mathrm{W}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$.

4.4.1 RESISTIVE LOAD POWER DISSIPATION

Dissipation caused by a resistive load can be calculated as:

EQUATION 4-1:

Where:	$P_{L}=I^{2} \times R_{O} \times D$
I	$=$ The current drawn by the load.
R_{O}	$=$ The output resistance of the driver
when the output is high, at the power	
supply voltage used.	
= Fraction of the time the load is	
conducting (duty cycle).	

4.4.2 CAPACITIVE LOAD DISSIPATION

Dissipation caused by a capacitive load is simply the energy placed in, or removed from, the load capacitance by the driver. The energy stored in a capacitor is described by Equation 4-2:

EQUATION 4-2:

$$
E=1 / 2 C \times V^{2}
$$

As this energy is lost in the driver each time the load is charged or discharged, for power dissipation calculations the $1 / 2$ is removed. This equation also shows that it is good practice not to place more voltage on the capacitor than is necessary, as dissipation increases as the square of the voltage applied to the capacitor. For a driver with a capacitive load:

EQUATION 4-3:

$P_{L}=f \times C \times V_{S}{ }^{2}$
Where:
$\mathrm{f} \quad=$ Operating frequency.
C = Load capacitance.
$\mathrm{V}_{\mathrm{S}}=$ Driver supply voltage.

4.4.3 INDUCTIVE LOAD POWER DISSIPATION

For inductive loads the situation is more complicated. For the part of the cycle in which the driver is actively forcing current into the inductor, the situation is the same as it is in the resistive case:

EQUATION 4-4:
$P_{L 1}=I^{2} \times R_{O} \times D$
However, in this instance the R_{O} required may be either the on resistance of the driver when its output is in the high state, or its on resistance when the driver is in the low state, depending on how the inductor is connected, and this is still only half the story. For the part of the cycle when the inductor is forcing current through the driver, dissipation is best described in Equation 4-5 in which V_{D} is the forward drop of the clamp diode in the driver (generally around 0.7 V).

EQUATION 4-5:

The two parts of the load dissipation must be summed in to produce P_{L}.

EQUATION 4-6:

$$
P_{L}=P_{L 1}+P_{L 2}
$$

4.4.4 QUIESCENT POWER DISSIPATION

Quiescent power dissipation (P_{Q}, as described in the Input Stage section) depends on whether the input is high or low. A low input will result in a maximum current drain (per driver) of $\leq 0.2 \mathrm{~mA}$; a logic high will result in a current drain of $\leq 2.0 \mathrm{~mA}$. Quiescent power can therefore be found from:

EQUATION 4-7:

$$
P_{Q}=V_{S} \times\left(D \times I_{H}+(1-D) \times I_{L}\right)
$$

Where:

$$
\begin{array}{ll}
I_{H} & =\text { Quiescent current with input high. } \\
I_{\mathrm{L}} & =\text { Quiescent current with input low. } \\
\mathrm{D} & =\text { Duty cycle. } \\
\mathrm{V}_{\mathrm{S}} & =\text { Power supply voltage. }
\end{array}
$$

4.4.5 TRANSITION POWER DISSIPATION

Transition power is dissipated in the driver each time its output changes state, because during the transition, for a very brief interval, both the N - and P-channel MOSFETs in the output totem-pole are ON simultaneously, and a current is conducted through them from $+V_{S}$ to ground. The transition power dissipation is approximately:

EQUATION 4-8:

$$
P_{T}=2 \times f \times V_{S} \times(A \bullet s)
$$

Where:
A•S = A time-current factor derived from the typical characteristic curves.

Total power dissipation (PD), then, as previously described, is:

EQUATION 4-9:
\square

4.4.6 DEFINITIONS

- $C_{L}=$ Load Capacitance in Farads.
- $D=$ Duty Cycle expressed as the fraction of time the input to the driver is high.
- $f=$ Operating Frequency of the driver in Hertz.
- $\mathrm{I}_{\mathrm{H}}=$ Power supply current drawn by a driver when both inputs are high and neither output is loaded.
- $\mathrm{I}_{\mathrm{L}}=$ Power supply current drawn by a driver when both inputs are low and neither output is loaded.
- $I_{D}=$ Output current from a driver in Amps.
- $P_{D}=$ Total power dissipated in a driver in Watts.
- $P_{L}=$ Power dissipated in the driver due to the
driver's load in Watts.
- $P_{Q}=$ Power dissipated in a quiescent driver in Watts.
- PT = Power dissipated in a driver when the output changes states ("shoot-through current") in Watts. Please note that the "shoot-through" current from a dual transition (once up, once down) for both drivers is shown by Figure 2-15 and is in ampere-seconds. This figure must be multiplied by the number of repetitions per second (frequency) to find Watts.
- $\mathrm{R}_{\mathrm{O}}=$ Output resistance of a driver in Ohms.
- $\mathrm{V}_{\mathrm{S}}=$ Power supply voltage to the IC in Volts.

FIGURE 4-3:
Peak Output Current Test Circuit.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend: $X X$...X Product code or customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
e3) Pb-free JEDEC ${ }^{\circledR}$ designator for Matte Tin (Sn)

* This package is Pb -free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
$\bullet, \boldsymbol{\Delta}, \boldsymbol{\nabla}$ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.
Underbar (_) and/or Overbar (${ }^{-}$) symbol may not be to scale.

MIC4420/9

5-Lead TO-220 Package Outline and Recommended Land Pattern

TITLE

5 LEAD TO220 PACKAGE OUTLINE \& RECOMMENDED LAND PATTERN

DRAWING \#	TO220-5LD-PL-1	UNIT	INCH
Lead Frame	Copper Alloy	Lead Finish	Matte Tin

PIS	INCH	
	MIN	MAX
A	0.160	0.190
b	0.025	0.040
C1	0.012	0.022
D	0.351	0.361
E	0.385	0.420
e	0.062	0.072
F	0.045	0.055
H1	0.560	0.619
J1	0.080	0.120
DP	0.146	0.156
Q	0.103	0.113
L	0.500	0.580
q1	3°	10°
q2	1°	7°
U	0.256	Ref.
V	0.486	Ref.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

8-Lead SOIC Package Outline and Recommended Land Pattern

MIC4420/9

8-Lead MSOP Package Outline and Recommended Land Pattern

8-Lead PDIP Package Outline and Recommended Land Pattern

TITLE
8 LEAD PDIP PACKAGE OUTLINE \& RECOMMENDED LAND PATTERN
DRAWING \#
PDIP-8LD-PL-1
Lead Frame
:---

SIDE VIEW

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

MIC4420/9

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (October 2018)

- Converted Micrel document MIC4420/9 to Microchip data sheet DS20006092A.
- Minor text changes throughout.

MIC4420/9

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Device	\underline{X}		$\underline{X X}$	$-\underline{x x}$ Media Type
Part No.	Junction Temp. Range		Package	
Device:	MIC4420: MIC4429:	6A Peak Low-Side Non-Inverting MOSFET Driver, Bipolar/CMOS/DMOS Process 6A Peak Low-Side Inverting MOSFET Driver, Bipolar/CMOS/DMOS Process		
Junction Temperature Range:	$\begin{aligned} & \mathrm{Y}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text {, RoHS-Compliant } \\ & \mathrm{Z}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \text {, RoHS-Compliant } \end{aligned}$			
Package:	$\begin{aligned} & \mathrm{N}= \\ & \mathrm{M}= \\ & \mathrm{MM}= \\ & \mathrm{T}= \end{aligned}$	8-Lead 8-Lead 8-Lead 5-Lead		
Media Type:	```<blank>= 95/Tube (M, SOIC) <blank>= 100/Tube (MM, MSOP) <blank>= 50/Tube (N, PDIP & T, TO-220) TR = 2,500/Reel (SOIC, MSOP)```			

Examples:
a) MIC4420: 6A Peak Low-Side Non-Inverting MOSFET Driver, Industrial Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature Range, RoHS-Compliant.

- MIC4420YM: 8-Lead SOIC, 95/Tube
- MIC4420YM-TR: 8-Lead SOIC, 2,500/Reel
- MIC4420YMM: 8-Lead MSOP, 100/Tube
- MIC4420YMM-TR: 8-Lead MSOP, 2,500/Reel
- MIC4420YN: 8-Lead PDIP, 50/Tube
b) MIC4420: 6A Peak Low-Side Non-Inverting MOSFET Driver, Commercial Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Junction Temperature Range, RoHS-Compliant.
- MIC4420ZM: 8-Lead SOIC, 95/Tube
- MIC4420ZM-TR: 8-Lead SOIC, 2,500/Reel
- MIC4420ZN: 8-Lead PDIP,50/Tube
- MIC4420ZT: 5-Lead TO-220, 50/Tube
c) MIC4429: 6A Peak Low-Side Inverting MOSFET Driver Industrial Grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature Range, RoHS-Compliant.
- MIC4429YM: 8-Lead SOIC, 95/Tube
- MIC4429YM-TR: 8-Lead SOIC, 2,500/Reel
- MIC4429YMM: 8-Lead MSOP, 100/Tube
- MIC4429YMM-TR: 8-Lead MSOP, 2,500/Reel
- MIC4429YN: 8-Lead PDIP,50/Tube
d) MIC4429: 6A Peak Low-Side Inverting MOSFET Driver, Commercial Grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Junction Temperature Range, RoHS-Compliant.
- MIC4429ZM: 8-Lead SOIC, 95/Tube
- MIC4429ZM-TR: 8-Lead SOIC, 2,500/Reel
- MIC4429ZN: 8-Lead PDIP,50/Tube
- MIC4429ZT: 5-Lead TO-220,50/Tube

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

MIC4420/9

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC ${ }^{\circledR}$ MCUs and dsPIC ${ }^{\circledR}$ DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3736-9

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office 2355 West Chandler Blvd.
 Chandler, AZ 85224-6199
 Tel: 480-792-7200
 Fax: 480-792-7277
 Technical Support:
 http://www.microchip.com/ support
 Web Address:
 www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

