General Description

The MIC4426/4427/4428 family are highly-reliable dual lowside MOSFET drivers fabricated on a BiCMOS/DMOS process for low power consumption and high efficiency. These drivers translate TTL or CMOS input logic levels to output voltage levels that swing within 25 mV of the positive supply or ground. Comparable bipolar devices are capable of swinging only to within 1 V of the supply. The MIC4426/7/8 is available in three configurations: dual inverting, dual noninverting, and one inverting plus one noninverting output.
The MIC4426/4427/4428 are pin-compatible replacements for the MIC426/427/428 and MIC1426/1427/1428 with improved electrical performance and rugged design (Refer to the Device Replacement lists on the following page). They can withstand up to 500 mA of reverse current (either polarity) without latching and up to 5 V noise spikes (either polarity) on ground pins.
Primarily intended for driving power MOSFETs, MIC4426/7/8 drivers are suitable for driving other loads (capacitive, resistive, or inductive) which require low-impedance, high peak current, and fast switching time. Other applications include driving heavily loaded clock lines, coaxial cables, or piezoelectric transducers. The only load limitation is that total driver power dissipation must not exceed the limits of the package.
Note See MIC4126/4127/4128 for high power and narrow pulse applications.

Features

- Bipolar/CMOS/DMOS construction
- Latch-up protection to $>500 \mathrm{~mA}$ reverse current
- 1.5A-peak output current
- 4.5 V to 18 V operating range
- Low quiescent supply current 4 mA at logic 1 input $400 \mu \mathrm{~A}$ at logic 0 input
- Switches 1000pF in 25ns
- Matched rise and rall times
- 7Ω output impedance
- <40ns typical delay
- Logic-input threshold independent of supply voltage
- Logic-input protection to -5 V
- $6 p F$ typical equivalent input capacitance
- 25 mV max. output offset from supply or ground
- Replaces MIC426/427/428 and MIC1426/1427/1428
- Dual inverting, dual noninverting, and inverting/ noninverting configurations
- ESD protection

Applications

- MOSFET driver
- Clock line driver
- Coax cable driver
- Piezoelectic transducer driver

Functional Diagram

Micrel, Inc. • 2180 Fortune Drive•San Jose, CA 95131•USA•tel + 1 (408) 944-0800• fax + 1 (408) 474-1000•http://www.micrel.com

Ordering Information

Part Number		Temperature Range	Package	Configuration
Standard	Pb-Free			
MIC4426BM	MIC4426YM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	Dual Inverting
MIC4426CM	MIC4426ZM	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin SOIC	Dual Inverting
MIC4426BMM	MIC4426YMM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin MSOP	Dual Inverting
MIC4426BN	MIC4426YN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin PDIP	Dual Inverting
MIC4426CN	MIC4426ZN	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin PDIP	Dual Inverting
MIC4427BM	MIC4427YM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	Dual Non-Inverting
MIC4427CM	MIC4427ZM	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin SOIC	Dual Non-Inverting
MIC4427BMM	MIC4427YMM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin MSOP	Dual Non-Inverting
MIC4427BN	MIC4427YN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin PDIP	Dual Non-Inverting
MIC4427CN	MIC4427ZN	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin PDIP	Dual Non-Inverting
MIC4428BM	MIC4428YM	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	8-Pin SOIC	Inverting + Non-Inverting
MIC4428CM	MIC4428ZM	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin SOIC	Inverting + Non-Inverting
MIC4428BMM	MIC4428YMM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin MSOP	Inverting + Non-Inverting
MIC4428BN	MIC4428YN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin PDIP	Inverting + Non-Inverting
MIC4428CN	MIC4428ZN	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin PDIP	Inverting + Non-Inverting

Note
DESC standard military drawing 5962-88503 available;

MIC4426, CERDIP 8-Pin
MIC4427, CERDIP 8-Pin
MIC4428, CERDIP 8-Pin

SMD\#: 5962-8850307PA
SMD\#: 5962-8850308PA
SMD\#: 5962-8850309PA

Micrel Part Number: 5952-8850307PA
Micrel Part Number: 5952-8850308PA
Micrel Part Number: 5952-8850309PA

MIC426/427/428 Device Replacement

Discontinued Number	Replacement MICC26CM MIC426BM
MIC4426BM	
MIC426CN	MIC4426BM
MIC426BN	MIC4426BN
MIC427CM	MIC4426BN
MIC427BM	MIC4427BM
MIC427CN	MIC4427BM
MIC427BN	MIC4427BN
MIC428CM	MIC4428BM
MIC428BM	MIC4428BM
MIC428CN	MIIC4428BN
MIC428BN	MIC4428BN

MIC1426/1427/1428 Device Replacement

 Discontinued Number Replacement MIC1426CM MIC4426BM MIC1426BM MIC4426BM MIC1426CN MIC4426BN MIC1426BN MIC4426BN MIC1427CM MIC4427BM MIC1427BM MIC4427BM MIC1427CN MIC4427BN MIC1427BN MIC4427BN MIC1428CM MIC4428BM MIC1428BM MIC4428BM MIC1428CN MIC4428BN MIC1428BN MIC4428BN
Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function
1,8	NC	not internally connected
2	INA	Control Input A: TTL/CMOS compatible logic input.
3	GND	Ground
4	INB	Control Input B: TTL/CMOS compatible logic input.
5	OUTB	Output B: CMOS totem-pole output.
6	$\mathrm{~V}_{\text {S }}$	Supply Input: +4.5V to +18V
7	OUTA	Output A: CMOS totem-pole output.

Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage (V_{S}) \qquad $+22 \mathrm{~V}$
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}$ to $\mathrm{GND}-5 \mathrm{~V}$ Junction Temperature (T_{J}) ... $150^{\circ} \mathrm{C}$
Storage Temperature................................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec.) $300^{\circ} \mathrm{C}$
ESD Rating ${ }^{(3)}$

Operating Ratings ${ }^{(2)}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{S}}\right) \ldots \ldots \ldots .4 .5 \mathrm{~V}$ to +18 V
Temperature Range (T_{A})
(A)... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Package Thermal Resistance

PDIP $\theta_{\text {JA }}$... $130^{\circ} \mathrm{C} / \mathrm{W}$	
PDIP $\theta_{\text {Jc }}$	$42^{\circ} \mathrm{C} / \mathrm{W}$
SOIC $\theta_{\text {JA }}$	$120^{\circ} \mathrm{C} / \mathrm{W}$
SOIC $\theta_{\text {JC }}$	$75^{\circ} \mathrm{C} / \mathrm{W}$
MSOP $\theta_{J A}$	$250^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ${ }^{(4)}$

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq 18 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, bold values indicate full specified temperature range; unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
Input						
V_{IH}	Logic 1 Input Voltage		$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
VIL	Logic 0 Input Voltage			$\begin{aligned} & \hline 1.1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
1 IN	Input Current	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {S }}$	-1		1	$\mu \mathrm{A}$
Output						
V_{OH}	High Output Voltage		$\mathrm{V}_{\mathrm{S}}-0.025$			V
V_{OL}	Low Output Voltage				0.025	V
R_{O}	Output Resistance	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}$		6 8	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$\mathrm{I}_{\text {PK }}$	Peak Output Current			1.5		A
I	Latch-Up Protection	withstand reverse current	>500			mA

Switching Time

t_{R}	Rise Time	test Figure 1		$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\overline{t_{F}}$	Fall Time	test Figure 1		$\begin{aligned} & 15 \\ & 29 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \end{aligned}$
$\overline{t_{D 1}}$	Delay TIme	test Flgure 1		$\begin{aligned} & 17 \\ & 19 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\mathrm{D} 2}$	Delay Time	test Figure 1		$\begin{aligned} & 23 \\ & 27 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {t }}$	Pulse Width	test Figure 1	400			ns
Power Supply						
I_{S}	Power Supply Current	$\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INB }}=3.0 \mathrm{~V}$	0.6	$\begin{aligned} & 1.4 \\ & 1.5 \end{aligned}$	$\begin{gathered} 4.5 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I_{S}	Power Supply Current	$\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INB }}=0.0 \mathrm{~V}$		$\begin{aligned} & 0.18 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Notes:

1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. Devices are ESD sensitive. Handling precautions recommended.
4. Specification for packaged product only.

Test Circuits

Figure 1a. Inverting Configuration

Figure 1b. Inverting Timing

Figure 2a. Noninverting Configuration

Figure 2b. Noninverting Timing

Electrical Characteristics

Applications Information

Supply Bypassing

Large currents are required to charge and discharge large capacitive loads quickly. For example, changing a 1000pF load by 16 V in 25 ns requires 0.8 A from the supply input.
To guarantee low supply impedance over a wide frequency range, parallel capacitors are recommended for power supply bypassing. Low-inductance ceramic MLC capacitors with short lead lengths (<0.5") should be used. A 1.0 1 F film capacitor in parallel with one or two $0.1 \mu \mathrm{~F}$ ceramic MLC capacitors normally provides adequate bypassing.

Grounding

When using the inverting drivers in the MIC4426 or MIC4428, individual ground returns for the input and output circuits or a ground plane are recommended for optimum switching speed. The voltage drop that occurs between the driver's ground and the input signal ground, during normal high-current switching, will behave as negative feedback and degrade switching speed.

Control Input

Unused driver inputs must be connected to logic high (which can be V_{S}) or ground. For the lowest quiescent current ($<500 \mu \mathrm{~A}$), connect unused inputs to ground. A logic-high signal will cause the driver to draw up to 9 mA .
The drivers are designed with 100 mV of control input hysteresis. This provides clean transitions and minimizes output stage current spikes when changing states. The control input voltage threshold is approximately 1.5 V . The control input recognizes 1.5 V up to V_{S} as a logic high and draws less than $1 \mu \mathrm{~A}$ within this range.
The MIC4426/7/8 drives the TL494, SG1526/7, MIC38C42, TSC170 and similar switch-mode power supply integrated circuits.

Power Dissipation

Power dissipation should be calculated to make sure that the driver is not operated beyond its thermal ratings. Quiescent power dissipation is negligible. A practical value for total power dissipation is the sum of the dissipation caused by the load and the transition power dissipation $\left(P_{L}+P_{T}\right)$.

Load Dissipation

Power dissipation caused by continuous load current (when driving a resistive load) through the driver's output resistance is:

$$
P_{L}=I_{L}^{2} R_{O}
$$

For capacitive loads, the dissipation in the driver is:

$$
P_{L}=f C_{L} V_{S}^{2}
$$

Transition Dissipation

In applications switching at a high frequency, transition power dissipation can be significant. This occurs during switching transitions when the P-channel and N -channel output FETs are both conducting for the brief moment when one is turning on and the other is turning off.

$$
P_{T}=2 f V_{S} Q
$$

Charge (Q) is read from the following graph:

Crossover Energy Loss per Transition

Package Information

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify

Micrel for any damages resulting from such use or sale.
© 2003 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

