MIC4950

Hyper Speed Control ${ }^{\circledR}$ 5A Buck Regulator

Features

- Input Voltage: 2.7 V to 5.5 V
- 5A Output Current
- Up to 95% Efficiency
- Up to 3.3 MHz Operation
- Safe Start-Up Into a Pre-Biased Output
- Power Good Output
- Ultra-Fast Transient Response
- Low Output Voltage Ripple
- Low R DS(ON) Integrated MOSFET Switches
- $0.01 \mu \mathrm{~A}$ Shutdown Current
- Thermal Shutdown and Current-Limit Protection
- Output Voltage as Low as 0.7 V
- $3 \mathrm{~mm} \times 4 \mathrm{~mm} 10$-Lead FDFN
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature Range

Applications

- DTVs
- Set-Top Boxes
- Printers
- DVD Players
- Distributed Power Supplies

General Description

The MIC4950 is a highly efficient, 5A synchronous buck regulator with ultra-fast transient response. It is perfectly suited for supplying processor core and I/O voltages from a 5 V or 3.3 V bus. The MIC4950 provides a switching frequency up to 3.3 MHz while achieving peak efficiencies up to 95%. An additional benefit of high-frequency operation is very low output ripple voltage throughout the entire load range with the use of a small output capacitor. The MIC4950 is designed for use with a very small inductor, down to $1 \mu \mathrm{H}$, and an output ceramic capacitor as small as $10 \mu \mathrm{~F}$, without the need for external ripple injection. The MIC4950 can also accommodate a wide range of output capacitor types and values.
The MIC4950 supports safe start-up into a pre-biased output, and offers short-circuit and thermal shutdown protections.
The MIC4950 is available in a 10 -lead $3 \mathrm{~mm} \times 4 \mathrm{~mm}$ FDFN package with an operating junction temperature range from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Package Type

Typical Application Circuit

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \dagger
PVIN, AVIN Supply Voltage ($\mathrm{V}_{\text {IN }}$) -0.3 V to +6 V
SW Output Switch Voltage (V_{SW}) -0.3 V to V_{IN}
EN, PG ($\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{PG}}$). -0.3 V to V_{IN}
FB Feedback Input Voltage (V_{FB}) -0.3 V to V_{IN}
ESD Rating (Note 1) . 2 kV , HBM
Operating Ratings $\dagger \dagger$
Supply Voltage (V_{IN}) +2.7 V to +5.5 V
Enable Input Voltage (V_{EN}) .0 V to V_{IN}
\dagger Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.
$\dagger \dagger$ Notice: The device is not guaranteed to function outside its operating ratings.
Note 1: Devices are ESD sensitive. Handling precautions are recommended. Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V} ; \mathrm{L}=1.0 \mu \mathrm{H} ; \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F} ; \mathrm{C}_{\mathrm{OUT}}=10 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Bold values valid for $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$. Note 1

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions
Supply Voltage Range	$V_{\text {IN }}$	2.7	-	5.5	V	-
Undervoltage Lockout Threshold	V UVLO	2.41	2.5	2.61	V	Turn-On
Undervoltage Lockout Hysteresis	$\mathrm{V}_{\text {UVLOH }}$	-	400	-	mV	-
Quiescent Current	I_{Q}	-	0.8	2	mA	$\begin{aligned} & \text { lout }=0 \mathrm{~mA}, \\ & \text { FB }>1.2 \times \mathrm{V}_{\mathrm{FB}(\mathrm{NOM})} \end{aligned}$
Shutdown Current	$\mathrm{I}_{\text {SHDN }}$	-	0.01	2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$
Feedback Voltage	$V_{\text {FB }}$	0.609	0.625	0.64	V	-
Current Limit	ILIMIT	5.5	7.5	10	A	$\mathrm{FB}=0.9 \times \mathrm{V}_{\mathrm{FB}(\mathrm{NOM})}$
Output Voltage Line Regulation	LINEREG	-	1	-	\%/V	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.7 \text { to } 3.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}(\mathrm{NOM})= \\ & 1.8 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA} \end{aligned}$
						$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text { if } \mathrm{V}_{\mathrm{OUT}(\mathrm{NOM})} \geq \\ & 2.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA} \end{aligned}$
Output Voltage Load Regulation	LOADREG	-	0.3	-	\%	$\begin{aligned} & 20 \mathrm{~mA}<\mathrm{I}_{\mathrm{LOAD}}<500 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text { if } \mathrm{V}_{\mathrm{OUT}(\mathrm{NOM})}<2.5 \mathrm{~V} \end{aligned}$
						$\begin{aligned} & 20 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<500 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V} \text { if } \mathrm{V}_{\mathrm{OUT}(\mathrm{NOM})} \geq 2.5 \mathrm{~V} \end{aligned}$
		-	1	-	\%	$\begin{aligned} & 20 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<5 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text { if } \\ & \mathrm{V}_{\mathrm{OUT}(\mathrm{NOM})}<2.5 \mathrm{~V} \end{aligned}$
						$\begin{aligned} & 20 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<5 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V} \text { if } \\ & \mathrm{V}_{\mathrm{OUT}(\mathrm{NOM})} \geq 2.5 \mathrm{~V} \end{aligned}$
PWM Switch ON-Resistance	$\mathrm{R}_{\text {DSON-P }}$	-	30	-	$\mathrm{m} \Omega$	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}, \mathrm{P}-$ Channel MOSFET
	$\mathrm{R}_{\text {DSON-N }}$	-	25	-		$\mathrm{I}_{\text {SW }}=-1 \mathrm{~A}, \mathrm{~N}$-Channel MOSFET

Note 1: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V} ; \mathrm{L}=1.0 \mu \mathrm{H} ; \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F} ; \mathrm{C}_{\mathrm{OUT}}=10 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Bold values valid for $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$. Note 1

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions
Maximum Turn-On Time	${ }^{\text {toN }}$	-	665	-	ns	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V}$
		-	1000	-		$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V}$
		-	1120	-		$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V}$
Minimum Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	-	176	-	ns	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V}$
Soft-Start Time	$\mathrm{t}_{\text {SOFT-ON }}$	-	500	-	$\mu \mathrm{s}$	$\mathrm{V}_{\text {OUT }}=90 \%$ of $\mathrm{V}_{\text {OUT(}}$ (NOM)
Enable Threshold	V_{EN}	0.5	0.8	1.2	V	Turn-On
Enable Input Current	IEN	-	0.1	1	$\mu \mathrm{A}$	-
Power Good Threshold	$\mathrm{V}_{\text {OUTPG }}$	82	88	94	\%	Rising
Power Good Hysteresis	$\mathrm{V}_{\text {OUTPGH }}$	-	7	-	\%	-
Overtemperature Shutdown	$\mathrm{T}_{\text {SHDN }}$	-	150	-	${ }^{\circ} \mathrm{C}$	-
Overtemperature Shutdown Hysteresis	$\mathrm{T}_{\text {SHDNH }}$	-	20	-	${ }^{\circ} \mathrm{C}$	-

Note 1: Specification for packaged product only.

TEMPERATURE SPECIFICATIONS

Parameters		Sym.	Min.	Typ.	Max.	Units	
Conditions							
Temperature Ranges							
Junction Temperature Range	T_{J}	-40	-	+125	${ }^{\circ} \mathrm{C}$	-	
Storage Temperature Range	T_{S}	-65	-	+150	${ }^{\circ} \mathrm{C}$	-	
Package Thermal Resistance							
Thermal Resistance, FDFN 10-Ld	θ_{JA}	-	35	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-	

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{J}}, \theta_{\mathrm{JA}}$). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum $+125^{\circ} \mathrm{C}$ rating. Sustained junction temperatures above $+125^{\circ} \mathrm{C}$ can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Efficiency vs. Output Current.

FIGURE 2-2: Efficiency vs. Output Current.

FIGURE 2-3: Efficiency vs. Output Current.

FIGURE 2-4: Current Limit vs. Input Voltage.

FIGURE 2-5: Current Limit vs. Feedback Voltage.

FIGURE 2-6: Line Regulation vs. Input Voltage.

FIGURE 2-7:
Line Regulation vs. Input Voltage.

FIGURE 2-8: Line Regulation vs. Input Voltage.

FIGURE 2-9: Line Regulation vs. Input Voltage.

FIGURE 2-10: Quiescent Current vs. Input Voltage.

FIGURE 2-11: \quad Output Voltage ($V_{I N}=3.3 \mathrm{~V}$) vs. Output Current.

FIGURE 2-12: \quad Output Voltage ($V_{I N}=5 V$) vs. Output Current.

FIGURE 2-13: Feedback Voltage vs. Temperature.

FIGURE 2-14: \quad Switching Frequency vs. Temperature.

FIGURE 2-15: Switching Frequency vs. Output Current.

FIGURE 2-16:
Switching Frequency vs.
Output Current.

FIGURE 2-17: Switching Frequency vs. Output Current.

FIGURE 2-18: VIN Soft Turn-On.

FIGURE 2-19: Enable Turn-On (No Load).

FIGURE 2-20: Enable Turn-On (2A Load).

FIGURE 2-21: Enable Turn-Off (2A Load).

FIGURE 2-22: 1.4 V Pre-Bias Start-Up (EN Rising).

FIGURE 2-23: Switching Waveforms (IOUT $=0 A$).

FIGURE 2-24: Switching Waveforms (IOUT $=2.5 A$).

FIGURE 2-25: \quad Switching Waveforms (IOUT $=5 A$).

FIGURE 2-26: Switching Waveforms
(Current Limit).

FIGURE 2-27: Load Transient Response (I IUUT $=5 A$).

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number FDFN-10	Pin Name	Description
1, 2, EP	PGND	Power Ground.
3,8	PVIN	Power Input Voltage: Connect a 10μ F ceramic capacitor between PVIN and PGND for input decoupling. Pins 3 and 8 are internally connected.
4	AVIN	Analog Input Voltage: Connect a 1μ F ceramic capacitor between AVIN and AGND to decouple the noise from the internal reference and error comparator.
5	AGND	Analog Ground Input: Connect to a quiet ground plane for best operation. Do not route power switching currents on the AGND net. Connect AGND and PGND nets together at a single point.
6	FB	Feedback (Input): Connect an external divider between VOUT and AGND (Analog Ground) to program the output voltage.
7	PG	Power Good (Output): Open-drain output. A pull-up resistor from this pin to a voltage source is required to detect an output power-is-good condition.
9	EN	Enable (Input): Logic high enables operation of the regulator. Logic low shuts down the device. Do not leave floating.
10	SW	Switch (Output): Internal power MOSFET output switches.

4.0 FUNCTIONAL DESCRIPTION

4.1 PVIN

The power input (PVIN) pin provides power to the internal MOSFETs for the switch mode regulator section of the MIC4950. The input supply operating range is from 2.7 V to 5.5 V . A low-ESR ceramic capacitor of at least $10 \mu \mathrm{~F}$ is required for bypass from PVIN to (Power) GND. See the "Applications Information" section for further details.

4.2 AVIN

The analog power input (AVIN) pin provides power to the internal control and analog supply circuitry. Careful layout is important to ensure that high-frequency switching noise caused by PVIN is reduced before reaching AVIN. Always place a $1 \mu \mathrm{~F}$ minimum ceramic capacitor very close to the IC between AVIN and AGND pins. For additional high-frequency switching noise attenuation, $R C$ filtering can be used $(R=10 \Omega)$.

4.3 EN

A logic high signal on the enable (EN) pin activates the output of the switch. A logic low on the EN pin deactivates the output and reduces the supply current to the nominal $0.01 \mu \mathrm{~A}$. Do not leave this pin floating.

4.4 SW

The switch (SW) pin connects directly to one side of the inductor and provides the current path during switching cycles. The other end of the inductor is connected to the load and output capacitor. Due to the high-speed switching on this pin, the switch node should be routed away from sensitive nodes, whenever possible, to avoid unwanted injection of noise.

4.5 PGND

The power ground (PGND) is the ground return terminal for the high current in the switching node SW. The current loop for the PGND should be as short as possible and kept separate from the AGND net whenever applicable.

4.6 AGND

The analog ground (AGND) is the ground return terminal for the biasing and control circuitry. The current loop for the signal ground should be separate from the power ground (PGND) loop. Refer to the "PCB Layout Recommendations" section for further details.

4.7 PG

The power-is-good (PG) pin is an open-drain output that indicates logic high when the output voltage is typically above 88% of its steady-state voltage. A pull-up resistor of $10 \mathrm{k} \Omega$ or greater should be connected from PG to VOUT.

4.8 FB

To program the output voltage, an external resistive divider network is connected to this pin from the output voltage to AGND, as shown in the Typical Application circuit, and is compared to the internal 0.625 V reference within the regulation loop. Equation 4-1 is used to program the output voltage:

EQUATION 4-1:
$V_{\text {OUT }}=V_{\text {REF }} \times\left(1+\frac{R 1}{R 2}\right)$

Table 4-1 lists recommended feedback resistor values.

TABLE 4-1: RECOMMENDED RESISTOR FEEDBACK VALUES

$\mathbf{V}_{\text {OUT }}$	$\mathbf{R 1}$	$\mathbf{R 2}$
1.0 V	$120 \mathrm{k} \Omega$	$180 \mathrm{k} \Omega$
1.2 V	$274 \mathrm{k} \Omega$	$294 \mathrm{k} \Omega$
1.5 V	$316 \mathrm{k} \Omega$	$226 \mathrm{k} \Omega$
1.8 V	$301 \mathrm{k} \Omega$	$160 \mathrm{k} \Omega$
2.5 V	$316 \mathrm{k} \Omega$	$105 \mathrm{k} \Omega$
3.3 V	$309 \mathrm{k} \Omega$	$71.5 \mathrm{k} \Omega$

4.9 Hyper Speed Control ${ }^{\circledR}$

MIC4950 uses an ON- and OFF-time proprietary ripple-based control loop that features three different timers:

- Minimum ON-Time
- Maximum ON-Time
- Minimum OFF-Time

When the required duty cycle is very low, the required OFF-time is typically far from the Minimum OFF-time limit (about 176 ns typ). In this case, the MIC4950 operates by delivering at each switching cycle a determined ON -time (dependent on the input voltage). A new ON-time is invoked by the error comparator when the FB voltage falls below the regulation threshold. In this mode the MIC4950 operates as an adaptive Constant-ON-Time ripple controller, with nearly constant switching frequency. Regulation takes place by controlling the valley of the FB ripple waveform.

MIC4950

When higher duty cycles are required, regulation can no longer be maintained by decreasing the OFF-time below the Minimum OFF-time limit. When this limit is reached, then the OFF-time is no longer reduced, and the MIC4950 smoothly transitions to an ON-time modulation mode. In the ON-time modulation region, frequency reduces with the increase of the required ON-time/duty cycle, and regulation finally takes place on the peak of the FB ripple waveform.

Note that because of the shift of the regulation threshold between different modes, line regulation might suffer when the input voltage and/or duty cycle variations force the MIC4950 to switch form one regulation mode to the other. In applications where wide input voltage variations are expected, ensure that the line regulation is adequate for the intended application.

5.0 APPLICATION INFORMATION

The MIC4950 is a highly efficient, 5A synchronous buck regulator ideally suited for supplying processor core and I/O voltages from a 5 V or 3.3 V bus.

5.1 Input Capacitor

A $10 \mu \mathrm{~F}$ ceramic capacitor or greater should be placed close to the PVIN pin and PGND pin for bypassing. A X5R or X7R temperature rating is recommended for the input capacitor. It is important to take into account C versus bias effect to estimate the effective capacitance and the input ripple at the V_{IN} voltage.

5.2 Output Capacitor

The MIC4950 is designed for use with a $10 \mu \mathrm{~F}$ or greater ceramic output capacitor. Increasing the output capacitance will lower output ripple and improve load transient response. A low equivalent-series resistance (ESR) ceramic output capacitor is recommended based on performance, size, and cost. Ceramic capacitors with X5R or X7R temperature ratings are recommended.

5.3 Inductor Selection

Inductor selection will be determined by the following (not necessarily in the order of importance):

- Inductance
- Rated current value
- Size requirements
- DC resistance (DCR)
- Core losses

The MIC4950 is designed for use with a $1 \mu \mathrm{H}$ to $2.2 \mu \mathrm{H}$ inductor. For faster transient response, a $1 \mu \mathrm{H}$ inductor will yield the best result. For lower output ripple, a $2.2 \mu \mathrm{H}$ inductor is recommended.

Inductor current ratings are generally given in two methods: permissible DC current, and saturation current. Permissible DC current can be rated for a $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ temperature rise. Saturation current can be rated for a 10% to 30% loss in inductance. Make sure that the nominal current of the application is well within the permissible DC current ratings of the inductor, also depending on the allowed temperature rise. Note that the inductor permissible DC current rating typically does not include inductor core losses. These are a very important contribution to the total inductor core loss and temperature increase in high-frequency DC-to-DC converters, because core losses increase with at least the square of the excitation frequency. For more accurate core loss estimation, refer to manufacturers' data sheets or websites.

When saturation current is specified, make sure that there is enough design margin, so that the peak current does not cause the inductor to enter saturation.

Also pay attention to the inductor saturation characteristic in current limit. The inductor should not heavily saturate even in current limit operation, otherwise the current might instantaneously run away and reach potentially destructive levels. Typically, ferrite-core inductors exhibit an abrupt saturation characteristic, while powdered-iron or composite inductors have a soft-saturation characteristic.

Peak current can be calculated in Equation 5-1:
EQUATION 5-1:

$$
I_{P E A K}=\left[I_{O U T}+V_{O U T} \times\left(\frac{1-V_{O U T} / V_{I N}}{2 \times f \times L}\right)\right]
$$

As shown by the calculation above, the peak inductor current is inversely proportional to the switching frequency and the inductance. The lower the switching frequency or inductance, the higher the peak current. As input voltage increases, the peak current also increases.
The size of the inductor depends on the requirements of the application. Refer to the Typical Application circuit and the Bill of Materials in the MIC4950 Evaluation Board User's Guide for details.
DC resistance (DCR) is also important. While DCR is inversely proportional to size, DCR can represent a significant efficiency loss. Refer to the "Efficiency Considerations" subsection.

5.4 Efficiency Considerations

Efficiency is defined as the amount of useful output power, divided by the amount of power supplied (see the Typical Characteristics curves):

EQUATION 5-2:

$$
\text { Efficiency } \%=\left(\frac{V_{O U T} \times I_{O U T}}{V_{I N} \times I_{I N}}\right) \times 100
$$

There are two types of losses in switching converters: DC losses and switching losses. DC losses are simply the power dissipation of $I^{2} R$. Power is dissipated in the high-side switch during the ON cycle. Power loss is equal to the high-side MOSFET $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ multiplied by the switch current squared. During the OFF cycle, the low-side N-channel MOSFET conducts, also dissipating power. Device operating current also reduces efficiency. The product of the quiescent (operating) current and the supply voltage represents
another DC loss. The current required to drive the gates on and off at high frequency and the switching transitions make up the switching losses.
At the higher currents for which the MIC4950 is designed, efficiency loss is dominated by MOSFET $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and inductor losses. Higher input supply voltages will increase the gate-to-source threshold on the internal MOSFETs, thereby reducing the internal $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$. This improves efficiency by reducing DC losses in the device. All but the inductor losses are inherent to the device. In this case, inductor selection becomes increasingly critical in efficiency calculations. As the inductors are reduced in size, the DC resistance (DCR) can become quite significant. The DCR losses can be calculated as in Equation 5-3.

EQUATION 5-3:

$$
P_{D C R}=I_{O U T}^{2} \times D C R
$$

From that, the loss in efficiency due to inductor DCR and core losses ($\mathrm{P}_{\text {CORE }}$) can be calculated as in Equation 5-4.

EQUATION 5-4:

$$
E L=\left[1-\left(\frac{V_{\text {OUT }} \times I_{\text {OUT }}}{V_{\text {OUT }} \times I_{\text {OUT }}+P_{\text {DCR }}+P_{\text {CORE }}}\right)\right] \times 100
$$

Where:
$E L=$ Efficiency loss value in percent.

5.5 External Ripple Injection

The MIC4950 control loop is ripple-based and relies on an internal ripple injection network to generate enough ripple amplitude at the FB pin when negligible output voltage ripple is present. The internal ripple injection network is typically sufficient when recommended R1-R2 and C_{F} values are used. The $F B$ ripple amplitude should fall in the 20 mV to 100 mV range.
If significantly lower divider resistors and/or higher C_{F} values are used, the amount of internal ripple injection may not be sufficient for stable operation. In this case, external ripple injection is needed. This is accomplished by connecting a series $\mathrm{R}_{\mathrm{inj}}-\mathrm{C}_{\mathrm{inj}}$ circuit between the SW and the FB pins, as shown in Figure 5-1.

FIGURE 5-1: External Ripple Injection.
The injected ripple is calculated using Equation 5-5.
EQUATION 5-5:

$$
\Delta V_{F B(P P)}=V_{I N} \times K_{D I V} \times D \times(1-D) \times \frac{1}{f_{S W} \times \tau}
$$

Where:
$\mathrm{V}_{\mathrm{IN}}=$ Power stage input voltage
D = Duty cycle
$\mathrm{f}_{\text {SW }}=$ Switching frequency
$\tau=\left(\mathrm{R} 1 / / \mathrm{R} 2 / / \mathrm{R}_{\mathrm{inj}}\right) \times \mathrm{C}_{\mathrm{F}}$
$\mathrm{K}_{\text {DIV }}$ is calculated using Equation 5-6.

EQUATION 5-6:

$$
K_{D I V}=\frac{R 1 / / \mathrm{R} 2}{R_{i n j}+R 1 / / \mathrm{R} 2}
$$

In both equations, it is assumed that the time constant associated with C_{F} must be much greater than the switching period:

EQUATION 5-7:

$$
\frac{1}{f_{S W} \times \tau}=\frac{T}{\tau} \ll 1
$$

\square

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

10-Lead DFN*

Example

Legend: $X X \ldots$ Product code or customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
(e3) Pb-free JEDEC ${ }^{\circledR}$ designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.
$\bullet, \mathbf{\Delta}, \boldsymbol{\nabla}$ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.
Underbar (_) and/or Overbar (${ }^{-}$) symbol may not be to scale.

10-Lead FDFN 3 mm x 4 mm Package Outline and Recommended Land Pattern

```
TITLE
1 0 \text { LEAD FDFN 3x4mm PACKAGE OUTLINE \& RECOMMENDED LAND PATTERN}
```

DRAWING \#	FDFN34-10LD-PL-9	UNIT	MM

TIP VIEW

SIDE VIEW

RECDMMENDED LAND PATTERN

NDTE :

1. Max package warpage is 0.05 mm
2. Max allowable burr is 0.076 mm in all directions
3. Pin \#1 will be laser marked
4. Red circle in land pattern indicate thermal via. Size should be 0.20 mm in diameter, 0.40 mm pitch \& connected to GND for max thermal performance.
5. Purple hidden lines are recommended metal trace/ GND planes for improved thermal performance.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

APPENDIX A: REVISION HISTORY

Revision A (March 2021)

- Converted Micrel document MIC4950 to Microchip data sheet template DS20006514A.
- Minor grammatical text changes throughout.
- Removed all reference to the ML, SOIC-8 version of the device.
- Evaluation Board Schematic, BOM, and PCB Layout sections from original data sheet moved to the part's Evaluation Board User's Guide.

MIC4950

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Device $\underline{\mathbf{X}}$ $\underline{\mathbf{X X}}$ $\underline{-\mathbf{X X}}$ Part No. Junction Package Media Type					Examples: a) MIC4950YFL-T5: $\quad \begin{array}{ll}\text { MIC4950, }-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \text { Temperature Range, } \\ & \text { 10-Lead FDFN, } 500 / \text { Reel }\end{array}$		
Device:	MIC4950:	H	Speed Co	5A Buck Regulator	b) MIC4	50YFL-TR:	MIC4950, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature Range, 10-Lead FDFN, 5,000/Reel
Junction Temperature Range: Package:	$Y=$ $\mathrm{YL}=$	$-40^{\circ} \mathrm{C}$ to 10-Lead	$25^{\circ} \mathrm{C}, \mathrm{RoH}$ $m \times 4 \mathrm{~mm}$	mpliant	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.		
Media Type:	$\begin{aligned} & \text { T5 }= \\ & \text { TR }= \end{aligned}$	$\begin{aligned} & \text { 500/Reel } \\ & \text { 5,000/Re } \end{aligned}$					

MIC4950

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS beEn AdVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, QuietWire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-7987-1

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office 2355 West Chandler Blvd.
 Chandler, AZ 85224-6199
 Tel: 480-792-7200
 Fax: 480-792-7277
 Technical Support:
 http://www.microchip.com/ support
 Web Address:
 www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUXCE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC

