

Rail-to-Rail Input Comparator

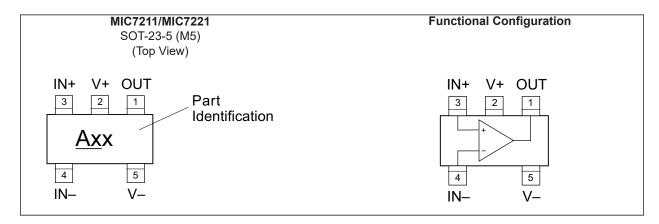
Features

- · Small Footprint SOT-23-5 Package
- Guaranteed Performance at 2.2V, 2.7V, 5V, and 10V
- 7 µA Typical Supply Current at 5V
- <5 µs Response Time at 5V
- Push-Pull Output (MIC7211)
- Open-Drain Output (MIC7221)
- Input Voltage Range May Exceed Supply Voltage by 0.3V
- >100 mA Typical Sink or Source

Applications

- · Battery-Powered Products
- · Notebook Computers and PDAs
- PCMCIA Cards
- Cellular and Other Wireless Communication Devices
- · Alarm and Security Circuits
- · Direct Sensor Interface

General Description


The MIC7211 and MIC7221 are micropower comparators that feature rail-to-rail input performance in an SOT-23-5 package. The comparators are ideal for systems where small size is a critical consideration.

The MIC7211/MIC7221 are optimized for single supply operation from 2.2V to 10V power supplies.

The MIC7211 features a conventional push-pull output while the MIC7221 has an open-drain output for mixed-voltage applications with an external pull-up resistor.

The MIC7211/MIC7221 benefits small battery-operated portable electronic devices where small size and the ability to place the comparator close to the signal source are primary design concerns.

Package Type

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage, (V _{V+} – V _V)	+12V
Differential Input Voltage, (V _{IN+} – V _{IN})	
I/O Pin Voltage, (V _{IN.} V _{OUT}) (Note 1)	
ESD Ratings	(Note 2)

Operating Ratings ††

Supply Voltage, $(V_{V+} - V_{V-})$+2.2V to +10V Maximum Power Dissipation.....(Note 3)

† Notice: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside its recommended operating ratings.

†† Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: I/O pin voltage is any external voltage to which an input or output is referenced.

- 2: Devices are ESD sensitive. Handling precautions recommended.
- 3: The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(MAX)}$; the junction-to-ambient thermal resistance, θ_{JA} ; and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using $P_D = (T_{J(MAX)} T_A) \div \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature.

DC CHARACTERISTICS (2.2V)

Electrical Characteristics: Unless otherwise indicated, V_{V+} = +2.2V; V_{V-} = 0V; V_{CM} = V_{OUT} = $V_{V+}/2$; T_J = +25°C. (Note 1).

(Note 1).									
Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions			
Input Offset Voltage	V _{OS}	_	2	10	mV	_			
Input Offset Voltage Temperature Drift	TCV _{OS}	_	1	_	μV/°C	_			
Input Offset Voltage Drift Over Time	TCV _{OS}	_	3.3	_	μV/ Month	_			
Input Bias Current	I _B	_	0.5	_	pА	_			
Input Offset Current	I _{OS}	_	0.25	_	pА	_			
Common Mode Rejection Ratio	CMRR	_	60	_	dB	$0V \le V_{CM} \le 2.2V$			
Positive Power Supply Rejection Ratio	PSRR	_	90	_	dB	V _{V+} = 2.2V to 5V			
Gain	A_{VOL}	_	125	_	dB	_			
Output Voltage (High)	V _{OH}	2.1	2.18	_	V	MIC7211, I _{LOAD} = 2.5 mA			
Output Voltage (Low)	V _{OL}	_	0.02	0.1	V	I _{LOAD} = 2.5 mA			
Supply Current	I _S	_	5	12	μA	V _{OUT} = low			

Note 1: All limits guaranteed by testing on statistical analysis.

DC CHARACTERISTICS (2.7V)

Electrical Characteristics: Unless otherwise indicated, V_{V+} = +2.7V; V_{V-} = 0V; V_{CM} = V_{OUT} = $V_{V+}/2$; V_{J-} = +25°C. (Note 1).

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Input Offset Voltage	V _{OS}	_	2	10	mV	_
Input Offset Voltage Temperature Drift	TCV _{OS}	_	1	_	μV/°C	_
Input Offset Voltage Drift Over Time	TCV _{OS}	_	3.3	_	μV/ Month	_
Input Bias Current	Ι _Β	_	0.5	_	pА	_
Input Offset Current	I _{OS}	_	0.25	_	pА	_
Common Mode Rejection Ratio	CMRR	_	65	_	dB	$0V \le V_{CM} \le 2.7V$
Positive Power Supply Rejection Ratio	PSRR	_	90	_	dB	V _{V+} = 2.7V to 5V
Gain	A _{VOL}	_	125	_	dB	_
Output Voltage (High)	V _{OH}	2.6	2.68	_	V	MIC7211, I _{LOAD} = 2.5 mA
Output Voltage (Low)	V _{OL}	_	0.02	0.1	V	I _{LOAD} = 2.5 mA
Supply Current	I _S	_	5	12	μA	V _{OUT} = low

Note 1: All limits guaranteed by testing on statistical analysis.

DC ELECTRICAL CHARACTERISTICS (5V)

Electrical Characteristics: Unless otherwise indicated, $V_{V+} = +5.0V$; $V_{V-} = 0V$; $V_{CM} = V_{OUT} = V_{V+}/2$; $T_J = +25^{\circ}C$. (Note 1).

(Note 1).								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Input Offset Voltage	V _{OS}	_	2	10	mV	_		
Input Offset Voltage Temperature Drift	TCV _{OS}	_	1	_	μV/°C	_		
Input Offset Voltage Drift Over Time	TCV _{OS}	_	3.3	_	μV/ Month	_		
Input Bias Current	Ι _Β	_	0.5	_	pА	_		
Input Offset Current	I _{OS}	_	0.25	_	pА	_		
Common Mode Rejection Ratio	CMRR	_	70	_	dB	$0V \le V_{CM} \le 5V$		
Positive Power Supply Rejection Ratio	PSRR	_	90	_	dB	V _{V+} = 5.0V to 10V		
Gain	A _{VOL}	_	125	_	dB	_		
Output Voltage (High)	V _{OH}	4.9	4.95	_	V	MIC7211, I _{LOAD} = 5 mA		
Output Voltage (Low)	V _{OL}	_	0.05	0.1	V	I _{LOAD} = 5 mA		
Supply Current	I _S	_	7	14	μA	V _{OUT} = low		
Short Circuit Current	I _{sc}		150		mA	MIC7211, Sourcing		
			110	_	mA	Sinking		

Note 1: All limits guaranteed by testing on statistical analysis.

DC ELECTRICAL CHARACTERISTICS (10V)

Electrical Characteristics: Unless otherwise indicated, $V_{V+} = +10V$; $V_{V-} = 0V$; $V_{CM} = V_{OUT} = V_{V+}/2$; $T_J = +25^{\circ}C$. (Note 1).

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Farameters	Sylli.	IVIIII.	ıyρ.	IVIAA.	Ullits	Conditions
Input Offset Voltage	Vos	_	2	10	mV	_
Input Offset Voltage Temperature Drift	TCV _{OS}	_	1	_	μV/°C	_
Input Offset Voltage Drift Over Time	TCV _{OS}	_	3.3	_	μV/ Month	_
Input Bias Current	I_{B}	_	0.5	_	pА	_
Input Offset Current	Ios	_	0.25	_	pА	_
Common Mode Rejection Ratio	CMRR	_	75	_	dB	$0V \le V_{CM} \le 10V$
Positive Power Supply Rejection Ratio	PSRR	_	90	_	dB	V _{V+} = 5.0V to 10V
Gain	A _{VOL}	_	125	_	dB	_
Output Voltage (High)	V _{OH}	9.9	9.95	_	V	MIC7211, I _{LOAD} = 5 mA
Output Voltage (Low)	V _{OL}	_	0.05	0.1	V	I _{LOAD} = 5 mA
Supply Current	I _S	_	12	25	μA	V _{OUT} = low
Short Giravit Comment		_	165	_	mA	MIC7211, Sourcing
Short Circuit Current	I _{SC}	_	125	_	mA	Sinking

Note 1: All limits guaranteed by testing on statistical analysis.

AC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, $V_{V-} = 0V$; $V_{CM} = V_{OUT} = V_{V+}/2$; $T_J = +25$ °C. (Note 1).								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Rise Time	t _{RISE}	_	75		ns	V_{V+} = 5.0V, f = 10 kHz, C_{LOAD} = 50 pF, overdrive = 10 mV (Note 2)		
Fall Time	t _{FALL}	_	70	l	ns	V_{V+} = 5.0V, f = 10 kHz, C_{LOAD} = 50 pF, overdrive = 10 mV (Note 2)		
Propagation Delay-High to Low	t _{РНL}	_	10	l	μs	V_{V+} = 2.2V, f = 10 kHz, C_{LOAD} = 50 pF, overdrive = 10 mV (Note 2)		
		_	6		μs	$V_{V+} = 2.2V, f = 10 \text{ kHz},$ $C_{LOAD} = 50 \text{ pF},$ overdrive = 100 mV, $-40^{\circ}\text{C} \le T_{J} \le +85^{\circ}\text{C (Note 2)}$		
		_	13	l	μs	$V_{V+} = 5V, f = 10 \text{ kHz},$ $C_{LOAD} = 50 \text{ pF},$ overdrive = 10 mV, $-40^{\circ}\text{C} \le T_{J} \le +85^{\circ}\text{C} \text{ (Note 2)}$		
			5		μs	V_{V+} = 5V, f = 10 kHz, C_{LOAD} = 50 pF, overdrive = 100 mV (Note 2)		

Electrical Characteristics: Unless otherwise indicated, $V_{V-} = 0V$; $V_{CM} = V_{OUT} = V_{V+}/2$; $T_J = +25$ °C. (Note 1).								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Propagation Delay-Low to High	^t РLН	_	13.5	_	μs	V_{V+} = 2.2V, f = 10 kHz, C_{LOAD} = 50 pF, overdrive = 10 mV (Note 2)		
		_	4	_	μs	$V_{V+} = 2.2V, f = 10 \text{ kHz},$ $C_{LOAD} = 50 \text{ pF},$ overdrive = 100 mV, $-40^{\circ}\text{C} \le T_{J} \le +85^{\circ}\text{C} \text{ (Note 2)}$		
		_	11.5	_	μs	$V_{V+} = 5V, f = 10 \text{ kHz},$ $C_{LOAD} = 50 \text{ pF},$ overdrive = 10 mV, $-40^{\circ}\text{C} \le T_{J} \le +85^{\circ}\text{C} \text{ (Note 2)}$		
		_	3	_	μs	V_{V+} = 5V, f = 10 kHz, C_{LOAD} = 50 pF, overdrive = 100 mV (Note 2)		

Note 1: All limits guaranteed by testing on statistical analysis.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges							
Junction Operating Temperature	TJ	-40	_	+85	°C	_	
Storage Temperature Range	T _S	-65	_	+150	°C	_	
Package Thermal Resistances							
Thermal Resistance, SOT-23-5Ld	θ_{JA}	_	235	_	°C/W	Note 1	

Note 1: Thermal resistance, θ_{JA} , applies to a part soldered on a printed circuit board.

^{2:} The MIC7221 requires a 5 $k\Omega$ pull-up resistor.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	OUT	Amplifier Output
2	V+	Positive Supply
3	IN+	Noninverting Input
4	IN-	Inverting Input
5	V-	Negative Supply

3.0 APPLICATION INFORMATION

The small outline and low supply current (typically 7 μ A at 5V) of the MIC7211/21 are the primary advantages of these comparators. They have been characterized for 2.2V, 2.7V, 5V, and 10V operation.

Their 2.2V capability is especially useful in low-battery voltage situations. Low-voltage operation allows longer battery life or deeper discharge capability. Even at 2.2V, the output can drive several logic-gate inputs. At 2.5 mA, the output stage voltage drop is guaranteed to not exceed 0.1V.

3.1 Output

The MIC7211 has a push-pull output while the MIC7221 has an open-drain output, otherwise both comparators share a common design.

The open-drain MIC7221 output can be pulled up to 10V, even when the supply voltage is as low as 2.2V. Conversely, the output also can be pulled up to voltages that are lower than the positive supply. Logic-level translation is readily facilitated by the ability to pull the open-drain output to voltages above or below the power supply.

Although specified short-circuit output current specified for these parts typically exceeds 100 mA, their output is not intended to sink or source anywhere near 100 mA. The short-circuit rating is only presented as additional information regarding output impedance and may be useful for determining the voltage drop one may experience when driving a given load.

3.2 Input Bias Current

The low input-bias current (typically 0.5 pA) requirement of the MIC7211/21 provides flexibility in the kinds of circuitry and devices that can be directly interfaced.

Designs using an amplifier for transducerto-comparator impedance transformation may be simplified by using the MIC7211/21's low input current requirement to eliminate the amplifier.

3.3 Input Signal Levels

Input signals may exceed either supply rail by up to 0.2V without phase inversion or other adverse effects. The inputs have internal clamp diodes to the supply pins.

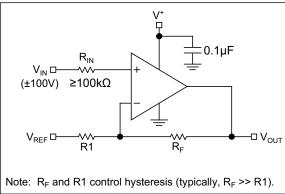


FIGURE 3-1: Driving the Input Beyond the Supply Rails.

Larger input swings can be accommodated if the input current is limited to 1 mA or less. Using a 100 k Ω input resistor will allow an input to swing up to 100V beyond either supply rail. Because of the low input bias current of the device, even larger input resistors are practical. See Figure 3-1. The ability to swing the input beyond either rail facilitates some otherwise difficult circuits, such as a single-supply zero-crossing detector or a circuit that senses its own supply voltage.

The comparator must be powered if an input is pulled above the rail, even with current limiting in effect. Figure 3-2 shows a hypothetical situation where an input is pulled higher than the rail when the power supply is off or not present. Figure 3-2 also shows external clamp diodes for additional input circuit protection. Discrete clamp diodes can be arbitrarily more robust than the internal clamp diodes.

The power supply has been simplified (real power supplies do not have a series output diode); however, this illustrates a common characteristic of most positive-voltage power supplies: they are designed to source, but not sink, current. If the supply is off, or disconnected, there is no limiting voltage for the clamp diode to reference. The input signal can charge the bypass capacitor, and possibly the filter capacitor, up to the applied input (V_{IN}) . This may be high enough to cause a thin-oxide rupture in a CMOS integrated circuit.

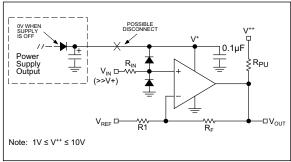
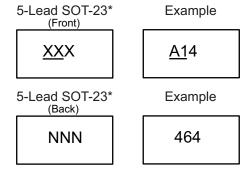


FIGURE 3-2: Avoid this Condition.

Ideally, the supply for the comparator and the input-producing circuitry should the same or be switched simultaneously.

3.4 Bypass Capacitors

CMOS circuits, especially logic gates with their totem-pole (push-pull) output stages, generate power supply current spikes (noise) on the supply and/or ground lines. These spikes occur because, for a finite time during switching, both output transistors are partially on allowing "shoot-through current." Bypass capacitors reduce this noise.

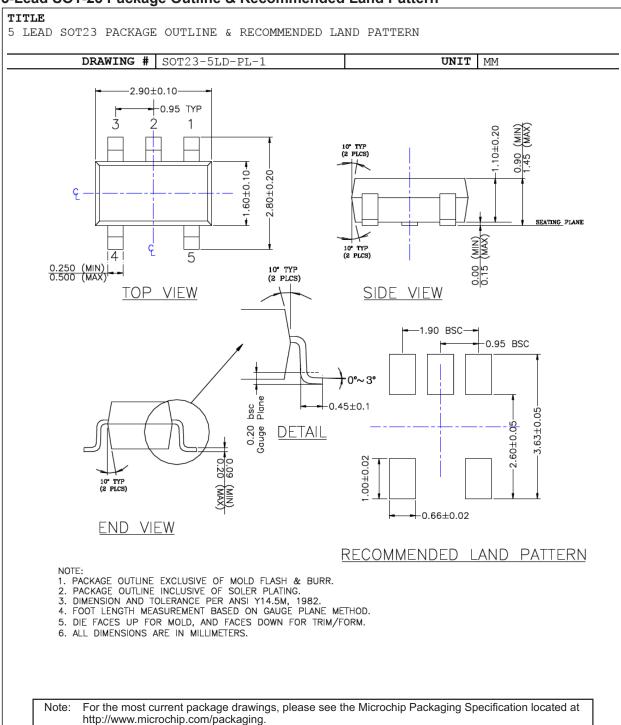

Adequate bypassing for the MIC7211 comparator is $0.01~\mu F$; in low-noise systems, where this noise may interfere with the functioning or accuracy of nearby circuitry, $0.1~\mu F$ is recommended. Because the MIC7221 does not have a totem-pole output stage, this spiking is not evident; however, switching a capacitive load can present a similar situation.

3.5 Thermal Behavior

The thermal impedance of a SOT-23-5 package is 235°C/W . The DC Electrical Characteristics (5V) table shows a maximum voltage drop of 0.1V for a 5 mA output current, making the output resistance about 20Ω (R = 0.1/0.005 = 20Ω). Attempting to draw the typical specified output short-circuit current of 150 mA (sourcing) can be expected to cause a die temperature rise of 106°C. (Operating die temperature for ICs should generally not exceed 125°C.) Using a series resistance is the simplest form of protecting against damage by excessive output current.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information


Note: Package marking code for MIC7211 is A14. Package marking code for MIC7221 is A15.

Legend: XX...X Product code or customer-specific information Year code (last digit of calendar year) Υ ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) (e3) This package is Pb-free. The Pb-free JEDEC designator (@3)) can be found on the outer packaging for this package. •, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (¯) symbol may not be to scale.

5-Lead SOT-23 Package Outline & Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (April 2020)

- Converted Micrel document MIC7211/MIC7221 to Microchip data sheet template DS20006325A.
- Minor grammatical text changes throughout.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART No.	v	XX	-XX	Exa	amples:	
Device	Temperature Range	Package	Media Type	a) b)	MIC7211YM5-TR: MIC7221YM5-TR:	(RoHS Compliant), 5LD SOT-23, 3,000/Reel MIC7221, -40°C to
Device:		-Rail Input Comparato -Rail Input Comparato				+85°C (RoHS Compliant), 5LD SOT-23, 3,000/Reel
Temperature Range:	Y = -40°C to	o +85°C (RoHS Comp	oliant)	Not	catalog part no used for order the device pac	I identifier only appears in the umber description. This identifier is ing purposes and is not printed on ckage. Check with your Microchip
Package:	M5 = 5-Lead	SOT-23-5			Tape and Ree	or package availability with the Il option.
Media Type:	TR = 3,000//F	Reel				

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5909-5

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA

Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423

Fax: 972-818-2924 **Detroit**

Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CATel: 408-735-9110
Tel: 408-436-4270 **Canada - Toronto**

Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analog Comparators category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

SC2903VDR2G LM2901SNG LM339SNG 55122 5962-8757203IA NTE911 5962-8751601DA LM339EDR2G NTE922 SC2901DR2G LM2903M/TR LM2903F-E2 MCP6544-EP LM2901EDR2G TS391SN2T1G LM111JG LM239APT HMC675LC3CTR 5962-8765801PA LT6700HVIS6-2#TRMPBF 5962-8765902CA ADCMP394ARZ-RL7 LM339AMX AZV331KSTR-G1 LT1716IS5#TRMPBF LTC1440CN8#PBF LTC1542CS8#PBF LTC1445CS#PBF TL331VSN4T3G LT6700IDCB-1#TRMPBF LTC1042CN8#PBF LTC1540CMS8#PBF LT6703CDC-2#TRMPBF ADCMP607BCPZ-R7 LT1720CDD#PBF LTC1040CN#PBF LT6700MPDCB-1#TRMPBF LT6700IDCB-3#TRMPBF LM2903WHYST TLV1701AIDRLR S-89431ACNC-HBVTFG LT1018CS8#PBF NTE1718 NTE943 NTE943M NTE943SM TA75S393F,LF(T ALD2301APAL ALD2302APAL TSX3704IYPT