

MIC811/812

Microprocessor Reset Circuits

General Description

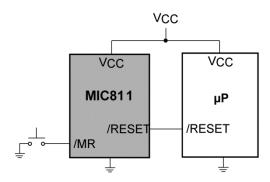
The MIC811 and MIC812 are inexpensive microprocessor supervisory circuits that monitor power supplies in microprocessor based systems.

The function of this device is to assert a reset if either the power supply drops below a designated reset threshold level or /MR is forced low. Several different reset threshold levels are available to accommodate 3V, 3.3V or 5V powered systems.

The MIC811 has an active low /RESET output, while the MIC812 offers an active high RESET output. The reset output is guaranteed to remain asserted for a minimum of 140ms after VCC has risen above the designed reset threshold level. Having a push-pull output stage, the MIC811/812 does not require a pull-up resistor at the output. The MIC811/812 comes in a 4-pin SOT-143 package.

If a microprocessor voltage supervisor with an open-drain output stage is needed, see MIC6315.

Datasheets and support documentation are available on Micrel's web site at: www.micrel.com.


Features

- Precision voltage monitor for 3V, 3.3V or 5V power supplies
- /RESET remains valid with VCC as low as 1V
- 5µA typical supply current
- 140ms minimum reset pulse width available
- Manual reset input
- Available in 4-pin SOT-143 package

Applications

- Portable equipment
- · Intelligent instruments
- Critical microprocessor power monitoring
- Printers/computers
- Controllers

Typical Application

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Ordering Information

Part Number Pb-Free	Marking ⁽¹⁾	Threshold Voltage	Operating Temp. Range	Package
MIC811LUY	<u>KL</u>	4.63	-40°C to +85°C	4-pin SOT-143
MIC811MUY	<u>KM</u>	4.38	-40°C to +85°C	4-pin SOT-143
MIC811JUY	<u>KJ</u>	4.00	-40°C to +85°C	4-pin SOT-143
MIC811TUY	<u>KT</u>	3.08	-40°C to +85°C	4-pin SOT-143
MIC811SUY	<u>KS</u>	2.93	-40°C to +85°C	4-pin SOT-143
MIC811RUY	<u>KR</u>	2.63	-40°C to +85°C	4-pin SOT-143
MIC812LUY	<u>LL</u>	4.63	-40°C to +85°C	4-pin SOT-143
MIC812MUY	<u>LM</u>	4.38	-40°C to +85°C	4-pin SOT-143
MIC812JUY	<u>LJ</u>	4.00	-40°C to +85°C	4-pin SOT-143
MIC812TUY	<u>LT</u>	3.08	-40°C to +85°C	4-pin SOT-143
MIC812SUY	<u>LS</u>	2.93	-40°C to +85°C	4-pin SOT-143
MIC812RUY	<u>LR</u>	2.63	-40°C to +85°C	4-pin SOT-143

Note:

Pin Configuration

Pin Description

MIC811	MIC812	Pin Name	Pin Name
1	1	GND	IC Ground Pin.
2	N/A	/RESET	/RESET goes low if VCC falls below the reset threshold and remains asserted for one reset timeout period (140ms min.) after VCC exceeds the reset threshold.
N/A	2	RESET	RESET goes high if VCC falls below the reset threshold and remains asserted for one reset timeout period (140ms min.) after VCC exceeds the reset threshold.
3	3	/MR	Manual Reset Input. A logic low on /MR will force a reset. The reset will remain asserted as long as /MR is held low and for one reset timeout period (140ms min.) after /MR goes high. This input can be shorted to ground via a switch or driven from CMOS or TTL logic. Float if unused.
4	4	VCC	Power Supply Input.

^{1. &}quot;_" underbar symbol not to scale

Absolute Maximum Ratings⁽²⁾

Terminal Voltage (VCC)	0.3V to +6.0V
Input Current (VCC, /MR)	20mA
Output Current (/RESET, RESET)	20mA
Lead Temperature (soldering, 10s)	300°C
Storage Temperature (Ts)	5°C to 150°C
Rate of Rise (VCC)	100V/µs
ESD Rating ⁽⁴⁾	3kV

Operating Ratings⁽³⁾

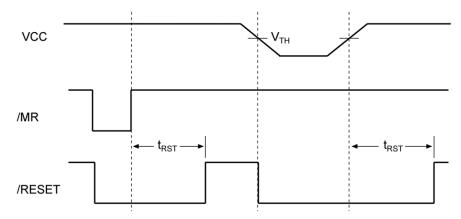
Operating Temperature Range	
MIC811	40°C to +85°C
MIC812	40°C to +85°C
Power Dissipation ($T_A = +70^{\circ}C$)	320mW
Thermal Resistance	
SOT-143 (θ _{JA})	265°C/W

Electrical Characteristics⁽⁵⁾

For typical values, VCC = 5V for MIC8_L/M/J, VCC = 3.3V for MIC8_S/T, VCC = 3V for MIC8_R; $T_A = 25^{\circ}$ C, **bold** values indicate – 40° C to $\leq T_A \leq +85^{\circ}$ C; unless noted.

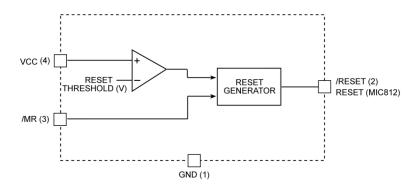
Symbol	Parameter	Condition	Min	Тур	Max	Units
VCC	Operating Voltage Range	$T_A = -40$ °C to 85°C	1		5.5	V
		MIC811L/M/J, MIC812L/M/J: VCC = 5.0V, no load		5	15	μА
I _{VCC} S	Supply Current	MIC811S/T, MIC812S/T: VCC = 3.3V, no load		5	10	μА
		MIC811R, MIC812R: VCC = 3.0V, no load		5	10 10 4.75 4.50 4.10 3.15 3.00 2.70 560	μА
		MIC811L, MIC812L	4.50	4.63	4.75	V
	Reset Voltage Threshold	MIC811M, MIC812M	4.25	4.38	4.50	V
V		MIC811J, MIC812J	3.89	4.00	4.10	V
V_{TH}		MIC811T, MIC812T	3.00	3.08	3.15	V
		MIC811S, MIC812S	2.85	2.93	3.00	V
		MIC811R, MIC812R	2.55	2.63	2.70	V
t _{RST}	Reset Timeout Period		140	240	560	ms
V	/DECET Output Voltage	I _{SOURCE} = 800μA, MIC811L/M/J	VCC-1.5V			V
V_{OH}	/RESET Output Voltage	I _{SOURCE} = 500μA, MIC811R/S/T	0.8xVCC			V
		VCC = V _{TH} min., I _{SINK} = 3.2mA, MIC811L/M/J			0.4	V
V_{OL}	/RESET Output Voltage	VCC = V _{TH} min., I _{SINK} = 1.2mA, MIC811R/S/T			0.3	V
		VCC >1V, $I_{SINK} = 50\mu A$, $T_A = -40^{\circ}C$ to +85°C			0.3	V
V _{OH}	RESET Output Voltage	1.8V <vcc <v<sub="">TH min., I_{SOURCE} = 150μA</vcc>	0.8xVCC			V
	DECET Outrot Valle	I _{SINK} = 3.2mA, MIC812L/M/J			0.4	V
V_{OL}	RESET Output Voltage	I _{SINK} = 1.2mA, MIC812R/S/T			0.3	V

Notes:


- 2. Exceeding the absolute maximum ratings may damage the device.
- 3. The device is not guaranteed to function outside its operating ratings.
- 4. Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5kΩ in series with 100pF.
- 5. Specification for packaged product only

Electrical Characteristics (Continued)⁽⁵⁾

For typical values, V_{CC} = 5V for MIC8_L/M/J, V_{CC} = 3.3V for MIC8_S/T, V_{CC} = 3V for MIC8_R; T_A = 25°C, **bold** values indicate -40°C to $\leq T_A \leq +85$ °C; unless noted.


Symbol	Parameter	Condition	Min	Тур	Max	Units
	/MR Minimum Pulse Width		10			μS
	/MR to Reset Delay			0.5		μS
V _{IH}	/MR Input Threshold	VCC > V _{TH} max., MIC81_L/M/J	2.3			V
		MIC81_R/S/T	0.7xVCC			V
V _{IL}	/MR Input Threshold	VCC > V _{TH} max., MIC81-L/M/J			0.8	V
		MIC81_R/S/T			0.25xVCC	V
	/MR Pull-Up Resistance		10	20	30	kΩ
	/MR Glitch Immunity			100		ns

Timing Diagram

Reset Timing Diagram

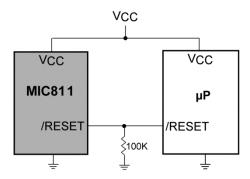
Functional Diagram

Application Information

Microprocessor Reset

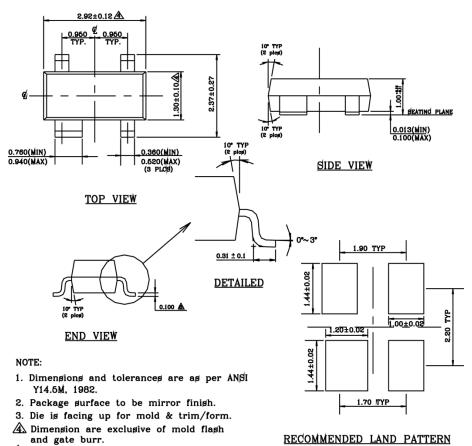
The /RESET (or RESET) pin is asserted whenever VCC falls below the reset threshold voltage. The /RESET pin remains asserted for a period of 140ms after VCC has risen above the reset threshold voltage. The reset function ensures that the microprocessor is properly reset and powers up in a known condition after a power failure. /RESET will remain valid with VCC as low as 1V.

VCC Transients


The MIC811/812 are relatively immune to negative-going VCC glitches below the reset threshold. Typically, a negative-going transient 125mV below the reset threshold with a duration of 20 μ s or less will not cause a reset.

Interfacing to Bidirectional Reset Pins

The MIC811/812 can interface with μ Ps with bidirectional reset pins by connecting a 4.7k Ω resistor in series with the MIC811/812 output and the μ P reset pin.


/RESET Valid at Low Voltage

A resistor can be added from the /RESET pin to ground to ensure the /RESET output remains low with V_{CC} down to 0V. A 100k Ω resistor connected from the /RESET to ground is recommended. The size of the resistor should be large enough not to load the output excessively and small enough to pull-down any stray leakage currents.

Reset Valid to VCC = 0V

Package Information

4-Pin SOT-143 (U)

h Dimension are exclusive of solder plating.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high performance linear and power, LAN, and timing & communications markets. The Company's products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products. Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network of distributors and reps worldwide.

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale."

© 2014 Micrel, Incorporated.

September 9, 2014 7 Revision 2.0

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

```
NCP304LSQ38T1G NCP304LSQ42T1G NCP304LSQ43T1G NCP305LSQ11T1G NCP305LSQ16T1G NCP305LSQ17T1G NCP305LSQ18T1G NCP305LSQ24T1G NCP305LSQ25T1G NCP305LSQ29T1G NCP305LSQ31T1G NCP305LSQ32T1G NCP308MT250TBG NCP308SN300T1G NCP391FCALT2G NCV303LSN42T1G CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G CAT872-30ULGT3 NCP304HSQ18T1G NCP304HSQ29T1G NCP304LSQ27T1G NCP304LSQ29T1G NCP304LSQ29T1G NCP304LSQ45T1G NCP305LSQ35T1G NCP305LSQ35T1G NCP305LSQ37T1G NCP308MT300TBG NCV300LSN36T1G NCV302LSN30T1G NCV303LSN16T1G NCV303LSN22T1G NCV303LSN27T1G NCV303161DMR2G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MCP1316T-26LE/OT MAX8997EWW+ MAX821RUS+T MAX6725AKASYD3-LF-T MAX809SEUR MAX6701LKA+ MAX16126TCA+T MAX16046ATN+ NCP303LSN09T2G NCP304LSQ20T1G
```