MIC94030/94031

TinyFET® P-Channel MOSFET

General Description

The MIC94030 and MIC94031 are 4-terminal silicon gate P-channel MOSFETs that provide low on-resistance in a very small package.

Designed for high-side switch applications where space is critical, the MIC94030/1 exhibits an on-resistance of typically 0.75 Ω at 4.5V gate-to-source voltage. The MIC94030/1 also operates with only 2.7V gate-to-source voltage.

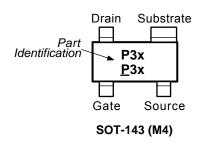
The MIC94030 is the basic 4-lead P-channel MOSFET. The MIC94031 is a variation that includes an internal gate pull-up resistor that can reduce the system parts count in many applications.

The 4-terminal SOT-143 package permits a substrate connection separate from the source connection. This 4-terminal configuration improves the θ_{JA} (improved heat dissipation) and makes analog switch applications practical.

The small size, low threshold, and low $R_{\text{DS(on)}}$ make the MIC94030/1 the ideal choice for PCMCIA card sleep mode or distributed power management applications.

Features

- 13.5V minimum drain-to-source breakdown
- 0.75Ω typical on-resistance
 - at 4.5V gate-to-source voltage
- 0.45Ω typical on-resistance
 - at 10V gate-to-source voltage
- Operates with 2.7V gate-to-source voltage
- Separate substrate connection for added control
- · Industry's smallest surface mount package


Applications

- · Distributed power management
- PCMCIA card power management
- · Battery-powered computers, peripherals
- Hand-held bar-code scanners
- Portable communications equipment

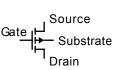

Ordering Information

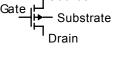
Part Number			Junction Temp. Range	Pookogo		
Standard	Marking	Pb-Free	Marking	Junction Temp. Range	Package	
MIC94030BM4	P30	MIC94030YM4	<u>P</u> 30	–55° to +150°C	SOT-143	
MIC94031BM4	P31	MIC94031YM4	<u>P</u> 31	–55° to +150°C	SOT-143	

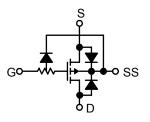
Pin Configuration

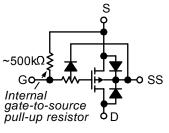
Typical PCB Layout

TinyFET is a registered trademark of Micrel, Inc.


Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com


July 2006 M9999-071106


MIC94030/MIC94031 Micrel, Inc.


Schematic Symbol

Functional Diagrams

Schematic Symbol

MIC94030

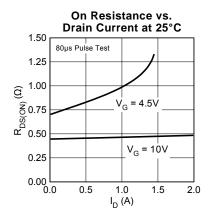
MIC94031

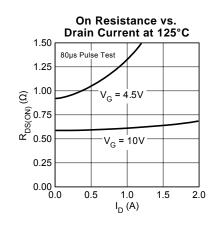
Absolute Maximum Ratings⁽¹⁾

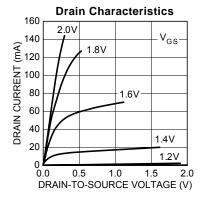
Voltage and current values are negative. Signs not shown t	or clarity.
Drain-to-Source Voltage (pulse)	16V
Gate-to-Source Voltage (pulse).	16V
Continuous Drain Current	
T _A = 25°C	1A
T _A = 100°C	
Operating Junction Temperature–55°C to	+150°C
Storage Temperature–55°C to	+150°C

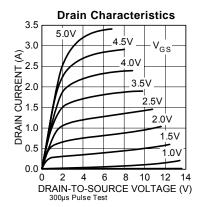
Total Power Dissipation	
T _A = 25°C	568mW
T _A = 100°C	
Thermal Resistance	
θ_{JA}	220°C/W
θ _{JC}	130°C/W
Lead Temperature	
1/16" from case, 10s	+300°C

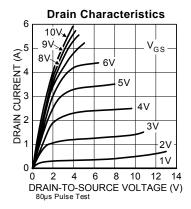
Electrical Characteristics


Voltage and current values are negative. Signs not shown for clarity.


Symbol	Parameter	Condition (Note 1)	Min	Тур	Max	Units
V _{BDSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA	13.5			V
V _{GS}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.6	1.0	1.4	V
I _{GSS}	Gate-Body Leakage	V _{DS} = 0V, V _{GS} = 12V, Note 2, Note 3			1	μA
R _{GS}	Gate-Source Resistor	V _{DS} = 0V, V _{GS} = 12V, Note 2, Note 4	500	750	1000	kΩ
C _{ISS}	Input Capacitance	V _{GS} = 0V, V _{DS} = 12V		100		pF
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 12V, V _{GS} = 0V			25	μA
		V _{DS} = 12V, V _{GS} = 0V, T _J = 125°C		0.010	250	μA
I _{D(ON)}	On-State Drain Current	V _{DS} = 10V, V _{GS} = 10V, Note 5		6.3		Α
R _{DS(ON)}	Drain-Source On-State Resist	$V_{GS} = 10V, I_D = 100mA$ $V_{GS} = 4.5V, I_D = 100mA$ $V_{GS} = 2.7V, I_D = 100mA$		0.45 0.75 1.20	1.00	Ω Ω Ω
g FS	Forward Transconductance	V _{DS} = 10V, I _D = 200mA, Note 5		480		mS


Notes:


- 1. $T_A = 25$ °C unless noted. Substrate connected to source for all conditions.
- 2. ESD gate protection diode conducts during positive gate-to-source voltage excursions.
- 3. MIC94030 only.
- 4. MIC94031 only.
- 5. Pulse Test: Pulse Width ≤ 80µsec, Duty Cycle ≤ 0.5%.


Typical Characteristics

Typical Applications

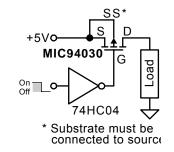


Figure 1. Power Switch Application

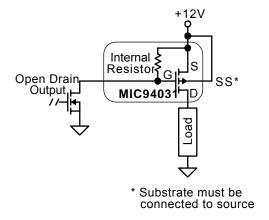


Figure 2. Power Control Application

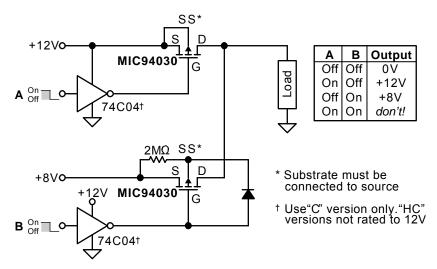
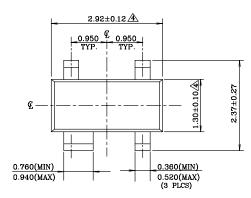
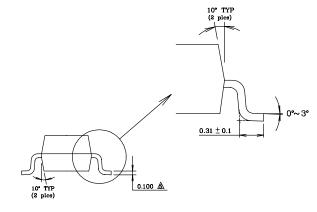
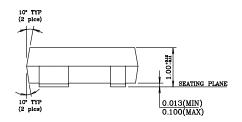




Figure 3. Analog Switch Application


Package Information

TOP VIEW

END VIEW

SIDE VIEW

NOTE:

- 1. Dimensions and tolerances are as per ANSI Y14.5M, 1982.
- 2. Package surface to be mirror finish.
- 3. Die is facing up for mold & trim/form.
- Dimension are exclusive of mold flash and gate burr.
- Dimension are exclusive of solder plating.

SOT-143 (M4)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 1997 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237

2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T)

D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F

SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2

RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U

JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI