General Description

The MIC94070-73 are high-side load switches designed for operation between 1.7 V to 5.5 V . The devices contain a low on-resistance P-channel MOSFET that supports 1.2A of continuous current. The MIC94071 and MIC94073 feature an active load discharge circuit which insures capacitive loads retain no charge when the main switch is in an OFF state.
MIC94070-71 feature rapid turn on while MIC94072-73 provide a slew rate controlled Soft-Start turn-on of $800 \mu \mathrm{~s}$ (typical) to prevent in-rush current from glitching supply rails.
An active pull-down on the enable input keeps MIC94070-73 in a default OFF state until the EN pin is pulled to a high level. Built-in level shift circuitry allows low voltage logic signals to switch higher supply voltages, or vice versa; high level logic signals can control low level voltages.
MIC94070-73's operating voltage range makes them suitable for 1 -cell Lithium ion and 2 - to 3 -cell $\mathrm{NiMH} / \mathrm{NiCad} /$ Alkaline powered systems, as well as all 5 V applications. Their low operating current of $2 \mu \mathrm{~A}$ and low shutdown current of $<1 \mu \mathrm{~A}$ maximize battery life.
Data sheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- 1.7 V to 5.5 V input voltage range
- 1.2A continuous operating current
- 3A pulse current
- $120 \mathrm{~m} \Omega \mathrm{R}_{\text {Dson }}$ (typical)
- Built-in level shift for control logic; can be operated by 1.5V logic.
- Low $2 \mu \mathrm{~A}$ quiescent current
- Soft-Start: MIC94072/73
- Micro-power shutdown <1 $\mu \mathrm{A}$
- Load discharge circuit: MIC94071, MIC94073
- Space saving $1.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Thin MLF^{\circledR} package

Applications

- Load switch in portable applications:
- Cellular phones
- PDAs
- MP3 players
- Digital Cameras
- Portable instrumentation
- Battery switch-over circuits
- Level translator

Typical Application

MIC94070, 72
Load Switch Application

MLF and MicroLeadFrame are registered trademarks of Amkor Technologies, Inc.
Micrel Inc. • 2180 Fortune Drive • San Jose, CA $95131 \cdot$ USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000•http://www.micrel.com

Ordering Information

Part Number		Part Marking ${ }^{(1)}$		Fast Turn On	Soft Start	Load Discharge	Package
Standard	Pb-Free	Standard	Pb-Free				
-	MIC94070YC6	-	70P	-			SC-70-6
-	MIC94071YC6	-	71P	\bullet		\bullet	SC-70-6
-	MIC94072YC6	-	72P		\bullet		SC-70-6
-	MIC94073YC6	-	73P		\bullet	\bullet	SC-70-6
-	MIC94070YMT	-	P70	\bullet			$1.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Thin MLF^{\circledR}
-	MIC94071YMT	-	P71	\bullet		\bullet	$1.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Thin MLF^{\circledR}
-	MIC94072YMT	-	P72		\bullet		$1.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Thin MLF^{\circledR}
-	MIC94073YMT	-	P73		-	\bullet	$1.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Thin MLF^{\circledR}

Notes

1. Under-bar symbol on SC-70 Pb-free packages may not be to scale.

Pin Configuration

Pin Description

Pin Number		Pin Name	Pin Function
SC-70	MLF		Drain of P-channel MOSFET.
1	1	GND	Ground and the backside pad (MLF only) should both be connected to electrical ground.
2,5	2	VIN	Source of P-channel MOSFET.
4	3	EN	Enable (Input): Active-high CMOS compatible control input for switch A. Do not leave floating.
3	4	NIC	No Internal Connection. A signal or voltage applied to this pin will have no effect on device operation.
6	--		

Absolute Maximum Ratings ${ }^{(1)}$Input Voltage ($\mathrm{V}_{\text {IN }}$)$+6 \mathrm{~V}$
Enable Voltage (V_{EN}) $+6 \mathrm{~V}$
Continuous Drain Current $\left(\mathrm{I}_{\mathrm{D}}\right)^{(3)}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(\mathrm{MLF}^{\circledR}\right)$ $\pm 1.2 \mathrm{~A}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{SC}-70)$ $\pm 1.2 \mathrm{~A}$
Pulsed Drain Current (IDP) ${ }^{(4)}$ $\pm 3.0 \mathrm{~A}$
Continuous Diode Current ($\left.\mathrm{I}_{\mathrm{S}}\right)^{(4)}$ $-50 \mathrm{~mA}$
Storage Temperature (T_{s}). $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating - HBM ${ }^{(6)}$ 4 KV

Operating Ratings ${ }^{(2)}$

Input Voltage ($\mathrm{V}_{\text {IN }}$) +1.7 to +5.5 V Junction Temperature (T_{J}) \qquad $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Package Thermal Resistance SC-70-6 (θ_{JA}) $240^{\circ} \mathrm{C} / \mathrm{W}$
$1.2 \mathrm{~mm} \times 1.6 \mathrm{~mm} \mathrm{MLF}^{\circledR}\left(\theta_{\mathrm{JA}}\right) \ldots172^{\circ} \mathrm{C} / \mathrm{W}$
$1.2 \mathrm{~mm} \times 1.6 \mathrm{~mm} \mathrm{MLF}^{\circledast}\left(\theta_{\mathrm{Jc}}\right)^{(3)} \ldots134^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$T_{A}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {En_TH }}$	Enable Threshold Voltage	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	0.5		1.2	V
		$\mathrm{V}_{\mathrm{IN}}=1.7 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	0.4		1.2	V
I_{Q}	Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=\mathrm{OPEN}$ Measured on the $\mathrm{V}_{\text {IN }}$ pin (7)		50nA	5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {E }}$	Enable Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=$ OPEN		2	4	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SHut-Q }}$	Shutdown Current	$\mathrm{V}_{\mathbb{I N}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=\mathrm{OPEN}$ Measured on the $\mathrm{V}_{\text {IN }}$ pin (7)		25nA	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SHUT-SWITCH }}$	OFF State Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=\mathrm{SHORT} \\ & \text { Measured on } \mathrm{V}_{\text {OUT }}(7) \end{aligned}$		50nA	1	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	P-Channel Drain to Source ON Resistance SC-70 Package	$\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		120	170	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		130	185	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		145	210	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		165	225	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		200	260	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		210	285	$\mathrm{m} \Omega$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	P-Channel Drain to Source ON Resistance	$\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		100	160	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		110	165	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		125	180	$\mathrm{m} \Omega$
	MLF Package	$\mathrm{V}_{\mathrm{IN}}=+2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		145	200	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		180	240	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=+1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=1.5 \mathrm{~V}$		190	265	$\mathrm{m} \Omega$
$\mathrm{R}_{\text {Shutdown }}$	Turn-Off Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{I}_{\text {TEST }}=1 \mathrm{~mA}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V} \\ & \mathrm{MIC} 94071,73 \end{aligned}$		200	400	Ω

Electrical Characteristics (Dynamic)

$\mathrm{V}_{\mathbb{I}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
ton_duy	Turn-On Delay Time	$\mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{ID}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=1.5 \mathrm{~V}$ MIC94070, 71		0.85	1.5	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{ID}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=1.5 \mathrm{~V} \\ & \mathrm{MIC94072,73} \end{aligned}$		700	1200	$\mu \mathrm{s}$
ton_RISE	Turn-On Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{ID}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=1.5 \mathrm{~V} \\ & \mathrm{MIC94070}, 71 \end{aligned}$	0.5	1	5	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{ID}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=1.5 \mathrm{~V} \\ & \mathrm{MIC94072,73} \end{aligned}$	500	800	1500	$\mu \mathrm{s}$

toff_diy	Turn-Off Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{ID}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=1.5 \mathrm{~V} \\ & \text { MIC94070, } 71 \end{aligned}$	100	200	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{ID}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=1.5 \mathrm{~V} \\ & \mathrm{MIC94072,73} \end{aligned}$	60	200	ns
toff_FALL	Turn-Off Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{ID}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=1.5 \mathrm{~V} \\ & \mathrm{MIC94070}, 71 \end{aligned}$	60	100	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{ID}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=1.5 \mathrm{~V} \\ & \mathrm{MIC94072,73} \end{aligned}$	60	100	ns

Notes:

1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. With backside thermal contact to PCB.
4. Pulse width $<300 \mu$ s with $<2 \%$ duty cycle.
5. Continuous body diode current conduction (reverse conduction, i.e. $\mathrm{V}_{\text {out }}$ to V_{IN}) is not recommended.
6. Devices are ESD sensitive. Handling precautions recommended. HBM (Human body model), 1.5k in series with 100 pF .
7. Measured on the MIC94070YMT, for other part numbers, please contact Micrel.

Typical Characteristics

MIC94072/73 Turn-On Delay

MIC94072/73 Fall Time vs. Input Voltage

Functional Characteristics

 MIC94070

MIC94071

MIC94072

MIC94073

Package Information

DIMENSIONS:
MM (INCH)

6-Pin SC-70 (C6)

SIDE VIEW

Recommended Land Pattern for MLF 1.2x1.6 4 Lead

Optional for maximum thermal performance. Heatsink should be connected to GND plane of PCB for maximum thermal performance.

Disclaimer: This is only a recommendation based on information available to Micrel from its suppliers. Actual land pattern may have to be significantly different due to various materials and processes used in PCB assembly. Micrel makes no representation or warranty of performance based on the recommended land pattern."

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2007 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P FPF1018 DS1222 NCV380HMUAJAATBG TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK L9347LF-TR MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL L9352B-TR-LF BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513GJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR $\underline{\text { BTS500251TADATMA2 MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073 }}$

