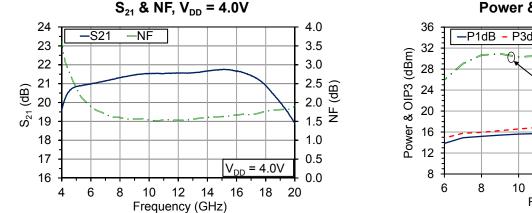
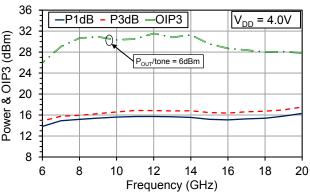

6-18GHz, 21dB Gain, 1.5dB NF Low Noise Amplifier


Features

- 16dBm P_{SAT} with 1.5dB NF and 21.5dB gain typical from 6-18GHz
- Gain flatness < +/-0.5dB
- Input and Output matched to 50Ω
- Self biased for simple biasing, small solution size and ease of manufacture
- +24dBm maximum input power rating
- 1.1mm x 1.36mm x 0.1mm die size


Applications

- Instrumentation
- Electronic warfare
- Microwave communications

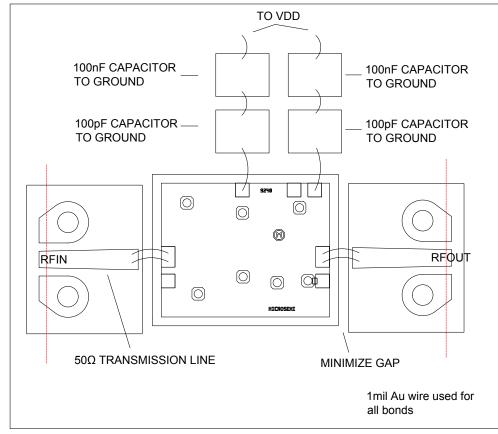
Power & OIP3, $V_{DD} = 4.0V$

Typical Performance (CW, Typical Device, RF Probe): $T_A = 25^{\circ}C$, $V_{D1,2} = 4V$

Parameter	Min	Тур	Max	Units
Frequency	6	-	18	GHz
Small Signal Gain	21.0	-	21.7	dB
Noise Figure	1.5	1.6	1.8	dB
Output Power, P _{1dB}	14.0	15.0	15	dBm
Output Power P _{SAT}	15.0	16.0	17	dBm
Output IP3	26	29	31	dBm
Drain Current		105		mA

Table 1: Absolute Maximum Ratings, Not Simultaneous

Parameter	Rating	Units	
Drain Voltage (V _D)	+4.5	V	
Input Power (P _{IN})	24	dBm]
Channel Temperature (T _c)	150 ¹	°C	
Operating Ambient Temperature (T _A)	-55 to +85	°C	
Storage Temperature	-65 to +150	°C	
Thermal Resistance, Channel to Die Backside	TBD (140 est)	°C/W]

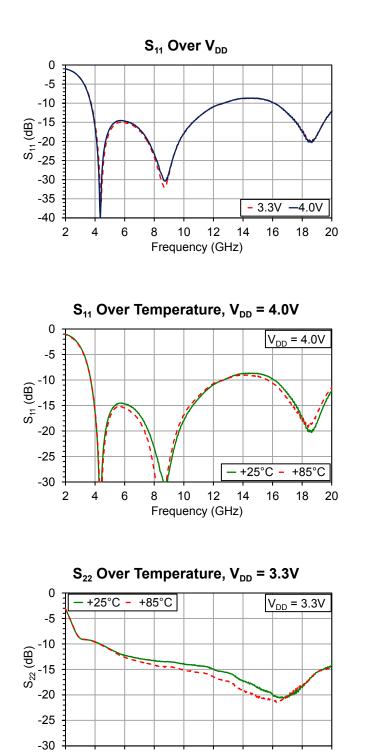

Caution, ESD Sensitive Device

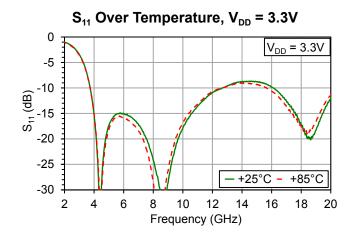
¹ MTTF @ $T_c = 150^{\circ}C > 10^{7}$ hours

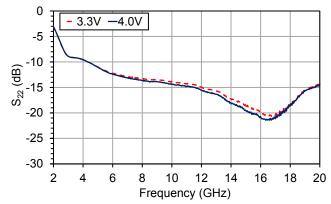
Table 2: Specifications (CW, 100% Test): $T_A = 25^{\circ}C$, $V_{DD} = 4V$, $I_{DD} = 100mA$

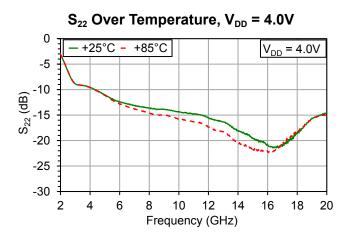
Parameter	Frequency	Min	Тур	Max	Units
Small Signal Gain	18GHz	18.0	21.0	-	dB
Output Power, P _{1dB}	18GHz	-	1.8	2.3	dBm

RF Probe Measurement Set-Up With Reference Planes²




² Reference planes are the same for S-parameter files downloadable on www.microsemi.com/mmics


Typical Performance, RF Probe


 $V_{DD} = 4V$, $I_{DD} = 105$, $T_A = 25^{\circ}C$ unless otherwise noted

S₂₂ Over V_{DD}

MM-PDS-0005 Rev A Subject to Change Without Notice

12

10

Frequency (GHz)

14

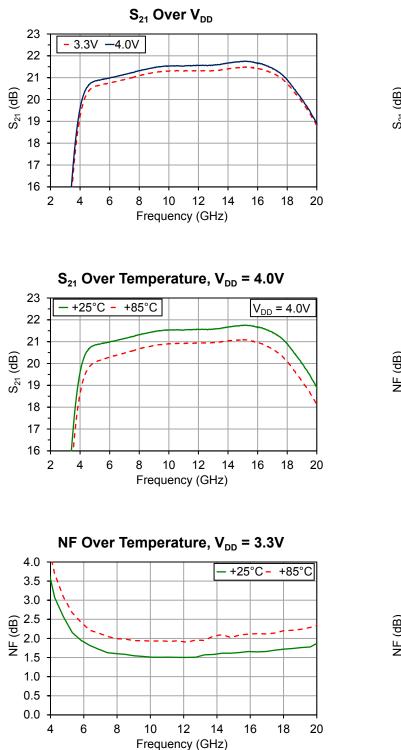
16

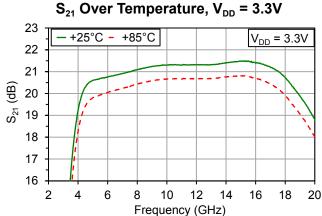
18

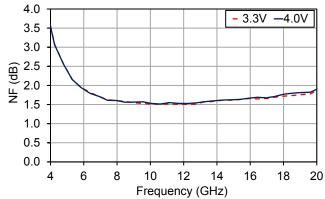
20

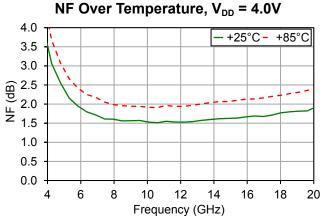
2

4

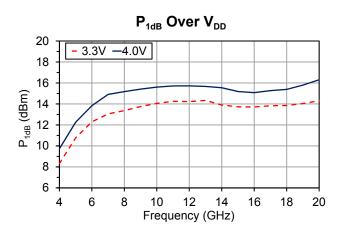

6

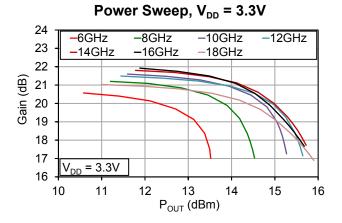

8


Typical Performance, RF Probe


 $V_{DD} = 4V$, $I_{DD} = 105$, $T_A = 25^{\circ}C$ unless otherwise noted

NF Over V_{DD}

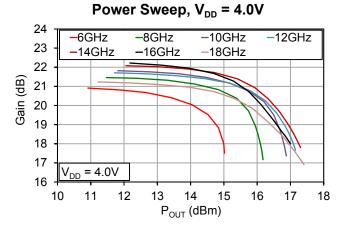


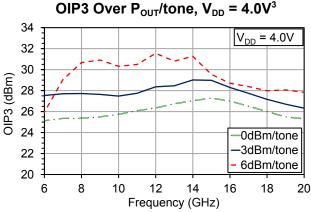

MM-PDS-0005 Rev A Subject to Change Without Notice



Typical Performance, RF Probe

 $V_{DD} = 4V$, $I_{DD} = 105$, $T_A = 25^{\circ}C$ unless otherwise noted





 3 OIP3 over P_{\rm OUT}/tone can be adjusted using V_{\rm D1} and V_{\rm D2}

P_{3dB} Over V_{DD} 20 3.3V --4.0V 18 16 P_{3dB} (dBm) 14 12 10 8 6 4 6 8 10 12 14 16 18 20 Frequency (GHz)

V_{DD} = 3.3V

18

20

Typical Performance, RF Probe

 $V_{DD} = 4V$, $I_{DD} = 105$, $T_A = 25^{\circ}C$ unless otherwise noted

36

32

28

24

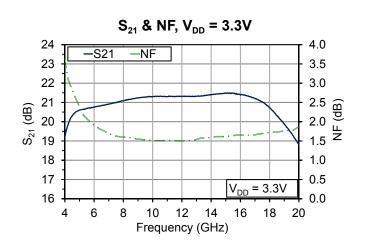
20

16

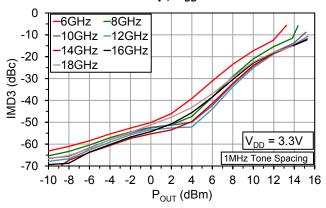
12

8

6


Power & OIP3 (dBm)

-P1dB


8

- P3dB

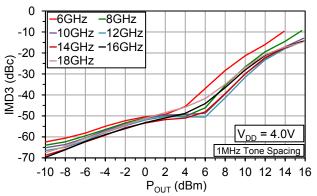
10

IMD Sweep, $V_{DD} = 3.3V^4$

IMD Sweep, $V_{DD} = 4.0V^4$

Frequency (GHz)

Power & OIP3, $V_{DD} = 3.3V^4$

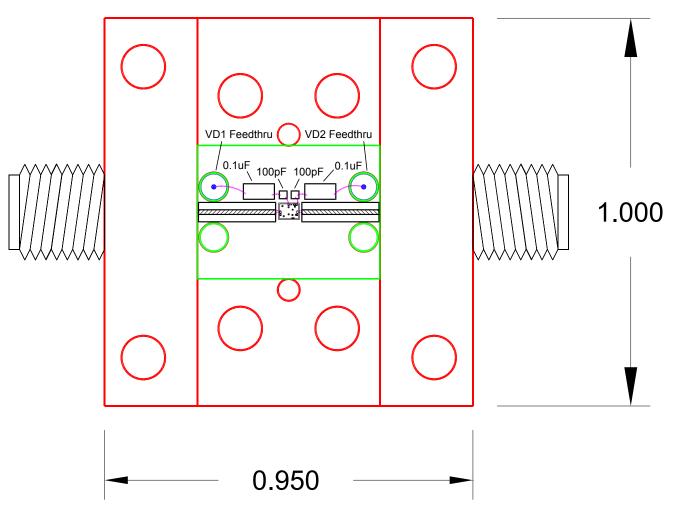

P_{OUT}/tone = 6dBm

12

14

16

-OIP3



 4 OIP3 over $P_{\mbox{\scriptsize OUT}}$ /tone can be adjusted using $V_{\mbox{\scriptsize D1}}$ and $V_{\mbox{\scriptsize D2}}$

Connectorized Test Fixture

With 2.92mm Connectors

Vnn

16

16

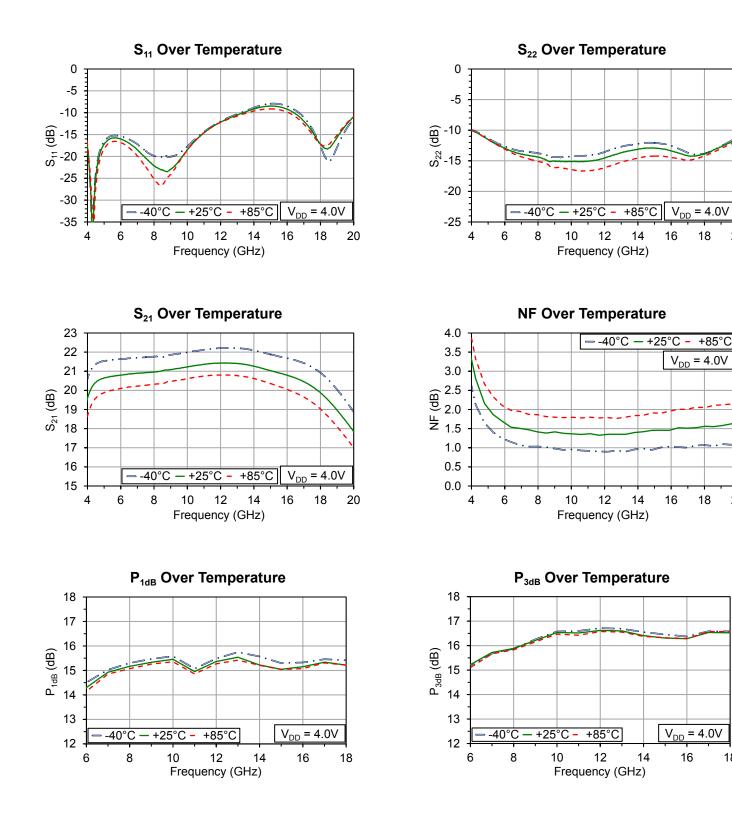
18

V_{DD} = 4.0V

16

20

= 4.0V

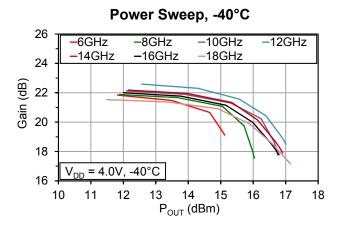

20

18

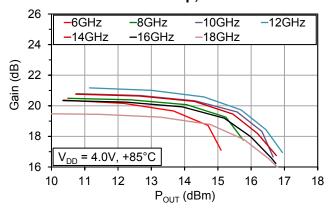
 $V_{DD} = 4.0V$

Typical Performance, Connectorized Test Fixture

 $V_{DD} = 4V$, $I_{DD} = 105$, $T_A = 25^{\circ}C$ unless otherwise noted

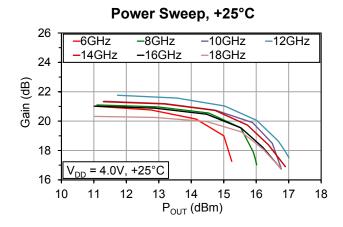


MM-PDS-0005 Rev A Subject to Change Without Notice 18



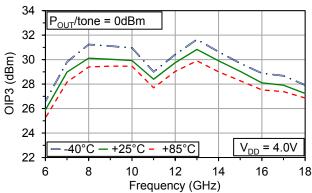
Typical Performance, Connectorized Test Fixture

 V_{DD} = 4V, I_{DD} = 105, T_A =25°C unless otherwise noted


Power Sweep, +85°C

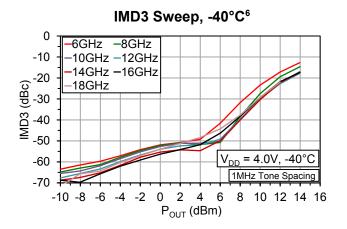
OIP3 Over Temperature, Pout/tone = 3dBm⁵ 34 P_{out}/tone = 0dBm 32 OIP3 (dBm) 30 28 26 24 $V_{DD} = 4.0V$ -40°C — +25°C +85°C 22 8 12 14 16 6 10 18 Frequency (GHz)

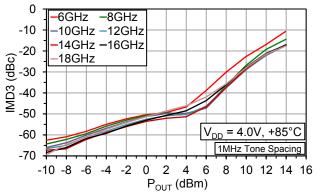
 5 OIP3 over $P_{\text{OUT}}/\text{tone}$ can be adjusted using V_{D1} and V_{D2}


MM-PDS-0005 Rev A Subject to Change Without Notice

OIP3 Over Temperature, P_{out}/tone = 0dBm⁵ 34 P_{OUT}/tone = 0dBm 32 OIP3 (dBm) 30 28 26 24 $V_{DD} = 4.0V$ -40 +25 +85°C C 22 6 8 10 12 14 16 18

OIP3 Over Temperature, P_{OUT}/tone = 6dBm⁵

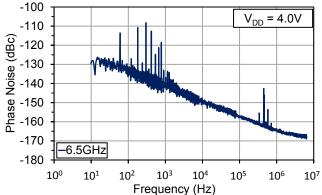

Frequency (GHz)

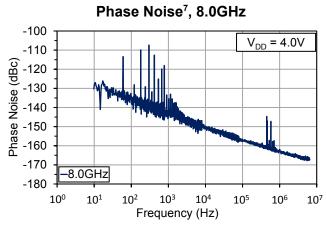


Typical Performance, Connectorized Test Fixture

 V_{DD} = 4V, I_{DD} = 105, T_A =25°C unless otherwise noted

IMD3 Sweep, +85°C⁶

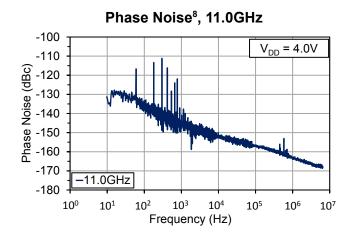



°C⁶ -100 -110 <u><u>m</u> -120 -130</u>

0 -6GHz --8GHz -10 -10GHz -12GHz 14GHz –16GHz ()-20 -30 -30 -40 -50 18GHz V_{DD} = 4.0V, +25°C -60 1MHz Tone Spacing -70 -10 -8 -6 -4 -2 0 2 4 8 10 12 14 16 6 P_{OUT} (dBm)

IMD3 Sweep, +25°C⁶

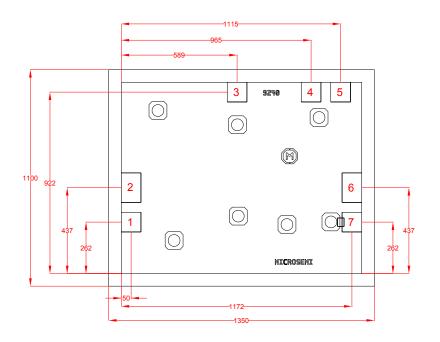
Phase Noise⁷, 6.5GHz


⁶ OIP3 over P_{OUT}/tone can be adjusted using V_{D1} and V_{D2}
⁷ Visit www.microsemi.com/mmics for application note on phase noise measurement at Microsemi

MM-PDS-0005 Rev A Subject to Change Without Notice

Phase Noise⁷, 9.5GHz -100 $V_{DD} = 4.0V$ -110 ^ohase Noise (dBc) -120 -130 -140 -150 -160 -170 9.5GHz -180 10⁵ 10⁰ 10³ 10¹ 10² 104 106 107 Frequency (Hz)

Typical Performance, Connectorized Test Fixture $V_{DD} = 4V$, $I_{DD} = 105$, $T_A = 25^{\circ}C$ unless otherwise noted


Phase Noise⁸, 12.5GHz -100 $V_{DD} = 4.0V$ -110 Phase Noise (dBc) -120 -130 -140 -150 -160 -170 -12.5GHz -180 10⁰ 10¹ 10² 10³ 104 105 106 107 Frequency (Hz)

⁸ Visit www.microsemi.com/mmics for application note on phase noise measurement at Microsemi

Chip layout showing pad locations.

All dimensions are in microns. Die thickness is 100 microns. Backside metal is gold, bond pad metal is gold. Refer to Die Handling Application Note MM-APP-0001 (visit www.microsemi.com/mmics).

Table 3: Pad Descriptions

Pad #	Description	Pad Dimensions (µm)
1, 4, 7	Ground	100 x 100
2	RF_{IN} , pad is AC coupled	100 x 150
3	V _{D1}	100 x 100
5	V _{D2}	100 x 100
6	RF_{OUT} , pad is AC coupled	100 x 150

Biasing

MMA004AA is a self-biased device with positive supply. Apply V_{DD} to pad 3 and 5. V_{D1} and V_{D2} should be RF isolated from each other. Bias sequence does not matter.

Information contained in this document is proprietary to Microsem. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

Within the USA: +1 (949) 380-6100markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at www.microsemi.com.	One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996	synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
---	---	--

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL RF2373TR7 HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA1031 SMA181 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016