MSC035SMA170B4 Silicon Carbide N-Channel Power MOSFET ## **Product Overview** The silicon carbide (SiC) power MOSFET product line from Microsemi increases the performance over silicon MOSFET and silicon IGBT solutions while lowering the total cost of ownership for high-voltage applications. The MSC035SMA170B4 device is a 1700 V, 35 m Ω SiC MOSFET in a TO-247 4-lead package with a source sense. #### **Features** The following are key features of the MSC035SMA170B4 device: - Low capacitances and low gate charge - Fast switching speed due to low internal gate resistance (ESR) - Stable operation at high junction temperature, T_{J(max)} = 175 °C - · Fast and reliable body diode - Superior avalanche ruggedness - RoHS compliant #### **Benefits** The following are benefits of the MSC035SMA170B4 device: - High efficiency to enable lighter, more compact system - Simple to drive and easy to parallel - Improved thermal capabilities and lower switching losses - · Eliminates the need for external freewheeling diode - Lower system cost of ownership ### **Applications** The MSC035SMA170B4 device is designed for the following applications: - · PV inverter, converter, and industrial motor drives - · Smart grid transmission and distribution - · Induction heating and welding - H/EV powertrain and EV charger - Power supply and distribution # **Device Specifications** This section shows the specifications of the MSC035SMA170B4 device. ## **Absolute Maximum Ratings** The following table shows the absolute maximum ratings of the MSC035SMA170B4 device. **Table 1 • Absolute Maximum Ratings** | Symbol | Characteristic | Ratings | Unit | | |------------------|---|-----------|------|--| | V _{DSS} | Drain source voltage | 1700 | V | | | I _D | Continuous drain current at T _C = 25 °C | | А | | | | Continuous drain current at T _C = 100 °C | 48 | | | | I _{DM} | Pulsed drain current ¹ | 200 | | | | V _{GS} | Gate-source voltage | 23 to -10 | V | | | P _D | Total power dissipation at T _C = 25 °C | 370 | W | | | | Linear derating factor | 2.47 | W/°C | | ### Note: 1. Repetitive rating: pulse width and case temperature limited by maximum junction temperature. The following table shows the thermal and mechanical characteristics of the MSC035SMA170B4 device. **Table 2 • Thermal and Mechanical Characteristics** | Symbol | Characteristic | Min | Тур | Max | Unit | |------------------|---|-----|------|------|--------| | R _{θJC} | Junction-to-case thermal resistance | | 0.27 | 0.41 | °C/W | | T _J | Operating junction temperature | | | 175 | °C | | T _{STG} | Storage temperature | | | 150 | | | T _L | Soldering temperature for 10 seconds (1.6 mm from case) | | | 260 | | | | Mounting torque, 6-32 or M3 screw | | | 10 | lbf-in | | | | | | 1.1 | N-m | | Wt | Wt Package weight | | 0.22 | | OZ | | | | | 6.2 | | g | ## **Electrical Performance** The following table shows the static characteristics of the MSC035SMA170B4 device. T_J = 25 °C unless otherwise specified. **Table 3 • Static Characteristics** | Symbol | Characteristic | Test Conditions | Min | Тур | Max | Unit | |--------------------------------|---|---|------|------|------|-------| | V _{(BR) DSS} | Drain-source breakdown voltage | V_{GS} = 0 V, I $_{D}$ = 100 μA | 1700 | | | V | | R _{DS(on)} | Drain-source on resistance ¹ | V _{GS} = 20 V, I _D = 30 A | | 35 | 45 | mΩ | | V _{GS(th)} | Gate-source threshold voltage | $V_{GS} = V_{DS}$, $I_D = 2.5$ mA | 1.8 | 3.25 | | V | | $\Delta V_{GS(th)}/\Delta T_J$ | Threshold voltage coefficient | $V_{GS} = V_{DS}$, $I_D = 2.5 \text{ mA}$ | | -5.1 | | mV/°C | | I _{DSS} | Zero gate voltage drain current | V _{DS} = 1700 V, V _{GS} = 0 V | | | 100 | μА | | | | $V_{DS} = 1700 \text{ V}, V_{GS} = 0 \text{ V}$
$T_{J} = 125 ^{\circ}\text{C}$ | | | 500 | | | I _{GSS} | Gate-source leakage current | V _{GS} = 20 V/–10 V | | | ±100 | nA | #### Note: 1. Pulse test: pulse width $< 380 \mu s$, duty cycle < 2%. The following table shows the dynamic characteristics of the MSC035SMA170B4 device. $T_J = 25$ °C unless otherwise specified. **Table 4 • Dynamic Characteristics** | Symbol | Characteristic | Test Conditions | Min | Тур | Max | Unit | |---------------------|------------------------------|---|-----|------|-----|------| | C iss | Input capacitance | $V_{GS} = 0 \text{ V}, V_{DD} = 1000 \text{ V}$
$V_{AC} = 25 \text{ mV}, f = 1 \text{ MHz}$ | | 3300 | | pF | | C _{rss} | Reverse transfer capacitance | VAC 25 IIIV, J TIMIL | | 10 | | | | C _{oss} | Output capacitance | | | 150 | | | | Q_g | Total gate charge | $V_{GS} = -5 \text{ V/20 V, } V_{DD} = 850 \text{ V}$ $I_D = 30 \text{ A}$ | | 178 | | nC | | Q_{gs} | Gate-source charge | | | 49 | | | | Q_{gd} | Gate-drain charge | | | 27 | | | | t _{d(on)} | Turn-on delay time | $V_{DD} = 1300 \text{ V}, V_{GS} = -5 \text{ V}/20 \text{ V}$ $I_D = 50 \text{ A R}_{G(ext)} = 4 \Omega^1,$ | | 7 | | ns | | t _r | Current rise time | Freewheeling diode = | | 7 | | | | t _{d(off)} | Turn-off delay time | MSC035SMA170B4 (Vg = -5 V) | | 15 | | | | Symbol | Characteristic | Test Conditions | Min | Тур | Max | Unit | |---------------------|---------------------------------------|--|-----|------|-----|------| | t _f | Current fall time | | | 17 | | | | E _{on} | Turn-on switching energy ² | | | 1372 | | μЈ | | E _{off} | Turn-off switching energy | | | 265 | | | | t _{d(on)} | Turn-on delay time | $V_{DD} = 1300 \text{ V}, V_{GS} = -5 \text{ V}/20 \text{ V}$ | | 7 | | ns | | t _r | Current rise time | $I_D = 50 \text{ A R}_{G(ext)} = 4 \Omega^1,$ Freewheeling diode = MSC050SDA170B | | 7 | | | | t _{d(off)} | Turn-off delay time | | | 15 | | | | t _f | Current fall time | | | 17 | | | | E _{on} | Turn-on switching energy ² | | | 1363 | | μЈ | | E _{off} | Turn-off switching energy | | | 244 | | | | ESR | Equivalent series resistance | f = 1 MHz, 25 mV, drain short | | 0.85 | | Ω | | SCWT | Short circuit withstand time | V _{DS} = 1200 V, V _{GS} = 20 V | | 3 | | μѕ | | E _{AS} | Avalanche energy, single pulse | $V_{DS} = 150 \text{ V}, V_{GS} = 20 \text{ V}, I_D = 30 \text{ A}$ | | 4000 | | mJ | ### Notes: - 1. $R_{\rm G}$ is total gate resistance excluding internal gate driver impedance. - 2. E_{on} includes energy of the freewheeling diode. The following table shows the body diode characteristics of the MSC035SMA170B4 device. T_J = 25 °C unless otherwise specified. **Table 5 • Body Diode Characteristics** | Symbol | Characteristic | Test Conditions | Min | Тур | Max | Unit | |------------------|---------------------------------------|---|-----|-----|-----|------| | V _{SD} | V _{SD} Diode forward voltage | $I_{SD} = 30 \text{ A, } V_{GS} = 0 \text{ V}$ | | 3.7 | | V | | | | $I_{SD} = 30 \text{ A, V}_{GS} = -5 \text{ V}$ | | 3.9 | | V | | t _{rr} | Reverse recovery time | $I_{SD} = 50 \text{ A}, V_{GS} = -5 \text{ V}$
$V_{DD} = 1200 \text{ V dI/dt} = -8000 \text{ A/}\mu\text{s}$ | | 27 | | ns | | Q _{rr} | Reverse recovery charge | V _{DD} = 1200 V diγdt = 0000 λγ μ3 | | 650 | | nC | | I _{RRM} | Reverse recovery cur-
rent | | | 46 | | A | ## **Typical Performance Curves** This section shows the typical performance curves of the MSC035SMA170B4 device. Figure 1 • Drain Current vs. V_{DS} Figure 2 • Drain Current vs. V_{DS} Figure 3 • Drain Current vs. V_{DS} Figure 4 • Drain Current vs. V_{DS} Figure 5 • RDS(on) vs. Junction Temperature **Figure 6 • Gate Charge Characteristics** Figure 7 • Capacitance vs. Drain-to-Source Voltage Figure 8 • IDM vs. Gate-to-Source Voltage Figure 9 • I_{DM} vs. V_{DS} 3rd Quadrant Conduction Figure 10 • I_{DM} vs. V_{DS} 3rd Quadrant Conduction Figure 11 • Threshold Voltage vs. Junction Temp. Figure 12 • Forward Safe Operating Area Figure 13 • Maximum Transient Thermal Impedance # **Package Specification** This section shows the package specification of the MSC035SMA170B4 device. ## **Package Outline Drawing** The following figure illustrates the TO-247 4 lead package drawing for the MSC035SMA170B4 device. The dimensions in the figure below are in millimeters and (inches). Figure 14 • Package Outline Drawing The following table shows the TO-247 4-lead dimensions and should be used in conjunction with the package outline drawing. Table 6 • TO-247-4L Dimensions | Symbol | Min (mm) | Max (mm) | Min (in.) | Max (in.) | |--------|----------|----------|-----------|-----------| | А | 4.90 | 5.17 | 0.193 | 0.204 | | В | 1.85 | 2.11 | 0.073 | 0.083 | | С | 2.25 | 2.51 | 0.089 | 0.099 | | D | 0.55 | 0.68 | 0.022 | 0.027 | | E | 5.49 | 5.74 | 0.216 | 0.226 | | Symbol | Min (mm) | Max (mm) | Min (in.) | Max (in.) | | | |------------|--------------|----------|-----------|-----------|--|--| | F | 3.56 | 3.66 | 0.140 | 0.144 | | | | G | 6.15 BSC | | 0.242 BSC | | | | | н | 20.83 | 21.08 | 0.820 | 0.830 | | | | I | 19.81 | 20.32 | 0.780 | 0.800 | | | | J | 1.07 | 1.33 | 0.042 | 0.052 | | | | К | 15.77 | 16.03 | 0.621 | 0.631 | | | | L | 13.89 | 14.15 | 0.547 | 0.557 | | | | М | 16.25 | 16.85 | 0.640 | 0.663 | | | | N | 2.00 | 2.75 | 0.079 | 0.108 | | | | 0 | 7.10 | 7.50 | 0.280 | 0.295 | | | | Р | 2.87 BSC | | 0.113 BSC | | | | | Q | 5.08 BSC | | 0.200 BSC | | | | | R | 2.54 BSC | | 0.100 BSC | | | | | Terminal 1 | Drain | | | | | | | Terminal 2 | Source | Source | | | | | | Terminal 3 | Source sense | | | | | | | Terminal 4 | Gate | | | | | | | Terminal 5 | Drain | | | | | | #### Microsemi 2355 W. Chandler Blvd. Chandler, AZ 85224 USA Within the USA: +1 (480) 792-7200 Fax: +1 (480) 792-7277 www.microsemi.com © 2020 Microsemi and its corporate affiliates. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation and its corporate affiliates. All other trademarks and service marks are the property of their respective owners. Microsemi's product warranty is set forth in Microsemi's Sales Order Terms and Conditions. Information contained in this publication is provided for the sole purpose of designing with and using Microsemi products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is your responsibility to ensure that your application meets with your specifications. THIS INFORMATION IS PROVIDED "AS IS." MICROSEMI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROSEMI BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE WHATSOEVER RELATED TO THIS INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROSEMI HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROSEMI'S TOTAL LIABILITY ON ALL CLAIMS IN RELATED TO THIS INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, YOU PAID DIRECTLY TO MICROSEMI FOR THIS INFORMATION. Use of Microsemi devices in life support, mission-critical equipment or applications, and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend and indemnify Microsemi from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microsemi intellectual property rights unless otherwise stated. Microsemi Corporation, a subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), and its corporate affiliates are leading providers of smart, connected and secure embedded control solutions. Their easy-to-use development tools and comprehensive product portfolio enable customers to create optimal designs which reduce risk while lowering total system cost and time to market. These solutions serve more than 120,000 customers across the industrial, automotive, consumer, aerospace and defense, communications and computing markets. Headquartered in Chandler, Arizona, the company offers outstanding technical support along with dependable delivery and quality. Learn more at www.microsemi.com. 050-7770 | March 2020 | Released # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for MOSFET category: Click to view products by Microchip manufacturer: Other Similar products are found below: 614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691 TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7