Evaluation Board for SP6LI mSiC[™] MOSFET Module and Gate Driver

MSCDR-SP6LIEVB-001

Introduction

This user guide provides details on an evaluation board for Microchip mSiC MOSFET modules in the SP6LI package and mSiC gate drivers. For example, MSCSM120AM02CT6LING.

Figure 1. Microchip SP6LI SiC Power Module

The SP6LI evaluation board is designed to be a one-stop development platform for SP6LI low inductance SiC module testing with top mount digital gate driver solution.

Figure 2. SP6LI Evaluation Board and Digital Gate Driver—3D Model

Features

The following figures show the key hardware features and components of the evaluation board.

The following table lists the key features and hardware components available on the top of the evaluation board.

Table 1. Hardware Features and C	Components of the	Evaluation Board-	•Top View
----------------------------------	-------------------	-------------------	-----------

Number	Key Hardware Features and Components
1	Terminal block connector for providing +VBUS voltage up to 900 V_{DC} with respect to -VBUS
2	Rogowski coil provision for current measurement at the drain and source sides
3	Terminal block connector for connecting the inductor (load) while doing double-pulse testing for the low-side switch. This terminal is also connected to +VBUS.
4	Test point for sensing the high-side gate signal (V _{GS})
5	Test point for sensing the low-side gate signal (V_{GS})
6	Test point for measuring the V_{DS} voltage across high-side switch
7	Terminal block connector for output of module (connected device) as well as for connecting the inductor (load) while doing double-pulse testing
8	Test point for measuring the V _{DS} voltage across low-side switch
9	Placement of the SP6LI SiC module from the bottom side
10	Terminal block for connecting the inductor (load) while doing double-pulse testing for low-side switch. This terminal is also connected to –VBUS.

continued			
Number	Key Hardware Features and Components		
11	Film capacitors of 132 µF		
12	Bulk capacitor of 2 mF eqivalent in total		
13	Bleeder resistor for capacitor discharge		
14	Terminal block for connecting –VBUS		

The following table lists the key features and hardware components available on the bottom of the evaluation board.

 Table 2. Hardware Features and Components of the Evaluation Board—Bottom View

Number	Key Hardware Features and Components
15	High frequency capacitors of equivalent 0.6 µF

Table of Contents

Inti	oducti	on1		
1.	Evalua	ation Board5		
	1.1.	Pinout5		
	1.2.	Evaluation Board Schematic		
	1.3.	Evaluation Board PCB Layout		
	1.4.	Evaluation Board Mechanical Drawing13		
2.	Bill of	Materials14		
3.	Hardv	vare Validation		
	3.1.	Test Conditions		
	3.2.	Equipment Required for Testing		
	3.3.	Test Schematics		
	3.4.	Test Setup 17		
	3.5.	Test Results		
4.	Revisi	on History25		
Mic	rochip	Information		
	The N	licrochip Website		
	Produ	ct Change Notification Service		
	Custo	mer Support		
	Microchip Devices Code Protection Feature			
	Legal	Notice		
	Trade	marks		
	Qualit	y Management System		
	World	wide Sales and Service		

1. Evaluation Board

This section describes the evaluation board pinout, schematics, circuit, and Printed Circuit Board (PCB) layout.

1.1 Pinout

The following tables list the pinout and electrical parameter details for the terminal block and connectors, respectively.

Designator	Function/Description	Remark	
T1, T2	+VBUS	T2 Unmounted	
ТЗ, Т4	-VBUS	T4 Unmounted	
Т5, Т6	+VBUS	T6 Unmounted	
Т7, Т8	OUTPUT	T8 Unmounted	
T9, T10	-VBUS	T10 Unmounted	

 Table 1-1. Pinout and Electrical Parameters for Terminal Block

Table 1-2. Pinout and Electrical Parameters for Connectors

Designator	Pin Number	Function/Description	Remark
U1	1	+VBUS	When measuring with these connectors, use a
	2, 3, 4, 5	OUTPUT	oscilloscope with isolated channels.
U2	1	OUTPUT	
	2, 3, 4, 5	-VBUS	

1.2 Evaluation Board Schematic

The following figure shows the schematic for the SP6LI evaluation board.

1.3 Evaluation Board PCB Layout

The SP6LI evaluation board is a four-layer FR4, 2 mm, and Plated-Through-Hole (PTH) PCB construction. The following figures show the PCB layers.

Figure 1-2. SP6LI Evaluation Board Top Overlay (Silk-Screen) Layer

Figure 1-3. SP6LI Evaluation Board Top Layer

Figure 1-4. SP6LI Evaluation Board Inner Layer 1

Figure 1-5. SP6LI Evaluation Board Inner Layer 2

Figure 1-6. SP6LI Evaluation Board Bottom Layer

1.4 Evaluation Board Mechanical Drawing

The following figure shows the mechanical drawing for the SP6LI evaluation board with placement and mounting of SP6CA1 (core adaptor board) with 2ASC-12A2HP (1200V dual-channel HP augmented core—ASD2).

2. Bill of Materials

The following table lists the bill of materials for the SP6LI evaluation board.

Table 2-1. SP6LI E	Evaluation	Board	BOM
--------------------	------------	-------	-----

Qty	Designator	Description	Manufacturer	Manufacturer Part Number
6	C1, C2, C3, C4, C5, C6	CAP ALUM 680 μF 450V 20% RAD SNAP P10D35H57	TDK Electronics Inc.	B43644A5687M000
6	C13, C14, C15, C16, C17, C18	CAP FILM 22 µF 1500V 5% RAD P52.5L57.5W35H50	KEMET	C4AQSBW5220A3NJ
24	C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42	CAP FILM 0.1 µF 630V 10% B32672L	EPCOS/TDK	B32672L6104K000
4	G1, G2, TP5, TP11	CON TP LOOP White TH	Keystone	5012
1	Q1	SIC PHASE LEG MOSFET MODULE MSCMC120AM02CT6LING SP6	Microsemi	MSCMC120AM02CT6LING
6	R1, R2, R3, R4, R5, R6	RES TKF 47 k Ω 5% 1W SMD 2512	Panasonic Electronic Components	ERJ-1TYJ473U
5	S1, S2, TP4, TP7, TP10	CON TP LOOP Black TH	Keystone	5011
2	Sense1, Sense2	Rogowski coil provision	-	-
5	T1, T3, T5, T7, T9	CON TERMINAL Female REDCUBE M8 20 pin Press Fit Brass TH Vert	Wurth Elektronik	7461090
5	TP1, TP2, TP3, TP8, TP9	CON TP PIN Tin TH	Harwin	H2121-01
1	TP6	CON TP LOOP Red TH	Keystone	5010
2	U1, U2	CON BNC JACK Female 5 pin 50 Ohm TH PCB mount	TE Connectivity AMP Connectors	1-1337445-0
1	РСВ	4 Layer Board	Microchip	04-AS-90000-R2

3. Hardware Validation

This section contains test conditions, equipment required for testing, test schematics, and test setup for the SP6LI evaluation board.

3.1 Test Conditions

The following table lists the test conditions for validating the SP6LI evaluation board.

Table 3-1. Test Condition			
Parameters	Values		
Device under test	MSCSM120AM03CT6LIAG (SP6LI 1200V, 3.1 mΩ)		
Grate driver used (core)	Microchip digital gate driver 2ASC-12A2HP		
Core adaptor used	SP6CA1		
Device placed at	Half bridge high-side and low-side		
DC bus voltage	600V		
Load current	400A		
Gate resistors R _{Gon}	1.1Ω		
Gate resistors R _{Goff}	1.1Ω		
Temperature	25 °C		
Load for DPT test for T _{off}	Inductor of 350 µH		
Load for DSAT test	Resistor of 1Ω		
Snubber (RC or C)	None		
C _{GS}	None		
Scope filter	None		

3.2 Equipment Required for Testing

The following equipments are required to test and characterize the SP6LI evaluation board:

- Low voltage variable DC power supply (0–30V/2A)
- DC unregulated high-voltage power supply (0–2500V/1.5A)
- Oscilloscope (LeCroy model HDO6104A)
- Rogowski current waveform transducer (1.0 mV/A) (for current measurement)
- GW Instek GOP-050 high-voltage differential probes (for high-voltage measurement)
- PICkit 3/PICkit 4 In-circuit debugger (for programming primary side controller)

Note: Equivalent equipment can be used.

3.3 Test Schematics

The following figures show test schematics for measuring the switching losses for high-side and low-side SiC MOSFET devices.

Figure 3-1. Schematic to Measure the Switching Losses for High-Side SiC MOSFET

Figure 3-2. Schematic to Measure the Switching Losses for Low-Side SiC MOSFET

3.4 Test Setup

The following figures show the test setup for double-pulse testing and for DSAT testing.

Figure 3-3. Double-Pulse Test Setup for Testing High-Side Switch

Figure 3-4. Double-Pulse Test Setup for Testing Low-Side Switch

Figure 3-5. DSAT Test Setup for Testing High-Side Switch

Figure 3-6. DSAT Test Setup for Testing Low-Side Switch

3.5 Test Results

This section shows the test results for turn-on measurement, turn-off measurement, and DSAT operation of high-side and low-side switch.

3.5.1 Turn-On Measurements

The following sections show the results for turn-on of high-side and low-side switch.

High-Side

The following figures show the test results for turn-on of high-side SiC MOSFET.

Figure 3-7. Characteristic Waveform during Turn-On Switching Transients for High-Side SiC MOSFET

Figure 3-8. Current Overshoot vs Turn-On Losses at 600 V_{DC} Bus with Respect to Change in Current

Low-Side

The following figures show the test results for turn-on of low-side SiC MOSFET.

Figure 3-9. Characteristic Waveform during Turn-On Switching Transients for Low-Side SiC MOSFET

Figure 3-10. Current Overshoot vs Turn-On Losses at 600 V_{DC} Bus with Respect to Change in Current

3.5.2 **Turn-Off Measurements**

The following sections show the results for turn-off of high-side and low-side.

High-Side

The following figures show the test results for turn-off of high-side switch.

Figure 3-12. Voltage Overshoot vs Turn-On Losses at 600 V_{DC} Bus with Respect to Change in Current

Low-Side

The following figures show the test results for turn-off of low-side switch.

Figure 3-13. Characteristic Waveform during Turn-Off Switching Transients for Low-Side SiC MOSFET

Figure 3-14. Voltage Overshoot vs Turn-On Losses at 600 V_{DC} Bus with Respect to Change in Current

3.5.3 DSAT Operation

The following sections show the results for DSAT (over current protection) of high-side and low-side switch.

High-Side

The following figure shows the test result for DSAT of high-side switch overcurrent condition set at 900A.

Figure 3-15. High-Side over Current DSAT Test Results at 600 V_{DC}

Low-Side

The following figure shows the test result for DSAT of low-side switch overcurrent condition set at 900A.

Figure 3-16. Low-Side over Current DSAT Test Results at 600 V_{DC}

4. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Revision	Date	Description
A	12/2023	Initial revision

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure

that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/ client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3657-1

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
ltasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	ltaly - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
Fax: 905-695-2078			

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

EVB-EP5348UI BQ25010EVM ISL80019AEVAL1Z ISLUSBI2CKIT1Z ISL8002AEVAL1Z ISL91108IIA-EVZ MAX8556EVKIT MAX15005AEVKIT+ ISL28022EVKIT1Z STEVAL-ISA008V1 DRI0043 KITPF8100FRDMEVM EVB-EN6337QA SAMPLEBOXILD8150TOBO1 MAX18066EVKIT# AP62300WU-EVM KITA2GTC387MOTORCTRTOBO1 AEK-MOT-TK200G1 EVLONE65W STEVAL-ILH006V1 STEVAL-IPE008V2 STEVAL-IPP001V2 STEVAL-ISA013V1 STEVAL-ISA067V1 STEVAL-ISQ002V1 TPS2306EVM-001 TPS2330EVM-185 TPS40001EVM-001 SECO-HVDCDC1362-15W-GEVB BTS7030-2EPA LT8638SJV#WPBF LTC3308AIV#WTRPBF TLT807B0EPV BTS71033-6ESA EV13N91A EASYPIC V8 OVER USB-C EV55W64A CLICKER 4 FOR STM32F4 EASYMX PRO V7A FOR STM32 CLICKER 4 FOR PIC18F Si8285_86v2-KIT PAC52700EVK1 NCP-NCV51752D2PAK3LGEVB ISL81807EVAL1Z AP33772S-EVB EVALM7HVIGBTPFCINV4TOBO1 903-0300-000 902-0173-000 903-0301-000 ROA1286023/1