

Features

- 6-Pin SMD package
- Fast warm-up
- Frequency Range, 10 MHz to 40 MHz
- Standard freq: 10, 12.8, 20, 24.576, 25, 30.72 MHz
- High Relability (based on fully intergrated Design)
- Low Power

Applications

- Base stations 5G \& 4 G)
- Test equipment
- Small Cell
- Military communication equipment
- Stratum 3
- SyncE; 1588

Performance Specifications

Frequency Stabilities ${ }^{1} 10$ to $\mathbf{4 0} \mathbf{~ M H z}$					
Parameter	Min	Typical	Max	Units	Condition
vs. operating temperature range (referenced to $+25^{\circ} \mathrm{C}$)	$\begin{aligned} & -20 \\ & -10 \\ & -20 \end{aligned}$		$\begin{aligned} & +20 \\ & +10 \\ & +20 \end{aligned}$	ppb ppb ppb	
slope	-2		+2	$\mathrm{ppb} /{ }^{\circ} \mathrm{C}$	@ Temp stab. +-10ppb
Initial tolerance vs. supply voltage change vs. load change vs. aging / day vs. aging / year vs. aging / 10 years	$\begin{gathered} -0.5 \\ -10 \\ -10 \\ -5 \\ 500 \\ -3 \end{gathered}$	± 2	$\begin{gathered} +0.5 \\ +10 \\ +10 \\ +5 \\ +500 \\ 3 \end{gathered}$	ppm ppb ppb ppb ppb ppm	at time of shipment, nominal EFC $\mathrm{V}_{s} \pm 5 \% \text { static }$ Load $\pm 5 \%$ static after 30 days of operation after 30 days of operation after 30 days of operation
Holdover drift			5	ppb	over 24 hours, constant temperature ($< \pm 1^{\circ} \mathrm{C}$) ; after 30 days continous opperation
Start up time			200	msec	
Warm-up time			3	minutes	to $\pm 20 \mathrm{ppb}$ of final frequency (1 hour reading) $@+25^{\circ} \mathrm{C}$
Loop bandwith for wander generation compliance	3			mHz	MTIE compliant with GR-1244 Fig 5-5 TDEV compliant with GR- 1244 Fig 5-4; measurement setup: oscillator stabilized 24 hours at Constant Temperature $\left(\pm 1^{\circ} \mathrm{C}\right.$, still air), data collected over 100,000 seconds at 1 second intervals (-3 dB cutoff, 1st order high pass loop filter)

Performance Specifications

Supply Voltage (Vs)						
Parameter	Min	Typical	Max	Units	Condition	
Supply voltage (standard)	3.135	3.3	3.465	VDC		
		1.3	1.5	Watts	during warm-up	
		0.65	0.8	Watts	steady state @ $+25^{\circ} \mathrm{C}$	
RF Output						
Signal [standard]	LVHCMOS					
Load		15		pF		
Signal Level (Vol)			0.4	VDC	with $\mathrm{Vs}=3.3 \mathrm{~V}$ and 15pF Load	
Signal Level (Voh)	2.97	3.3		VDC	with $\mathrm{Vs}=3.3 \mathrm{~V}$ and 15 pF Load	
Duty Cycle	45		55	\%	@ (Voh-Vol)/2	
Ron		26.5		Ω		
Roff		22		Ω		
Frequency Tuning (EFC)						
Tuning Range	Fixed OCXO; No adjust					ث
Tuning Range	± 3		8	ppm	not available for all frequencies	
Linearity	10\%					
Tuning Slope	Positive					
Control Voltage Range	0.0	1.4	2.8	VDC		
Additional Parameters						
Phase Noise ${ }^{3}$		$\begin{gathered} -99 \\ -125 \\ -145 \\ -155 \\ -160 \end{gathered}$	$\begin{aligned} & -90 \\ & -120 \\ & -140 \\ & -150 \\ & -155 \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$	10 Hz 100 Hz 1 kHz 10 kHz 100 kHz	@ 20MHz
Weight			1.0	g		
Processing \& Packing	Handling \& Processing Note					
Absolute Maximum Ratings						
Supply voltage (Vs)			3.8	V	with Vs=3.3 VDC	
Output Load			50	pF		
Operable Temperature Range	-40		+95	${ }^{\circ} \mathrm{C}$		
Storage Temperature Range	-40		+125	${ }^{\circ} \mathrm{C}$		

Outline Drawing / Enclosure

land pattern
recommendation

OX-502	
Height " H "	cover material
6.2	plastic

Pin Connections	
1	I.C (Do not connect) / EFC (option)
2	N.C
3	Ground (Case)
4	RF Output
5	N.C
6	Supply Voltage Input

Enclosure Type	Tape Width $\mathrm{W}(\mathrm{mm})$	Quantity per meter	Quantity per reel	Dimension P
OX-502 $(6.2 \mathrm{~mm})$	24	83.3	400	12

Reflow Profile

TP: max $250^{\circ} \mathrm{C}$ (@ solder joint, customer board level) Tp: max: 10... 40 sec

Additional Information:
This SMD oscillator has been designed for pick and place reflow soldering

SMD oscillators must be on the top side of the PCB during the reflow process.

Additional Environmental Conditions

Parameter	Description
Temperature Cycling	JESD22-A104-D Cond.G - 500cycles -40/+125C;cycle time 30min
Vibration, Sine	MIL-STD-883 Meth 2007 Cond A-20g 20-2000Hz 4x in each 3 axis 4min sweep time
Mechanical Shock	MIL-STD-202 Meth 213 B Cond. F-1500g 0,5ms 6 shocks in each direction
Solderability	J-STD-002C Cond. A, Trough hole device; Cond.B, SMD (correspond to MIL-STD-883 Meth 2003) - 255C (diving Time 5 $0,5 \mathrm{sec}$.) Dip\&Look with 8 h damp pre-treatment: solder wetting >95\%
Solvent resistance	MIL-STD-883 Meth 2003)-255C (diving Time $50,5 \mathrm{sec}$.) Dip\&Look with
ESD	8 h damp pre-treatment: solder wetting $>95 \%$
Moisture Sensit.	JESD22-A113-B - only if > MSL 1
RoHS compliance	100\% RoHS 6 compliant
Washable	non-washable device
High temp operating life(HTOL)	MIL-STD-202 Meth108A Cond C-1000h @ 105C power on
Low temp operating life(LTOL)	IEC 60068-2-1 Cond. Ae-1000h @ -40C power on

Ordering Information

Notes:

1. Contact factory for improved stabilities or additional product options. Not all options and codes are available at all frequencies.
2. Unless other stated all values are valid after warm-up time and refer to typical conditions for supply voltage, frequency control voltage, load, temperature $\left(25^{\circ} \mathrm{C}\right)$.
3. Phase noise degrades with increasing output frequency.
4. Subject to technical modification.
5. Contact factory for availability.

Contact Information

USA:

100 Watts Street
Mt Holly Springs, PA 17065
Tel: 1.717.486.3411
Fax: 1.717.486.5920

Europe:
 Landstrasse

74924 Neckarbischofsheim
Germany
Tel: +49 (0) 7268.801.0
Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your reasonability to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

typical power consumption vs. operating temperauture @ OX-5021-EAE-1080-20M000
typical frequency vs. temperature stability @ OX-5021-EAE-1080-20M000

typical frequency. vs cycled airflow without additional cover
@ OX-5021-EAE-1080-20M000
typical frequency. vs cycled airflow with additional cover

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for OCXO Oscillators category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
AOCTQ5-X-10.000MHz-I5-SW AOCTQ5-V-10.000MHz-I3-SW AOCTQ5-X-10.000MHz-M10-SW AOCTQ5-V-10.000MHz-I5 AOCTQ5-
X-10.000MHz-I3-SW AOCTQ5-V-10.000MHz-M10 SIT8102AC12-33E-98.30400Y 8208AI23-33E26.000 ECOC-2522-40.000-3GS
AOCJY-12.800MHZ AOCJY2A-10.000MHz-F-SW AOCJY3B-10.000MHz-E-SW AOCJY4A-10.000MHz-SW AOCJY2A-100.000MHz-E AOCJY3-10.000MHz-E-SW AOC1409VAUC-20.0000C AOC1409XAUC-20.0000C AOC2012VAJC-12.8000C AOC2012VAJC-25.0000C AOC2012XAJC-10.0000C AOC2012XAJC-12.8000C AOC2012XAJC-19.4400C AOC2012XAJC-25.0000C AOC2522BVAUC-20.0000 AOC2522BVAUC-12.8000 AOCJY-100.000MHZ AOCJY-100.000MHz-E AOCJY-100.000MHz-F AOCJY1-100.000MHz AOCJY110.000MHZ AOCJY1-10.000MHz-E-SW AOCJY1A-100.000MHz AOCJY1A-10.000MHz AOCJY-20.000MHz AOCJY-20.000MHZ-F AOCJY2-100.000MHz-F-SW AOCJY2-10.000MHz AOCJY2-10.000MHZ-E AOCJY2-100.000MHZ-E AOCJY3-100.000MHz-E-SW AOCJY3-10.000MHz AOCJY-38.880MHz AOCJY3B-10.000MHz AOCJY3B-10.000MHz-E AOCJY4B-10.000MHz-SW AOCJY510.000 MHz AOCJY6-10.000MHz-1 AOCJY7TQ-X-100.000MHz-1 AOCJY7TQ-X-100.000MHz-5 AOCJYR-10.000MHz-M5625LF

