

PIC16C433

Data Sheet

8-Bit CMOS Microcontroller with LIN Transceiver

© 2002 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUS, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

PIC16C433

8-Bit CMOS Microcontroller with LIN Transceiver

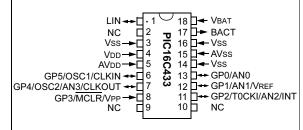
Devices Included in this Data Sheet:

• PIC16C433

High Performance RISC CPU:

- Only 35 single word instructions to learn
- All instructions are single cycle (400 ns) except for program branches which are two-cycle
- Operating speed: DC 10 MHz clock input DC - 400 ns instruction cycle

Device	Memory					
Device	Program	Data RAM				
PIC16C433	2048 x 14	128 x 8				


- 14-bit wide instructions
- · 8-bit wide data path
- · Interrupt capability
- · Special function hardware registers
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes for data and instructions

Peripheral Features:

- Integrated LIN bus transceiver
- · Wake-up on bus activity
- 12V battery operation for transceiver
- · Thermal Shutdown for transceiver
- · Ground loss protection
- Four-channel, 8-bit A/D converter
- 8-bit real-time clock/counter (TMR0) with 8-bit programmable prescaler

PIN DIAGRAM

PDIP, SOIC, Windowed CERDIP

Note: Pins designated 'NC' have no internal connection to the device.

Special Microcontroller Features:

- In-Circuit Serial Programming[™] (ICSP[™])
- Internal 4 MHz oscillator with programmable calibration
- Selectable clockout
- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- · Power saving SLEEP mode
- Interrupt-on-pin change (GP0, GP1, GP3)
- Internal pull-ups on I/O pins (GP0, GP1, GP3)
- Internal pull-up on MCLR pin
- Selectable oscillator options:
 - INTRC: Precision internal 4 MHz oscillator
 - EXTRC: External low cost RC oscillator
 - XT: Standard crystal/resonator
 - HS: High speed crystal/resonator
 - LP: Power saving, low frequency crystal

CMOS Technology:

- Low power, high speed CMOS EPROM/ HV-CMOS technology
- Fully static design
- Operating voltage range 4.5V to 5.5V
- · Industrial and Extended temperature ranges
- Low power consumption
 - < 2 mA @ 5V, 4 MHz
 - < 1 µA typical standby current

Table of Contents

1.0	General Description	3
2.0	PIC16C433 Device Varieties	5
3.0	Architectural Overview	7
4.0	Memory Organization	11
5.0	I/O Port	25
6.0	LIN Bus Transceiver	33
7.0	Timer0 Module	37
8.0	Analog-to-Digital Converter (A/D) Module	
9.0	Special Features of the CPU	51
10.0	Instruction Set Summary	67
11.0	Development Support	81
12.0	Electrical Specifications for PIC16C433	87
13.0	DC and AC Characteristics1	05
14.0	Packaging Information1	11
Apper	dix A:Compatibility1	15
INDE>	(17
On-Lir	ne Support1	21
Syster	ns Information and Upgrade Hot Line1	21
Reade	r Response1	22
	ct Identification System1	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 GENERAL DESCRIPTION

The PIC16C433 device is a low cost, high performance, CMOS, fully static, 8-bit microcontroller with integrated analog-to-digital (A/D) converter and an integrated LIN bus Transceiver.

The LIN physical layer is implemented in hardware with a voltage range from 0V to 18V, with a 40V transient capability. The LIN protocol is to be implemented in firmware, which enables flexibility with future revisions of the LIN protocol.

All PICmicro[®] microcontrollers employ an advanced RISC architecture. The PIC16C433 microcontroller has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches, which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C433 microcontroller typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C433 device has 128 bytes of RAM, 5 I/O pins and 1 input pin. In addition, a timer/counter is available. Also a 4-channel, high speed, 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low cost analog interface (i.e., thermostat control, pressure sensing, etc.)

The PIC16C433 device has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. The Power-on Reset (POR), Power-up Timer (PWRT), and Oscillator Start-up Timer (OST) eliminate the need for external RESET circuitry. There are five oscillator configurations to choose from, including INTRC precision internal Oscillator mode and the power saving LP (Low Power) Oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability. The SLEEP (power-down) feature provides a Power Saving mode. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESETS. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

A UV erasable windowed package version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

1.1 <u>Applications</u>

The PIC16C433 microcontroller fits well in applications ranging from automotive applications to home appliance applications. The EPROM technology makes customizing application programs extremely fast. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C433 series very versatile even in areas where no microcontroller use has been considered before (i.e., timer functions, replacement of **glue** logic and PLD's in larger systems, coprocessor applications).

1.2 <u>Development Support</u>

The PIC16C433 device is supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full featured programmer. A "C" compiler and fuzzy logic support tools are also available.

NOTES:

2.0 PIC16C433 DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C433 Product Identification System (page 123) at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in windowed package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PRO MATE[®] II device programmer supports the PIC16C433. Third party programmers also are available; refer to the Microchip Third Party Guide (DS00104) for a list of sources.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing the part.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turn-Programming (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turn Programming</u> (SQTPSM) Devices

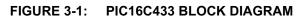
Microchip offers a unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

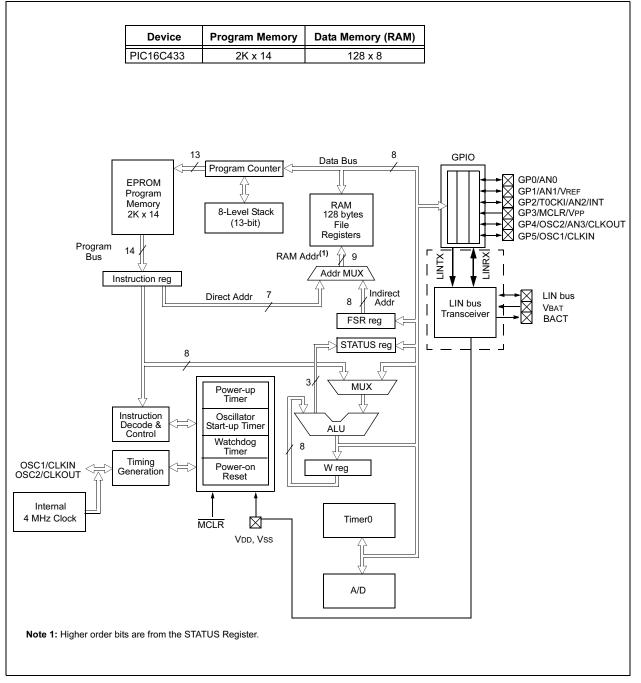
Serial programming allows each device to have a unique number which can serve as an entry code, password, or ID number. NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C433 family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C433 uses a Harvard architecture in which program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses also allow instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single instruction cycle. A two-stage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (400 ns @ 10 MHz) except for program branches.

The PIC16C433 can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16C433 has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C433 simple, yet efficient. In addition, the learning curve is reduced significantly.


PIC16C433 devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.


The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register, or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

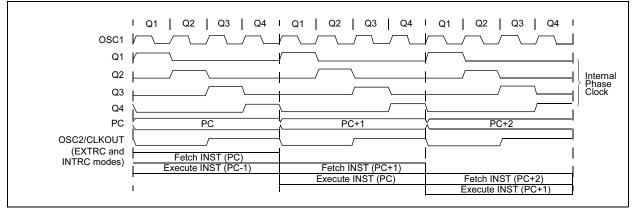
PIC16C433

Name	DIP Pin #	I/O/P Type	Buffer Type	Description	
GP0/AN0	13	I/O	TTL/ST	Bi-directional I/O port/serial programming data/analog input 0. Can be software programmed for internal weak pull-up and interrupt-on-pin change. This buffer is a Schmitt Trig- ger input when used in Serial Programming mode.	
GP1/AN1/VREF	12	I/O	TTL/ST	Bi-directional I/O port/serial programming clock/analog input 1/voltage reference. Can be software programmed for internal weak pull-up and interrupt-on-pin change. This buffer is a Schmitt Trigger input when used in Serial Pro- gramming mode.	
GP2/T0CKI/AN2/INT	11	I/O	ST	Bi-directional I/O port/analog input 2. Can be configured as T0CKI or external interrupt.	
GP3/MCLR/Vpp	8	Ι	TTL/ST	Input port/Master Clear (Reset) input/programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation. Can be soft- ware programmed for internal weak pull-up and interrupt- <u>on-pin</u> change. Weak pull-up always on if configured as MCLR. This buffer is Schmitt Trigger when in MCLR mode.	
GP4/OSC2/AN3/CLKOUT	7	I/O	TTL	Bi-directional I/O port/oscillator crystal output/analog input 3. Connections to crystal or resonator in Crystal Oscillator mode (HS, XT and LP modes only, GPIO in other modes). In EXTRC and INTRC modes, the pin output can be config- ured to CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.	
GP5/OSC1/CLKIN	6	I/O	TTL/ST	Bi-directional IO port/oscillator crystal input/external clock source input (GPIO in INTRC mode only, OSC1 in all other oscillator modes). Schmitt Trigger input for EXTRC Oscilla- tor mode.	
LIN	1	I/O	HV/OD	High voltage bi-directional bus interface.	
VBAT	18	Р		Battery input voltage.	
BACT	17	0	TTL	Bus activity output pin. It is a CMOS-levels representation of the LIN pin.	
Vdd	4	Р	_	Positive supply for logic and I/O pins.	
Vss	3,14,16	Р		Ground reference for logic and I/O pins.	
AVDD	5	Р		Analog positive supply.	
AVss	15	Р	_	Analog ground.	

Legend: I = Input, O = Output, I/O = Input/Output, P = Power, — = not used, TTL = TTL input,

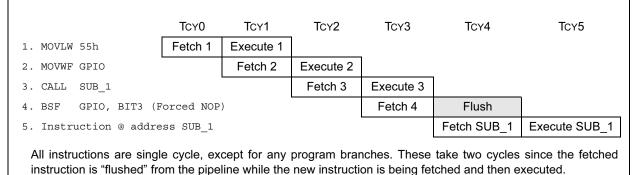
ST = Schmitt Trigger input, OD = Open Drain

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

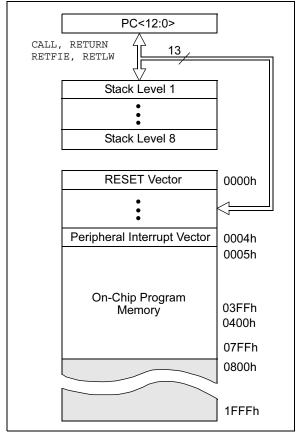
An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (i.e., GOTO), then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW


4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C433 has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

For the PIC16C433, the first 2K x 14 (0000h-07FFh) is implemented. Accessing a location above the physically implemented address will cause a wraparound. The RESET Vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC16C433 PROGRAM MEMORY MAP AND STACK

4.2 Data Memory Organization

The data memory is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = 1 \rightarrow Bank 1

RP0 (STATUS<5>) = $0 \rightarrow Bank 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain Special Function Registers. Some "high use" Special Function Registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

Also note that F0h through FFh on the PIC16C433 is mapped into Bank 0 registers 70h-7Fh as common RAM.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-2: PIC16C433 REGISTER FILE MAP

File Address	6		File Address				
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h				
01h	TMR0	OPTION	81h				
02h	PCL	PCL	82h				
03h	STATUS	STATUS	83h				
04h	FSR	FSR	84h				
05h	GPIO	TRIS	85h				
06h			86h				
07h			87h				
08h			88h				
09h			89h				
0Ah	PCLATH	PCLATH	8Ah				
0Bh	INTCON	INTCON	8Bh				
0Ch	PIR1	PIE1	8Ch				
0Dh			8Dh				
0Eh		PCON	8Eh				
0Fh		OSCCAL	8Fh				
10h			90h				
11h			91h				
12h			92h				
13h			93h				
14h			94h				
15h			95h				
16h			96h				
17h			97h				
18h			98h				
19h			99h				
1Ah			9Ah				
1Bh			9Bh				
1Ch			9Ch				
1Dh			9Dh				
1Eh	ADRES		9Eh				
1Fh	ADCON0	ADCON1	9Fh				
20h		General Purpose Register	A0h BFh				
	General Purpose Register		C0h				
70h			EFh F0h				
76h		Mapped in Bank 0	FFh				
150	Bank 0	Bank 1					
ı	Unimplemented data memory locations, read as '0'.						
Note 1: 1	Not a physical re	gister.					

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM.

The Special Function Registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
05h	GPIO	LINTX	LINRX	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu
06h	—	Unimpleme	nted							_	_
07h	_	Unimpleme	nted							_	_
08h	—	Unimpleme	nted							_	_
09h	—	Unimpleme	nted							_	—
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	-	—	-	—	_	—	-0	-0
0Dh	—	Unimpleme	nted							_	_
0Eh	—	Unimpleme	nted							_	_
0Fh	—	Unimpleme	nted							—	_
10h	_	Unimpleme	nted							_	_
11h	—	Unimpleme	nted							_	_
12h	—	Unimpleme	nted							—	_
13h	_	Unimpleme	nted							_	_
14h	—	Unimpleme	nted							_	_
15h	_	Unimpleme	nted							_	_
16h	_	Unimpleme	nted							_	_
17h	—	Unimpleme	nted							—	_
18h	_	Unimpleme	Jnimplemented							_	_
19h	_	Unimpleme	Unimplemented —							_	
1Ah	_	Unimpleme	Jnimplemented —							_	
1Bh		Unimpleme	nted							_	
1Ch	_	Unimpleme	nted							_	
1Dh	—	Unimpleme	nted							_	—
1Eh	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu

TABLE 4-1:	PIC16C433 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'. Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset. The IRP and RP1 bits are reserved on the PIC16C433; always maintain these bits clear. 3:

4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS ⁽³⁾
Bank 1	•		L	•		L				1	<u> </u>
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physica	l register)	0000 0000	0000 0000
81h	OPTION	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	то	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ad	Idress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRIS	—	_	GPIO Data	Direction Re	gister				11 1111	11 1111
86h	_	Unimpleme	nted							-	_
87h	_	Unimpleme	nted							_	_
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	_
8Ah ^(1,2)	PCLATH	_	—	—	Write Buffer	for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 000x	0000 000u
8Ch	PIE1	_	ADIE	—	_	—	—	_	_	-0	-0
8Dh	—	Unimpleme	nted							-	_
8Eh	PCON	_	—	_	_	—	_	POR		0-	u-
8Fh	OSCCAL	CAL3	CAL2	CAL1	CAL0	CALFST	CALSLW	_	_	0111 00	uuuu uu
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	_	Unimpleme	nted							_	_
93h	—	Unimpleme	nted							_	_
94h	—	Unimpleme	nted							_	_
95h	—	Unimpleme	nted							_	_
96h	—	Unimpleme	nted							_	_
97h	—	Unimpleme	Inimplemented								_
98h	_	Unimpleme	Jnimplemented							_	_
99h	—	Unimpleme	Unimplemented							_	_
9Ah	—	Unimpleme	Unimplemented								_
9Bh	_	Unimpleme	Unimplemented							_	_
9Ch	_	Unimpleme	Unimplemented —								_
9Dh	_	Unimpleme	nted							_	_
9Eh	_	Unimpleme	nted							_	_
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000
l ogond:	1									ro unimplomente	J

TABLE 4-1:PIC16C433 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'. Note 1: These registers can be addressed from either bank.

The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C433; always maintain these bits clear.

4.2.2.1 STATUS Register

The STATUS Register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS Register can be the destination for any instruction, as with any other register. If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS Register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS Register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS Register, because these instructions do not affect the Z, C or DC bits from the STATUS Register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16C433 and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C and DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03h, 83h)

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x		
	IRP	RP1	RP0	TO	PD	Z	DC	С		
	bit7							bit0		
bit 7	IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh) The IRP bit is reserved, always maintain this bit clear									
bit 6-5	RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes. The RP1 bit is reserved, always maintain this bit clear.									
bit 4		t bit wer-up, CLRW timeout occur		on, or SLEE	P instructio	n				
bit 3		down bit wer-up or by :ution of the S								
bit 2		ult of an arithı ult of an arithı	-	-						
bit 1	DC : <u>Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)</u> (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result									
bit 0	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred									
	Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.									
	Legend:									
	R = Readable	e bit	W = Wri	table bit	U = Unim	plemented bit,	read as '0'			
	- n = Value at	POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is un	known		

4.2.2.2 OPTION Register

The OPTION Register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0 and the weak pull-ups on GPIO. Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81h))

110

111

1:128

1:256

1:64

1 : 128

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit7	•	•		•	•		bit0
bit 7	GPPU: We	ak Pull-up Er	able bit					
	1 = Weak p	oull-ups disab	led					
	o = Weak p	oull-ups enab	ed (GP0, 0	GP1, GP3)				
bit 6	INTEDG: In	nterrupt Edge	Select bit					
		ot on rising ea						
	0 = Interrup	ot on falling e	dge of GP2	2/T0CKI/AN2	/INT pin			
bit 5	TOCS: TMF	R0 Clock Sou	rce Select	bit				
		ion on GP2/T		•				
	0 = Interna	l instruction c	ycle clock	(CLKOUT)				
bit 4		R0 Source Ed	0					
		ent on high-to						
	0 = Increm	ent on low-to-	high transi	tion on GP2/	TUCKI/AN2/	INI pin		
bit 3		caler Assignn						
	1 = Prescaler is assigned to the WDT							
	0 = Prescaler is assigned to the Timer0 module							
bit 2-0	PS<2:0>∷ ⊦	Prescaler Rat	e Select bil	S				
	В	it Value TM	R0 Rate V	VDT Rate				
	_	000	: 2	1:1				
			: 4	1:2				
			:8 :16	1:4 1:8				
			: 32	1:16				
			: 64	1:32				
			100	4 04				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 Register overflow, GPIO port change and external GP2/INT pin interrupts.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

- n = Value at POR

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	
	bit7							bit0	
bit 7	CIE: Clobal	Interrupt Ena	blo bit						
	1 = Enables	all unmaske	d interrupts						
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts								
bit 5	1 = Enables	Overflow Int the TMR0 in the TMR0 ir	terrupt	ole bit					
bit 4	1 = Enables	xternal Interr the external the external	interrupt on	GP2/INT/T	•				
bit 3	1 = Enables	Interrupt-on the GPIO In the GPIO In	terrupt-on-C	Change					
bit 2	1 = TMR0 re	Overflow Inte egister has ov egister did no	verflowed (r		ared in softw	are)			
bit 1	INTF: RB0/INT External Interrupt Flag bit 1 = The external interrupt on GP2/INT/T0CKI/AN2 pin occurred (must be cleared in software) 0 = The external interrupt on GP2/INT/T0CKI/AN2 pin did not occur								
bit 0	 GPIF: GPIO Interrupt-on-Change Flag bit 1 = GP0, GP1 or GP3 pins changed state (must be cleared in software) 0 = Neither GP0, GP1 nor GP3 pins have changed state 								
	Legend:								
	R = Readab	le bit	W = W	ritable bit	U = Unir	nplemented b	oit, read as '	0'	

© 2002 Microchip Technology Inc.

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

4.2.2.4 **PIE1** Register

This register contains the individual enable bits for the Peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 4-4: PIE1 REGISTER (ADDRESS 8Ch))

	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	ADIE		_	_	_	_	—		
	bit7 bit									
bit 7	Unimpleme	nted: Read a	as '0'							
bit 6	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt									
bit 5-0	Unimpleme	nted: Read a	as '0'							
	Legend:									
	R = Readab	le bit	W = W	ritable bit	U = Unir	nplemented b	oit, read as '()'		
	- n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									

4.2.2.5 PIR1 Register

This register contains the individual flag bits for the Peripheral interrupts.

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an
	rupt flag bits are clear prior to enabling an
	interrupt.

REGISTER 4-5: PIR1 REGISTER (ADDRESS 0Ch))

	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	ADIF	—	—	—	—	_	—
-	bit7							bit0

bit 7 Unimplemented: Read as '0'

bit 6 🖌

ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software)

0 = The A/D conversion is not complete


bit 5-0 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.6 PCON Register

The Power Control (PCON) Register contains a flag bit to allow differentiation between a Power-on Reset (POR), an external MCLR Reset and a WDT Reset.

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh))

- bit 7-2 Unimplemented: Read as '0'
- bit 1 **POR**: Power-on Reset Status bit 1 = No Power-on Reset occurred a = A Power on Reset occurred (must be set in software after a Power of
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 Unimplemented: Read as '0'

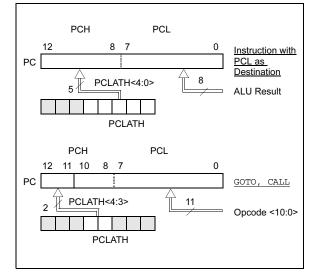
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.7 OSCCAL Register

The Oscillator Calibration (OSCCAL) Register is used to calibrate the internal 4 MHz oscillator. It contains four bits for fine calibration and two other bits to either increase or decrease frequency.

REGISTER 4-7: OSCCAL REGISTER (ADDRESS 8Fh)

	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	U-0	U-0
	CAL3	CAL2	CAL1	CAL0	CALFST	CALSLW	—	—
	bit7							bit0
bit 7-4	CAL<3:0>:	Fine Calibrat	ion bits					
bit 3	CALFST: Calibration Fast bit 1 = Increase frequency 0 = No change							
bit 2	CALSLW : Calibration Slow bit 1 = Decrease frequency 0 = No change							
bit 1-0	Unimpleme	ented: Read	as '0'					


Note: If CALFST = 1 and CALSLW = 1, CALFST has precedence.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL Register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-3 shows the two situations for the loading of the PC. The upper example in Figure 4-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 4-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-3: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A Computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

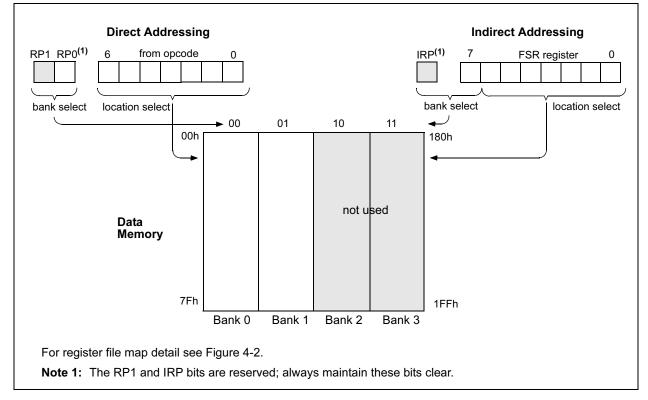
The PIC16C433 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.4 Program Memory Paging

The PIC16C433 ignores both paging bits PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC16C433 is not recommended, since this may affect upward compatibility with future products.


4.5 Indirect Addressing, INDF and FSR Registers

The INDF Register is not a physical register. Addressing the INDF Register will cause indirect addressing.

Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register, indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-4. However, IRP is not used in the PIC16C433. A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTIN	IUE		
	:		;yes continue
			-

FIGURE 4-4: DIRECT/INDIRECT ADDRESSING

NOTES:

5.0 I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (i.e., MOVF GPIO, W) always read the I/O pins independent of the pin's Input/Output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance), since the I/O control registers are all set.

5.1 <u>GPIO</u>

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP<5:0>). Bits 6 and 7 (LINTX and LINRX, respectively) are used by the LIN bus transceiver peripheral. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions, the pins will read as '0' during port read. Pins GP0, GP1 and GP3 can be configured with weak pull-ups and also with interrupt-on-change. The interrupt-on-change and weak pull-up functions are not pin selectable. If pin 4 (GP3), is configured as MCLR, a weak pull-up is always on. Interrupt-on-change for this pin is not set and GP3 will read as '0'. Interrupt-on-change is enabled by setting bit GPIE, INTCON<3>. Note that external oscillator use overrides the GPIO functions on GP4 and GP5.

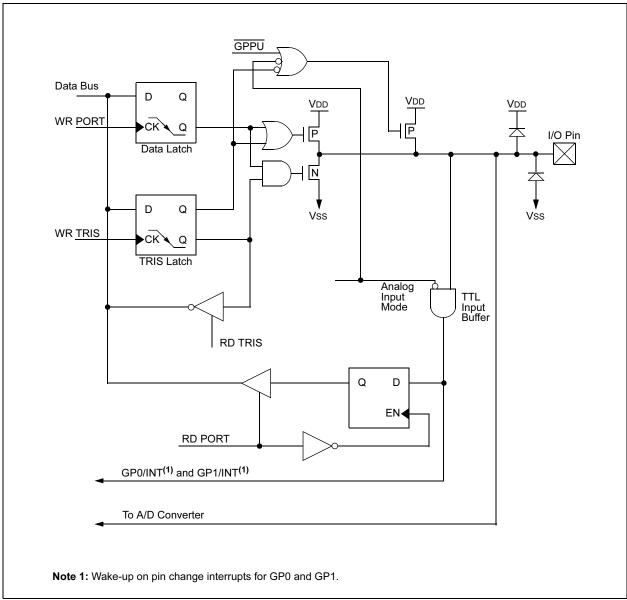
5.2 TRIS Register

This register controls the data direction for GPIO. A '1' from a TRIS Register bit puts the corresponding output driver in a Hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3, which is input only and its TRIS bit will always read as '1', while GP6 and GP7 TRIS bits will read as '0'.

Note:	A read of the ports reads the pins, not the
	output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a
	read of the port will indicate that the pin is
	low.

Upon RESET, the TRIS Register is all '1's, making all pins inputs.

TRIS for pins GP4 and GP5 is forced to a '1', where appropriate. Writes to TRIS <5:4> will have an effect in EXTRC and INTRC oscillator modes only. When GP4 is configured as CLKOUT, changes to TRIS<4> will have no effect.


5.3 <u>I/O Interfacing</u>

The equivalent circuit for an I/O port pin is shown in Figure 5-1 through Figure 5-5. All port pins, except GP3, which is input only, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (i.e., MOVF GPIO, W). The

outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

Port pins LINTX and LINRX are used for the LIN bus transceiver. These port pins are not available externally on the package. Users should avoid writing to pins GP6 (SDA) and GP7 (SCL), when not communicating with the LIN bus transceiver.

Note: On a Power-on Reset, GP0, GP1, GP2 and GP4 are configured as analog inputs and read as '0'.

FIGURE 5-1: BLOCK DIAGRAM OF GP0/AN0 AND GP1/AN1/VREF PIN

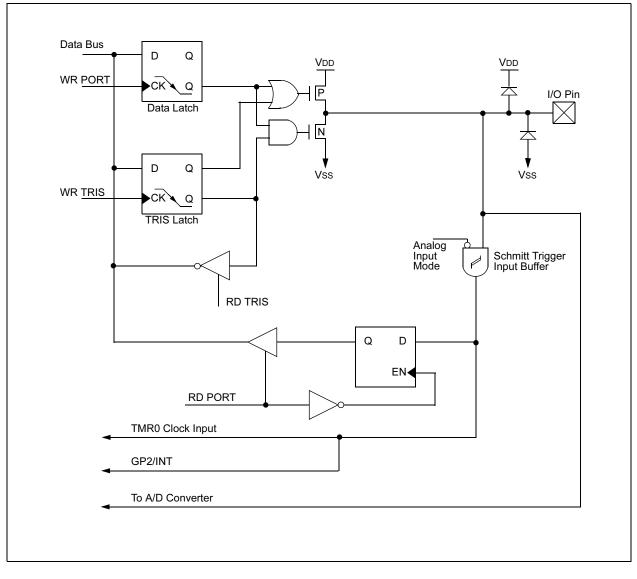
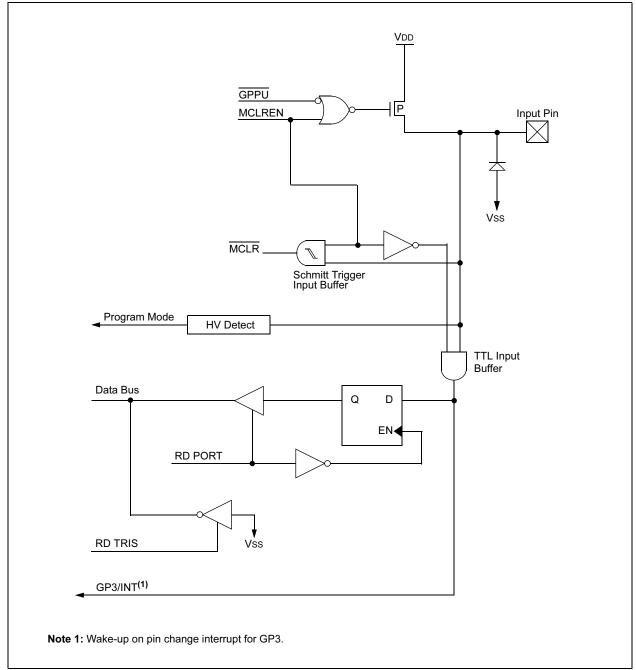



FIGURE 5-2: BLOCK DIAGRAM OF GP2/T0CKI/AN2/INT PIN

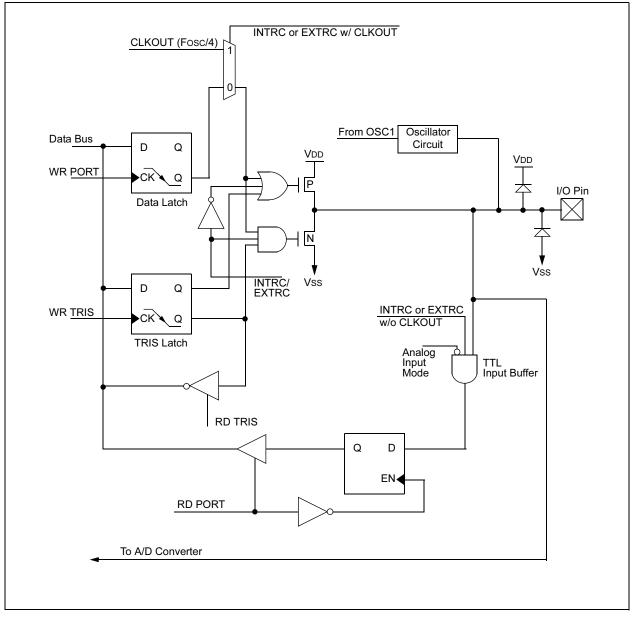
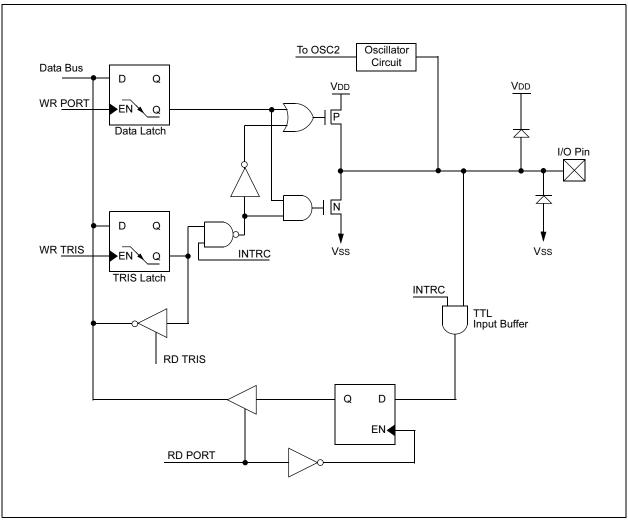



FIGURE 5-4: BLOCK DIAGRAM OF GP4/OSC2/AN3/CLKOUT PIN

FIGURE 5-5: **BLOCK DIAGRAM OF GP5/OSC1/CLKIN PIN**

TABLE 5-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
85h	TRIS	—	—	GPIO Da	GPIO Data Direction Register					11 1111	11 1111
81h	OPTION	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
05h	GPIO	LINTX	LINRX	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Legend: Shaded cells not used by Port Registers, read as '0', - = unimplemented, read as '0', x = unknown, u = unchanged, q = see tables in Section 9.4 for possible values. **Note 1:** The IRP and RP1 bits are reserved on the PIC16C433; always maintain these bits clear.

5.4 <u>I/O Programming Considerations</u>

5.4.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU. Then, the BSF operation takes place on bit5 and GPIO is written to the output latches. If another bit of GPIO is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch. Example 5-1 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; Initial GPIO	Settings					
; GPIO<5:3> In	puts					
; GPIO<2:0> Ou	tputs					
;						
;	GPIO latch	GPIO pins				
;						
BCF GPIO,5	;pp01 -ppp	pp11 pppp				
BCF GPIO,4	;pp10 -ppp	pp11 pppp				
MOVLW 007h	;					
TRIS GPIO	;pp10 -ppp	pp10 pppp				
;						
;Note that the	user may have e	xpected the pin				
;values to be00 pppp. The 2nd BCF caused GP5						
;to be latched	as the pin valu	e (High).				

A pin actively outputting a Low or High should not be driven from external devices at the same time, in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip. NOTES:

6.0 LIN Bus TRANSCEIVER

The PIC16C433 has an integrated LIN bus transceiver, which allows the microcontroller to communicate via a LIN bus. The LIN bus protocol is handled by the micro-controller. The conversion from 5V signal to LIN bus signals is handled by the transceiver

6.1 The LIN Bus Protocol

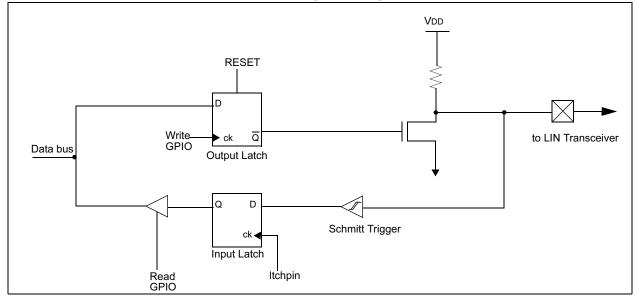
The LIN bus protocol is not described within this document. For further information regarding the LIN bus protocol, please refer to www.lin-subbus.org.

6.2 LIN Bus Interfacing

The LIN protocol is implemented and programmed by the user, using the LINTX and LINRX bits, which are used to interface to the transceiver. The LIN Bus firmware transmits by toggling the LINTX bit in the GPIO register and is read by reading the LINRX bit in the GPIO register. All aspects of the protocol are handled by software (i.e. bit-banged), where the transceiver is used as the physical interface to the LIN Bus network.

For LIN Bus slave implementation software, please refer to Microchip's web site (www.microchip.com).

The transceiver in the PIC16C433 uses the microcontroller's dual-die interface; therefore, the software must initialize the LINTX and LINRX bits to a '1' before each LIN communication. If the LINTX bit is left cleared (e.g., CLRF GPIO), no other nodes on the network will be able to communicate on the LIN Bus until LINTX is set to '1' for '0' is the dominate state for the protocol.


EXAMPLE 6-1: Initializing LINTX and LINRX Bits

It is recommended that the firmware verify each bit transmitted, by comparing the LINTX and LINRX bits, to ensure no bus contention or hardware failure has occurred. The LINTX and LINRX bits have no associated TRIS bits. Therefore, LINTX is always an output and LINRX is always an input.

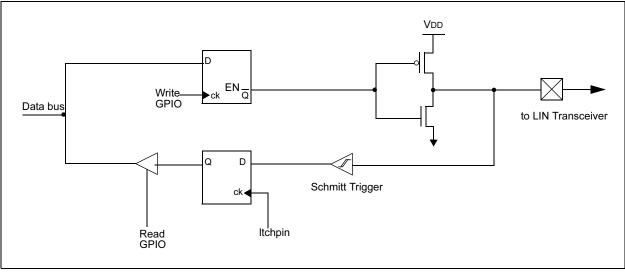

6.3 LIN Bus Hardware Interface

Figure 6-3 shows how to implement the hardware LIN Bus interface in a master configuration and Figure 6-4 in a slave configuration using the PIC16C433. Figure 6-5 shows how to implement the hardware for a master configuration using BACT pin to generate a wake-up interrupt using GP2. The transceiver has an internal series resistor and diode, as defined in the LIN 1.2 specification, connecting VBAT and LIN pin.

FIGURE 6-1: BLOCK DIAGRAM OF LINRX (SDA LINE)

FIGURE 6-2: BLOCK DIAGRAM OF LINTX

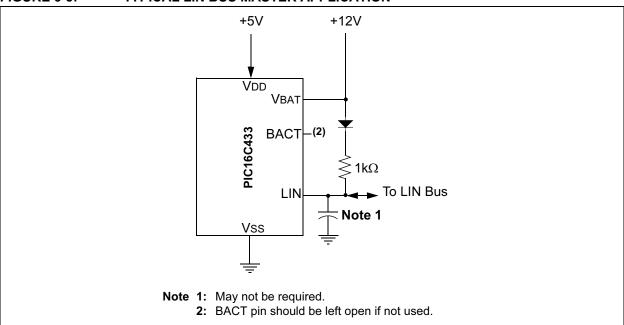
Note: No resistor or diode is required between VBAT pin and 12V supply and for slave configuration.

6.4 <u>Thermal Shutdown</u>

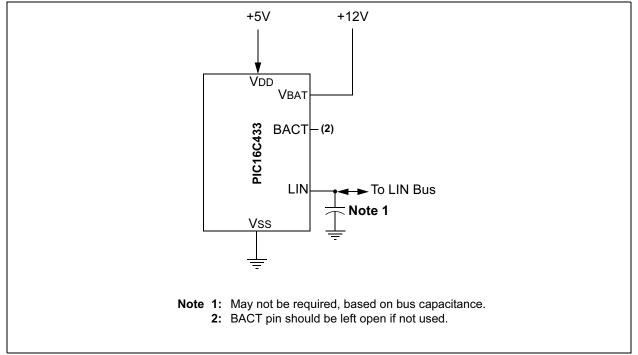
In thermal shutdown, the LIN bus output is disabled instantaneously. The output transistor is turned off, regardless of the input level at pin LINTX bit and only a limited current can flow into the receiver connected to the LIN bus pin.

Note: TLINRX must be set to '1' at all times.

6.5 <u>Wake-up from SLEEP upon Bus</u> <u>Activity</u>


The PIC16C433 can Wake-up from SLEEP upon bus activity in the following way:

1. Connect BACT to one of GPIO<0:3> pins.


The BACT output is a CMOS-levels representation of the LIN pin. This signal can be routed to one of the GPIO<0:3> pins. The GPIO<2> external interrupt or GPIO<0:1,3> interrupt-on-change wakes up the device from SLEEP. Any one of the four GPIO pins can be used for wake-up where GPIO<2> offers multiple configuration options (Section 9.5.2) and GPIO<0:1,3> are interrupt-on-change (Section 9.5.3).

Note: BACT pin is an output and must be left open if unused.

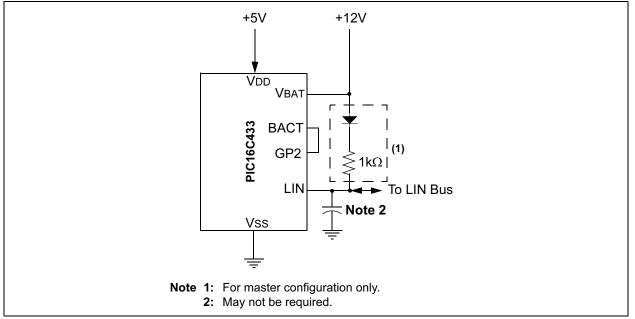


FIGURE 6-4: TYPICAL LIN BUS SLAVE APPLICATION

TABLE 6-1: SUMMARY OF LIN BUS TRANSCEIVER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on All Other RESETS
05h	GPIO	LINTX	LINRX	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Legend: x = unknown, u = unchanged. Shaded cells not used by LIN Transceiver.

7.0 TIMER0 MODULE

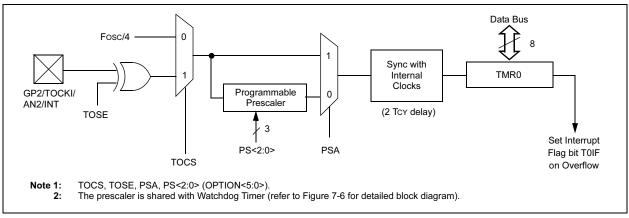
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- · Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION<5>). In Counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the bit T0SE


FIGURE 7-1: TIMER0 BLOCK DIAGRAM

(OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, pre-scale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

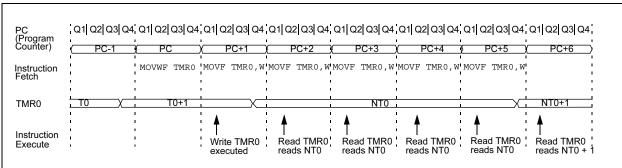
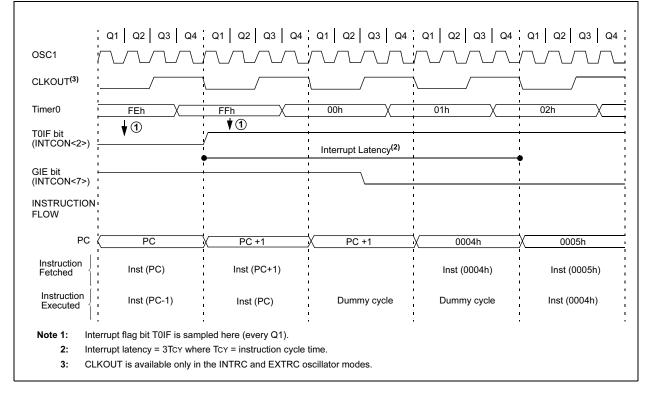

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

FIGURE 7-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

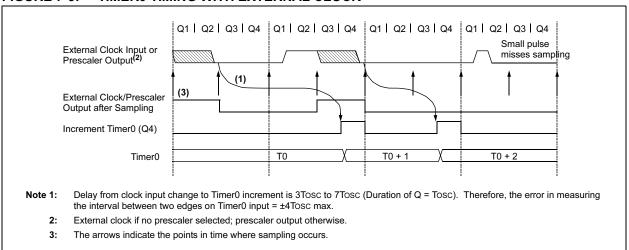

(Program Counter)	(PC-1	PC	(PC+1)	PC+2	PC+3	PC+4)	PC+5 (PC+6
Instruction Fetch	1 1 1	MOVWF TMR0	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	
	1				1		1	
TMR0	χ	Τ0+1 χ	Τ0+2 χ	ΝΤΟ Χ	ΝΤΟ Χ	ΝΤΟ Χ	NT0+1 χ	NT0+2 X
Instruction Executed		1 1 1 1	Write TMR0	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0	Read TMR0	Read TMR0

PIC16C433

FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 7-4: TIMER0 INTERRUPT TIMING

7.2 Using Timer0 with an External Clock

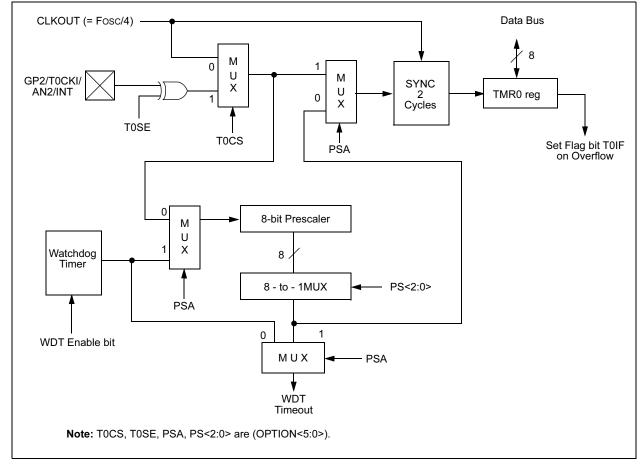

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is used as the clock source. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns), divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.


FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

7.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (i.e., CLRF 1, MOVWF 1, BSF 1, x..., etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution).

Note:	To avoid an unintended device RESET, the
	following instruction sequence (shown in
	Example 7-1) must be executed when
	changing the prescaler assignment from
	Timer0 to the WDT. This sequence must
	be followed even if the WDT is disabled.

EXAMPLE 7-1: Changing Prescaler (Timer0 \rightarrow WDT)

BCF	STATUS, RPO	;Bank 0
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
CLRWDT		;Clears WDT
MOVLW	b'xxxx1xxx'	;Select new prescale
MOVWF	OPTION_REG	;value & WDT
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

	(
CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
01h	TMR0	Timer0	Module's F	Register						xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 000x	0000 000u
81h	OPTION	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRIS	_	_	TRIS5	TRIS4	TRIS3	TRIS2	TRIS1	TRIS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

8.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD), or the voltage level on the GP1/AN1/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 Register, shown in Figure 8-1, controls the operation of the A/D module. The ADCON1 Register, shown in Figure 8-2, configures the functions of the port pins. The port pins can be configured as analog inputs (GP1 can also be a voltage reference) or as digital I/O.

- Note 1: If the port pins are configured as analog inputs (RESET condition), reading the port (MOVF GPIO, W) results in reading '0's.
 - 2: Changing ADCON1 Register can cause the GPIF and INTF flags to be set in the INTCON Register. These interrupts should be disabled prior to modifying ADCON1.

REGISTER 8-1: ADCON0 REGISTER (ADDRESS 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS1	ADCS0	reserved	CHS1	CHS0	GO/DONE	reserved	ADON
bit7							bit0

bit 7-6	ADCS<1:0>: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32
	11 = FRC (clock derived from an RC oscillation)
bit 5	Reserved
bit 4-3	CHS<1:0>: Analog Channel Select bits 00 = channel 0, (GP0/AN0) 01 = channel 1, (GP1/AN1) 10 = channel 2, (GP2/AN2) 11 = channel 3, (GP4/AN3)
bit 2	GO/DONE: A/D Conversion Status bit
	<u>If ADON = 1:</u>

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion)
- A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

bit 1 Reserved

bit 0 ADON: A/D On bit

- 1 = A/D converter module is operating
- 0 = A/D converter module is shut-off and consumes no operating current

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC16C433

REGISTER 8-2: ADCON1 REGISTER (ADDRESS 9Fh

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—		—	PCFG2	PCFG1	PCFG0
bit7							bit0

bit 7-2 Unimplemented: Read as '0'

bit 1-0 PCFG<2:0>: A/D Port Configuration Control bits

PCFG<2:0>	GP4	GP2	GP1	GP0	VREF
₀₀₀ (1)	A	A	A	A	Vdd
001	Α	Α	VREF	А	GP1
010	D	Α	A	А	VDD
011	D	Α	VREF	А	GP1
100	D	D	A	A	Vdd
101	D	D	VREF	A	GP1
110	D	D	D	А	Vdd
111	D	D	D	D	Vdd

A = Analog Input

D = Digital I/O

Note 1: Value on RESET.

2: Any instruction that reads a pin configured as an analog input will read a '0'.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The ADRES Register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared and A/D interrupt flag bit ADIF (PIE1<6>) is set. The block diagrams of the A/D module are shown in Figure 8-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine sample time, see Section 8.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference/ and digital I/O (ADCON1 and TRIS)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- Read A/D Result Register (ADRES), clear bit ADIF if required.
- 7. For the next conversion, go to step 1, step 2, or step 3, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 8-1: A/D BLOCK DIAGRAM

8.1 A/D Sampling Requirements

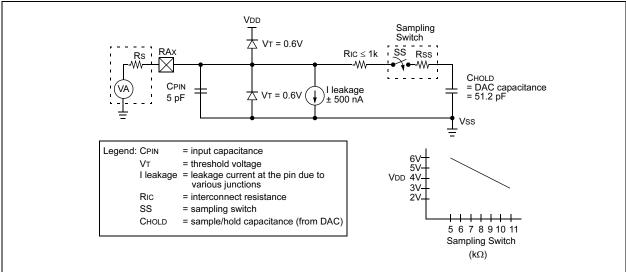
For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 8-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 8-2. The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 8-1 may be used. This equation assumes that 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

EQUATION 8-1: A/D MINIMUM CHARGING TIME

VHOLD = (VREF - (VREF/512)) • (1 - $e^{(-Tc/CHOLD(Ric + Rss + Rs))})$ or Tc = -(51.2 pF)(1 k Ω + Rss + Rs) ln(1/511)

Example 8-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions.


Rs = 10 kΩ

1/2 LSb error

VDD = 5V \rightarrow Rss = 7 k Ω

Temperature (system max.) = 50°C

VHOLD = 0 @ t = 0

FIGURE 8-2: ANALOG INPUT MODEL

- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
 - 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
 - **3:** The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.
 - **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 8-1: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

8.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5 TAD per 8-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal ADC RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 μ s. If the minimum TAD time of 1.6 μ s can not be obtained, TAD should be $\leq 8 \ \mu$ s for preferred operation.

Table 8-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

8.3 Configuring Analog Port Pins

The ADCON1 and TRIS Registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<2:0> bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channel will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN<3:0> pins) may cause the input buffer to consume current that is out of the devices specification.

TABLE 8-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock Source	(TAD)	Device Frequency				
Operation	ADCS<1:0>	4 MHz	1.25 MHz	333.33 kHz		
2Tosc	00	500 ns ⁽²⁾	1.6 μs	6 μs		
8Tosc	01	2.0 μs	6.4 μs	24 μs ⁽³⁾		
32Tosc	10	8.0 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾		
Internal ADC RC Oscillator ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾		

Note 1: The RC source has a typical TAD time of 4 μ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: While in RC mode, with device frequency above 1 MHz, conversion accuracy is out of specification.

5: For extended voltage devices (LC), please refer to Section 12.0, Electrical Specifications.

8.4 <u>A/D Conversions</u>

Example 8-2 shows how to perform an A/D conversion. The GPIO pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled and the A/D conversion clock is FRC. The conversion is performed on the GP0 channel.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 8-2: DOING AN A/D CONVERSION

	BSF	STATUS, F	RPO ;	Select Page 1
	CLRF	ADCON1	;	Configure A/D inputs
	BSF	PIE1, A	ADIE ;	Enable A/D interrupts
	BCF	STATUS, F	RPO ;	Select Page 0
	MOVLW	0xC1	;	RC Clock, A/D is on, Channel 0 is selected
	MOVWF	ADCON0	;	
	BCF	PIR1, A	ADIF ;	Clear A/D interrupt flag bit
	BSF	INTCON, F	PEIE ;	Enable peripheral interrupts
	BSF	INTCON, G	GIE ;	Enable all interrupts
;				
;	Ensure th	at the req	quired sampli	ng time for the selected input channel has elapsed.
;	Then the	conversion	n may be star	ted.
;				
	BSF	ADCON0, G	GO ;	Start A/D Conversion
	:		;	The ADIF bit will be set and the GO/DONE bit
	:		;	is cleared upon completion of the A/D Conversion.

8.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS<1:0> = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES Register. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS<1:0> = 11). To perform an A/D conversion in SLEEP, the GO/DONE bit must be set, followed by the SLEEP instruction.

8.6 <u>A/D Accuracy/Error</u>

The overall accuracy of the A/D is less than \pm 1 LSb for VDD = 5V \pm 10% and the analog VREF = VDD. This overall accuracy includes offset error, full scale error and integral error. The A/D converter is monotonic over the full VDD range. The resolution and accuracy may be less when either the analog reference (VDD) is less than 5.0V, or when the analog reference (VREF) is less than VDD.

The maximum pin leakage current is specified in the Device Data Sheet electrical specification, parameter #D060.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8~\mu s$ for preferred operation. This is because TAD, when derived from Tosc, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

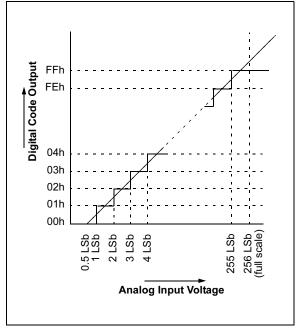
In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP is stopped. This method gives high accuracy.

8.7 Effects of a RESET

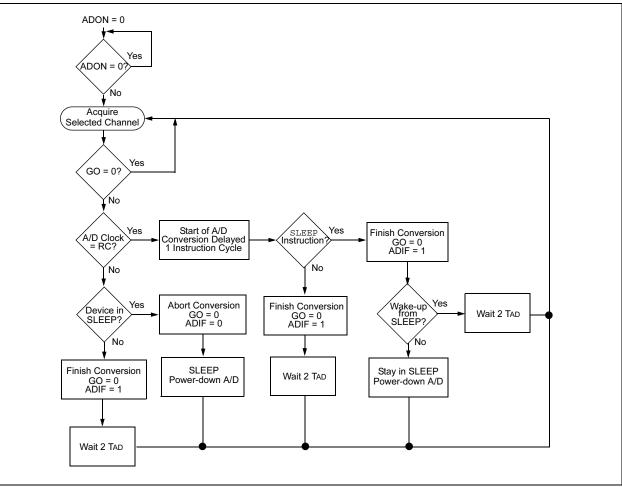
A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. The value that is in the ADRES register is not modified for a RESET. The ADRES register will contain unknown data after a Power-on Reset.

8.8 <u>Connection Considerations</u>

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.


Note:	For the PIC16C433, care must be taken
	when using the GP4 pin in A/D conver-
	sions due to its proximity to the OSC1 pin.

An external RC filter is sometimes added for antialiasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.


8.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is 1 LSb (or Analog VREF/256) (Figure 8-3).

FIGURE 8-3: A/D TRANSFER FUNCTION

TABLE 8-2:	SUMMARY OF A/D REGISTERS
-------------------	--------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
0Bh/8Bh	INTCON ⁽¹⁾	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_			—	—	—	-0	-0
8Ch	PIE1	—	ADIE	_			—	—	—	-0	-0
1Eh	ADRES	A/D Res	sult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	reserved	CHS1	CHS0	GO/DONE	reserved	ADON	0000 0000	0000 0000
9Fh	ADCON1	_	_	_	_	—	PCFG2	PCFG1	PCFG0	000	000
05h	GPIO	LINTX	LINRX	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu
85h	TRIS	_		TRIS5	TRIS4	TRIS3	TRIS2	TRIS1	TRIS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers can be addressed from either bank.

9.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16C433 device has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming

The PIC16C433 has a Watchdog Timer, which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The INTRC/EXTRC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits is used to select various options.

9.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h-3FFFh), which can be accessed only during programming.

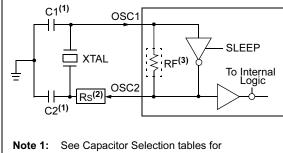
REGISTER 9-1: CONFIG - CONFIGURATION WORD (ADDRESS: 2007H)

									1				
CP	CP	BORV1	BORV0	CP	CP	—	BODEN	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit13													bit0
	13-8, 6-5: CP<1:0>: Code Protection bit pairs ⁽¹⁾												
bit 13-8, 6-5:				on bit pair	S								
	10 = L 01 = L	ocations 20	tion off 00h through 00h through is code prot	7FEh cod	le protecteo le protecteo	1							
bit 7:	MCL	RE: Maste	er Clear Re	eset Enal	ole bit								
		aster Clear aster Clear											
bit 4:	PWR	TE: Powe	r-up Time	r Enable	bit								
	1 = PWRT disabled 0 = PWRT enabled												
bit 3:	WDT	E: Watcho	dog Timer	Enable b	it								
		DT enablec DT disablec											
bit 2-0:	FOSC	C<2:0>: O	scillator S	election l	bits								
	111 = EXTRC, clockout on OSC2 110 = EXTRC, OSC2 is I/O 101 = INTRC, clockout on OSC2 100 = INTRC, OSC2 is I/O 011 = Invalid selection 010 = HS oscillator 001 = XT oscillator 000 = LP oscillator												
Note:	Note: All of the CP<1:0> pairs have to be given the same value to enable the code protection scheme listed.												
Legend													
R = Readable	bit			W = Wri	table bit		U = Un	implement	ed bit, read	as '0'			
-n = Value at F	POR			1 = bit is	s set		0 = bit	is cleared		x = 1	oit is unkno	wn	

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16C433 can be operated in seven different oscillator modes. The user can program three configuration bits (Fosc<2:0>) to select one of these seven modes:


- LP: Low Power Crystal
- HS: High Speed Crystal/Resonator
- XT: Crystal/Resonator
- INTRC*: Internal 4 MHz Oscillator
- EXTRC*: External Resistor/Capacitor

*Can be configured to support CLKOUT

9.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

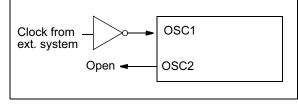

In XT, HS or LP modes, a crystal or ceramic resonator is connected to the GP5/OSC1/CLKIN and GP4/OSC2 pins to establish oscillation (Figure 9-1). The PIC16C433 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, HS or LP modes, the device can have an external clock source drive the GP5/OSC1/ CLKIN pin (Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION OR CERAMIC RESONATOR (XT, HS OR LP OSC CONFIGURATION)

- recommended values of C1 and C2. 2: A series resistor (Rs) may be required for AT
 - strip cut crystals.
- **3:** RF varies with the Oscillator mode selected (approx. value = $10 \text{ M}\Omega$).

FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (XT, HS OR LP OSC CONFIGURATION)

TABLE 9-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS - PIC16C433

Osc Type	Resonator Freq	Cap. Range C1	Cap. Range
XT	455 kHz	22-100 pF	22100 pF
	2.0 MHz	15-68 RF D	15-68 pF
	4.0 MHz	15-68 x + L	[∼] 15-68 pF
HS	4.0 MHz穴	1/10-68 pF	15-68 pF
	8.0 MHz	\ ∖ 10-68 pF	10-68 pF
	10:0 MHZ	ິ 10-22 pF	10-22 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR -PIC16C433

Osc Type	Resonator Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 р.Ғ
	100 kHz	15-30 pF	30-47 pF
	200 kHz	15-30 pF 🎧	15-82 pF
XT	100 kHz	15-30 pf	200-300 pF
	200 kHz	_ 15-30/0R) L	¹ 100-200 pF
	455 kHz 🔨	\\\\$-30.pF	15-100 pF
	1-MHz	\\\ \ \$-30 pF	15-30 pF
5	2/14+12	ど 15-30 pF	15-30 pF
\square	4 MHz	15-47 pF	15-47 pF
HS	^{\V} 4́ MHz	15-30 pF	15-30 pF
L L	8 MHz	15-30 pF	15-30 pF
	10 MHz	15-30 pF	15-30 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

9.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a pre-packaged oscillator, or a simple oscillator circuit with TTL gates, can be used as an external crystal oscillator circuit. Pre-packaged oscillators provide a wide operating range and better stability. A well designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with parallel resonance, or one with series resonance.PIC16C433

Figure 9-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 9-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

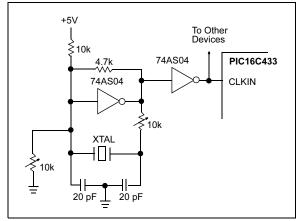
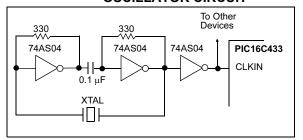



Figure 9-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 9-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

9.2.4 EXTERNAL RC OSCILLATOR

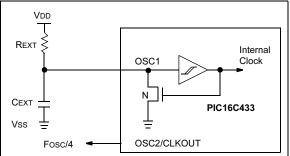

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit, due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 9-5 shows how the R/C combination is connected to the PIC16C433. For REXT values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high REXT values (i.e., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The variation is greater for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

9.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at $V_{DD} = 5V$ and 25° C. See Section 13.0 for information on variation over voltage and temperature.

In addition, a calibration instruction is programmed into the last address of the program memory, which contains the calibration value for the internal RC oscillator. This value is programmed as a RETLW XX instruction, where XX is the calibration value. In order to retrieve the calibration value, issue a CALL YY instruction, where YY is the last location in program memory. Control will be returned to the user's program with the calibration value loaded into the W register. The program should then perform a MOVWF OSCCAL instruction to load the value into the internal RC oscillator trim register.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency. Bits <7:4>, CAL<3:0> are used for fine calibration, while bit3, CALFST, and bit2, CALSLW, are used for more coarse adjustment. Adjusting CAL<3:0> from 0000 to 1111 yields a higher clock speed. Set CALFST = 1 for greater increase in frequency, or set CALSLW = 1 for greater decrease in frequency. Note that bits 1 and 0 of OSCCAL are unimplemented and should be written as 0, when modifying OSCCAL for compatibility with future devices.

Note:	Please note that erasing the device will
	also erase the pre-programmed internal
	calibration value for the internal oscillator.
	The calibration value must be saved prior
	to erasing the part.

9.2.6 CLKOUT

The PIC16C433 can be configured to provide a clock out signal (CLKOUT) on pin 3, when the configuration word address (2007h) is programmed with Fosc2, Fosc1, and Fosc0, equal to 101 for INTRC or 111 for EXTRC. The oscillator frequency, divided by 4, can be used for test purposes or to synchronize other logic.

9.3 <u>RESET</u>

The PIC16C433 differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (normal operation)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset (POR), MCLR Reset, WDT Reset, and MCLR Reset during SLEEP. They are not affected by a WDT wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different RESET situations, as indicated in Table 9-5. These bits are used in software to determine the nature of the RESET. See Table 9-6 for a full description of RESET states of all registers.

A simplified block diagram of the On-Chip Reset circuit is shown in Figure 9-6.

The PIC16C433 has a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

When MCLR is asserted, the state of the OSC1/CLKIN and CLKOUT/OSC2 pins are as follows:

WHEN WICLK ASSERTED						
Oscillator Mode	OSC1/CLKIN Pin	OSC2/CLKOUT Pin				
EXTRC, CLKOUT on OSC2	OSC1 pin is tri-stated and driven by external circuit	OSC2 pin is driven low				
EXTRC, OSC2 is I/O	OSC1 pin is tri-stated and driven by external circuit	OSC2 pin is tri-state input				
INTRC, CLKOUT on OSC2	OSC1 pin is tri-state input	OSC2 pin is driven low				
INTRC, OSC2 is I/O	OSC1 pin is tri-state input	OSC2 pin is tri-state input				

TABLE 9-3: CLKIN/<u>CLKO</u>UT PIN STATES WHEN MCLR ASSERTED

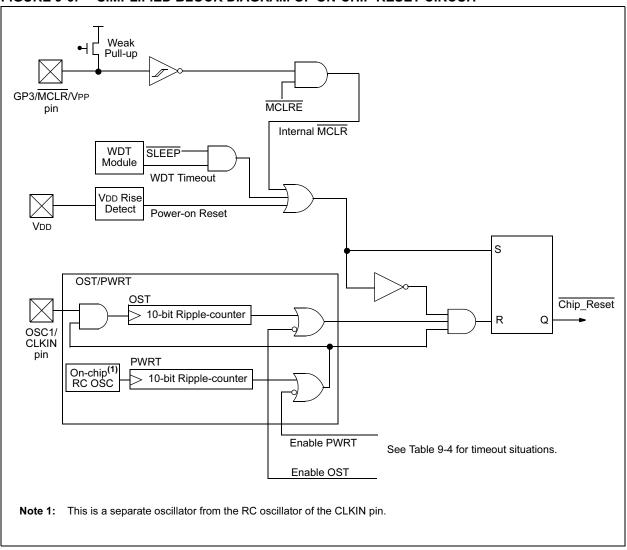


FIGURE 9-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

9.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST)</u>

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper_ ation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create a Poweron Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal timeout on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator, or resonator has started and stabilized.

The OST timeout is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 TIMEOUT SEQUENCE

On power-up, the timeout Sequence is as follows: first, PWRT timeout is invoked after the POR time delay has expired; then, OST is activated. The total timeout will vary, based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no timeout at all. Figure 9-7, Figure 9-8, and Figure 9-9 depict timeout sequences on power-up.

Since the timeouts occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the timeouts will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 9-9). This is useful for testing purposes, or to synchronize more than one PIC16C433 device operating in parallel.

9.4.5 POWER CONTROL/STATUS REGISTER (PCON)

The Power Control/Status Register, PCON (address 8Eh), has one bit.

Bit1 is POR (Power-on Reset). It is cleared on a Poweron Reset and is unaffected otherwise. The user sets this bit following a Power-on Reset. On subsequent RESETS, if POR is '0', it will indicate that a Power-on Reset must have occurred.

TABLE 9-4: TIMEOUT IN VARIOUS SITUATIONS

	Power		
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Wake-up from SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
INTRC, EXTRC	72 ms	_	

TABLE 9-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	то	PD				
0	1	1	Power-on Reset			
0	0	x	al, TO is set on POR			
0	х	0	Illegal, PD is set on POR			
1	0	u	WDT Reset			
1	0	0	WDT Wake-up			
1	u	u	MCLR Reset during normal operation			
1	1	0	MCLR Reset during SLEEP or interrupt Wake-up from SLEEP			

Legend: u = unchanged, x = unknown

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0-
MCLR Reset during normal operation	000h	000u uuuu	u-
MCLR Reset during SLEEP	000h	0001 0uuu	u-
WDT Reset during normal operation	000h	0000 uuuu	u-
WDT Wake-up from SLEEP	PC + 1	uuu0 0uuu	u-
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	u-

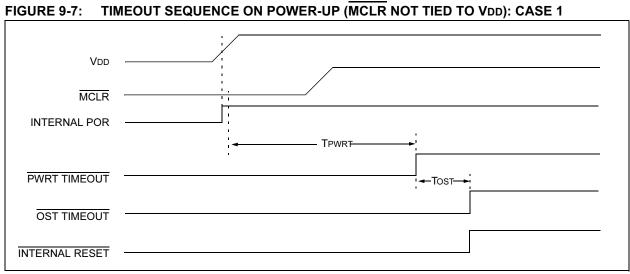
Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

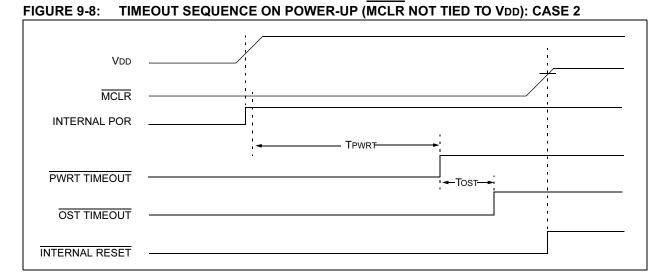
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Power-on Reset	MCLR Reset WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	0000 0000	0000 0000	0000 0000
TMR0	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	uuuu uuuu
GPIO	11xx xxxx	11uu uuuu	11uu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uqqq ⁽¹⁾
PIR1	-0	-0	-q (4)
ADCON0	0000 0000	0000 0000	uuuu uquu ⁽⁵⁾
OPTION	1111 1111	1111 1111	uuuu uuuu
TRIS	11 1111	11 1111	uu uuuu
PIE1	-0	-0	-u
PCON	0-	u-	u-
OSCCAL	0111 00	uuuu uu	uuuu uu
ADCON1	000	000	uuu

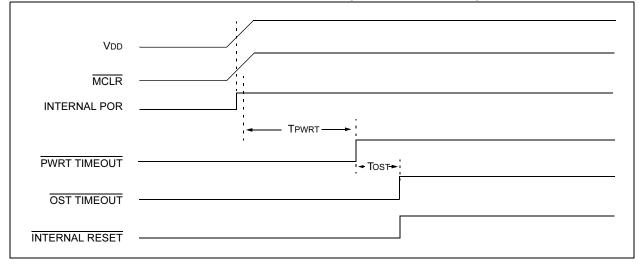
TABLE 9-7: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition**Note 1:**One or more bits in INTCON and PIR1 will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).


3: See Table 9-5 for RESET value for specific condition.

4: If wake-up was due to A/D completing then bit 6 = 1, all other interrupts generating a wake-up will cause bit 6 = u.


5: If wake-up was due to A/D completing then bit 3 = 0, all other interrupts generating a wake-up will cause bit 3 = u.

PIC16C433

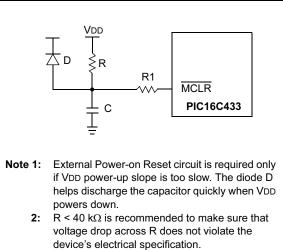


FIGURE 9-9: TIMEOUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 9-10: EXTERNAL POWER-ON **RESET CIRCUIT (FOR SLOW** VDD POWER-UP)

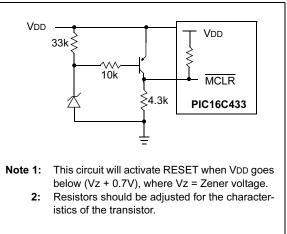
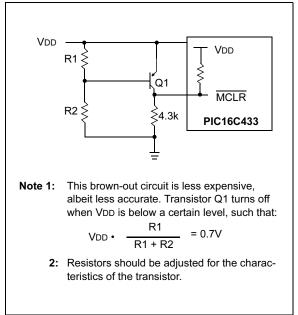

3: R1 = 100Ω to 1 k Ω will limit any current flowing into MCLR from external capacitor C, in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD), or Electrical Overstress (EOS).

FIGURE 9-11: EXTERNAL BROWN-OUT **PROTECTION CIRCUIT 3**



push-pull and open collector outputs, with both high and low active RESET pins. There are 7 different trip point selections to accommodate 5V and 3V systems.

FIGURE 9-12: EXTERNAL BROWN-OUT **PROTECTION CIRCUIT 1**

FIGURE 9-13: EXTERNAL BROWN-OUT **PROTECTION CIRCUIT 2**

9.5 Interrupts

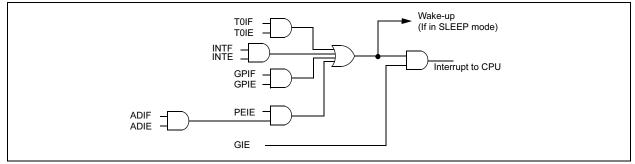
There are four sources of interrupt:

Interrupt Sources		
TMR0 Overflow Interrupt		
External Interrupt GP2/INT pin		
GPIO Port Change Interrupts (pins GP0, GP1, GP3)		
A/D Interrupt		

The Interrupt Control Register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-			
	less of the status of their corresponding			
	mask bit, or the GIE bit.			

A global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit. The GIE bit is cleared on RESET. The "return-from-interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.


The GP2/INT, GPIO port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag ADIF, is contained in the Special Function Register PIR1. The corresponding interrupt enable bit is contained in Special Function Register PIE1, and the peripheral interrupt enable bit is contained in Special Function Register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid repeated interrupts.

For external interrupt events, such as GPIO change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends on when the interrupt event occurs (Figure 9-15). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.

FIGURE 9-14: INTERRUPT LOGIC

	INT PIN INTERF				
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q
OSC1					
CLKOUT (3)					\/
INT pin		• (1)	1 1 1	1 1 1	1 1 1
INTF Flag (INTCON<1>)	.1 5		Interrupt Latency (2)	i i i i	
GIE bit (INTCON<7>)		1 1 1		1 1 1	1 1 1
INSTRUCTION F	LOW		1 1	I I	I I
PC 🖯	PC	PC+1	Y PC+1	0004h	X 0005h
Instruction {	Inst (PC)	Inst (PC+1)	-	Inst (0004h)	Inst (0005h)
Instruction {	Inst (PC-1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)
2: Interrupt Latency 3: CLKOU ⁻ 4: For mini	is the same whether Γ is available only in mum width of INT pu	here TCY = instructior	cyćle, or a 2-cycle instr oscillator modes. s.	uction.	

FIGURE 9-15: INT PIN INTERRUPT TIMING

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

9.5.1 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (see Section 7.0). The flag bit T0IF (INTCON<2>) will be set, regardless of the state of the enable bits. If used, this flag must be cleared in software.

9.5.2 INT INTERRUPT

External interrupt on GP2/INT pin is edge triggered; either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wakeup. See Section 9.8 for details on SLEEP mode.

9.5.3 GPIO INTCON CHANGE

An input change on GP3, GP1 or GP0 sets flag bit GPIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit GPIE (INTCON<3>) (Section 5.1). This flag bit GPIF (INTCON<0>) will be set, regardless of the state of the enable bits. If used, this flag must be cleared in software.

9.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W register and STATUS register). This will have to be implemented in software.

Example 9-1 shows the storing and restoring of the STATUS and W registers. The register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

Example 9.7 shows the saving and restoring of STATUS and W using RAM locations 0x70 - 0x7F. W_TEMP is defined at 0x70 and STATUS_TEMP is defined at 0x71.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.
- f) Returns from interrupt.

EXAMPLE 9-1: SAVING STATUS AND W REGISTERS USING GENERAL PURPOSE RAM (0x20 - 0x6F)

MOVWF	W_TEMP	;Copy W to TEMP register, could be bank one or zero
SWAPF	STATUS,W	;Swap status to be saved into W
BCF	STATUS, RPO	;Change to bank zero, regardless of current bank
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W
RETFIE		;Return from interrupt

```
EXAMPLE 9-2: Saving STATUS and W Registers using Shared RAM (0x70 - 0x7F)
```

```
MOVWF
            W TEMP
                               ;Copy W to TEMP register (bank independent)
MOVF
            STATUS,W
                               ;Move STATUS register into W
            STATUS TEMP
MOVWF
                               ;Save contents of STATUS register
:
:(ISR)
:
MOVF
            STATUS TEMP,W
                               ;Retrieve copy of STATUS register
MOVWF
            STATUS
                               ;Restore pre-isr STATUS register contents
SWAPF
           W_TEMP,F
                               ;
SWAPF
            W TEMP,W
                               ;Restore pre-isr W register contents
RETFIE
                               ;Return from interrupt
```

9.7 Watchdog Timer (WDT)

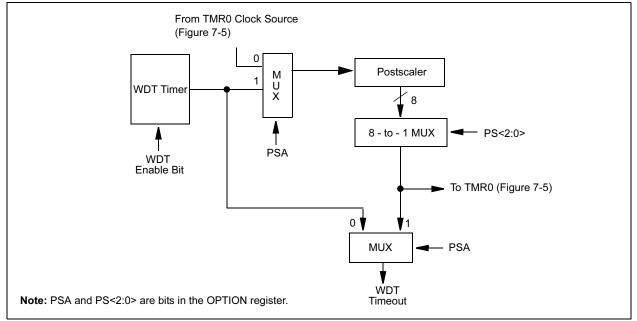
The Watchdog Timer is a free running, on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLK-OUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation (Watchdog Timer Wakeup). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control, by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out early and generating a premature device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.


9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and Max. WDT prescaler), it may take several seconds before a WDT timeout occurs.

Note:	When the prescaler is assigned to the
	WDT, always execute a CLRWDT instruc-
	tion before changing the prescale value,
	otherwise a WDT Reset may occur.

See Example 7-1 and Example 7-2 for changing prescaler between WDT and Timer0.

FIGURE 9-16: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 9-8: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits ⁽¹⁾	MCLRE	CP1	CP0	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
81h	OPTION	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 9-1 for operation of these bits. Not all CP0 and CP1 bits are shown.

9.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input, if enabled, should also be at VDD or VSS, for lowest current consumption. The contribution from on-chip pull-ups on GPIO should be considered.

The $\overline{\text{MCLR}}$ pin, if enabled, must be at a logic high level (VIHMC).

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. GP2/INT interrupt, interrupt GPIO port change or some peripheral interrupts.
- 4. LIN bus activity (connect BACT to GP2/T0CKI/ AN2/INT pin).

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a **wake-up**. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT timeout occurred (and caused wake-up).

The following peripheral interrupt can wake the device from SLEEP:

1. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is

regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

WAKE-UP USING INTERRUPTS 9.8.2

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- · If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the \overline{TO} bit will not be set and \overline{PD} bits will not be cleared.
- · If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP

instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the \overline{TO} bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a **SLEEP** instruction executed. test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a **SLEEP** instruction.

WAKE-UP FROM SLEEP UPON BUS 9.8.3 ACTIVITY

The can be woken up upon bus activity on the LIN bus. This is done by connecting the BACT pin with either GP0, GP1 or GP2. The pin which will be connected to the BACT pin has to be configured to wake the microcontroller up from SLEEP.

; Q1 Q2 Q3 Q4; OSC1/7 / 7 / 7 /	Q1 Q2 Q3 Q4	Q1		Q1 Q2 Q3 Q4		
GPIO pin		χ				
GPIF Flag (INTCON<0>)		<u> </u>		Interrupt Latency (Note 3)		
GIE bit (INTCON<7>)		Processor in				
INSTRUCTION FLOW						1
PC X PC	(PC+1	χ PC+2	PC+2	PC + 2	X 0004h	X 0005h
Instruction { Inst(PC)=SLEEP	Inst(PC + 1)	1 1 1 1	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction { Inst(PC - 1)	SLEEP	· · ·	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 9-17: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP Oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale). This delay will not be there for INTRC and EXTRC osc mode.

GIE = '1' assumed. In this case, after wakeup, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.
 CLKOUT is not available in XT, HS or LP osc modes, but shown here for timing reference.

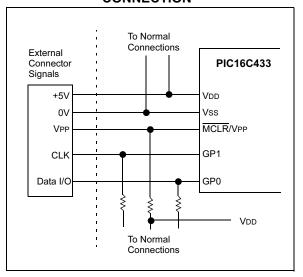
9.9 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

9.10 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify. It is recommended that only the 4 Least Significant bits of the ID location are used.


9.11 In-Circuit Serial Programming

PIC16C433 microcontrollers can be serially programmed, while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the GP1 and GP0 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). GP1 (clock) becomes the programming clock and GP0 (data) becomes the programming data. Both GP0 and GP1 are Schmitt Trigger inputs in this mode.

After RESET, and if the device is placed into Programming/Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C433 Programming Specifications.

FIGURE 9-18: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

10.0 INSTRUCTION SET SUMMARY

Each PIC16C433 instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C433 instruction set summary in Table 10-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
label	Label name
TOS	Top-of-Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Timeout bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

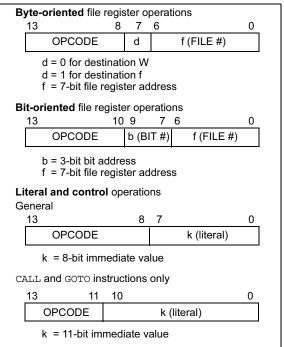
The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 10-2 lists the instructions recognized by the MPASMTM assembler.

Figure 10-1 shows the three general formats that the instructions can have.


Note:	То	maintain	upward	compatibility	with
	futu	re PIC16C	433 prod	ucts, <u>do not us</u>	<u>e</u> the
	OP	TION and T	rris insti	ructions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

10.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC16C433's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations specified in the following sections the user should be aware of.

10.1.1 STATUS AS DESTINATION

If an instruction writes to STATUS, the Z, C and DC bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF STATUS will clear register STATUS, and then set the Z bit leaving 0000 0100b in the register.

10.1.2 TRIS AS DESTINATION

Bit 3 of the TRIS register always reads as a '1' since GP3 is an input only pin. This fact can affect some read-modify-write operations on the TRIS register.

10.1.3 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCL \to dest$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	PCL \rightarrow ALU operand PCLATH \rightarrow PCH; 8-bit result \rightarrow PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

10.1.4 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	N
		Description		MSb			LSb	Affected	Notes
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AN	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (i.e., MOVF PORTE, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

10.2 Instruction Descriptions

ADDLW	Add Literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$(W) + k \rightarrow (W)$			
Status Affected:	C, DC, Z			
Encoding:	11 111x kkkk kkkk			
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.			
Words:	1			
Cycles:	1			
Example	ADDLW 0x15			
	Before Instruction W = 0x10 After Instruction W = 0x25			

ANDLW	And Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction W = 0xA3
	After Instruction W = 0x03
ANDWF	AND W with f
ANDWF Syntax:	
	AND W with f
Syntax:	AND W with f [<i>label</i>] ANDWF f,d $0 \le f \le 127$
Syntax: Operands:	AND W with f [<i>label</i>] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$
Syntax: Operands: Operation:	AND W with f [<i>label</i>] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest)
Syntax: Operands: Operation: Status Affected:	AND W with f [<i>label</i>] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z
Syntax: Operands: Operation: Status Affected: Encoding:	AND W with f $[label]$ ANDWFf,d $0 \le f \le 127$ f $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest)Z0001010101dfffffffAND the W register with register'f. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result
Syntax: Operands: Operation: Status Affected: Encoding: Description:	AND W with f $[label]$ ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest)Z000101dffffffdAND the W register with register'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	AND W with f [<i>label</i>] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	AND W with f [<i>label</i>] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1 1

-

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) \to (dest)$
Status Affected:	C, DC, Z
Encoding:	00 0111 dfff ffff
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycles:	1
Example	ADDWF FSR, 0
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2

BCF	Bit Clear	f		
Syntax:	[<i>label</i>]BCF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f \le b)$	>)		
Status Affected:	None			
Encoding:	01 00bb bfff ffff			ffff
Description:	Bit 'b' in register 'f' is cleared.			
Words:	1			
Cycles:	1			
Example	BCF	FLAG_	REG, 7	
	After Inst	FLAG_RE	EG = 0xC7 EG = 0x47	

BTFSC	Bit Test, Skip if Clear		
Syntax:	[label]BTFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	skip if (f) = 0		
Status Affected:	None		
Encoding:	01 10bb bfff ffff		
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2 cycle instruction.		
Words:	1		
Cycles:	1(2)		
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •		
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address TRUE if FLAG<1>=1, PC = address FALSE		

BSF	Bit Set f			
Syntax:	[<i>label</i>] BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f \le b)$	>)		
Status Affected:	None			
Encoding:	01 01bb bfff fff			ffff
Description:	Bit 'b' in register 'f' is set.			
Words:	1			
Cycles:	1			
Example	BSF	FLAG_F	REG, 7	
	After Inst	FLAG_RE	EG = 0x0A EG = 0x8A	

BTFSS	Bit Test f	f, Skip if S	Set	
Syntax:	[<i>label</i>]BTFSS f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$			
Operation:	skip if (f) = 1			
Status Affected:	None			
Encoding:	01	11bb	bfff	ffff
Description:	next instr If bit 'b' is tion fetch instructio and a NO	register 'f uction is s '1', then t ed during n executio P is execut nis a 2-cyc	kipped. he next ir the curre on is disca ited inste	nstruc- nt arded ad,
Words:	1			
Cycles:	1(2)			
Example	HERE FALSE TRUE		FLAG,1 PROCESS_	_CODE
	Before In		ddress H	
	After Inst	ruction if FLAG<1> PC = a if FLAG<1>	• = 0, address F	

CLRF	Clear f			
Syntax:	[label] CLRF f			
Operands:	$0 \leq f \leq 127$			
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$)		
Status Affected:	Z			
Encoding:	00	0001	lfff	ffff
Description:	The conte		0	
Words:	1			
Cycles:	1			
Example	CLRF	FLAG	_REG	
	After Inst	FLAG_RE	EG =	0x5A 0x00 1

CALL	Call Subroutine		
Syntax:	[<i>label</i>] CALL k		
Operands:	$0 \le k \le 2047$		
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>		
Status Affected:	None		
Encoding:	10 Okkk kkkk kkkk		
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.		
Words:	1		
Cycles:	2		
Example	HERE CALL THERE		
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1		

CLRW	Clear W	
Syntax:	[label] CLRW	
Operands:	None	
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Encoding:	00 0001 0000 0011	
Description:	W register is cleared. Zero bit (Z) is set.)
Words:	1	
Cycles:	1	
Example	CLRW	
	Before Instruction W = 0x5A After Instruction W = 0x00 Z = 1	

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$
	$0 \rightarrow WDT$ prescaler, $1 \rightarrow TO$
	$1 \rightarrow PD$
Status Affected:	TO, PD
Encoding:	00 0000 0110 0100
Description:	CLRWDT instruction resets the
	Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.
Words:	1
Cycles:	1
Example	CLRWDT
	Before Instruction WDT counter = ?
	After Instruction
	WDT counter = 0x00 WDT prescaler= 0
	<u>TO</u> = 1
	PD = 1
COMF	PD = 1 Complement f
COMF Syntax:	
	Complement f[<i>label</i>]COMFf,d $0 \le f \le 127$
Syntax:	Complement f [label] COMF f,d
Syntax: Operands:	Complement f [<i>label</i>] COMF f,d $0 \le f \le 127$ $d \in [0,1]$
Syntax: Operands: Operation:	Complement f[label] COMF f,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow (dest)$
Syntax: Operands: Operation: Status Affected:	Complement f[label]COMFf,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow (dest)$ Z Z 001001dfffffffThe contents of register 'f' are
Syntax: Operands: Operation: Status Affected: Encoding:	Complement f[label] COMF f,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow (dest)$ Z001001dffffffThe contents of register 'f' are complemented. If 'd' is 0, the
Syntax: Operands: Operation: Status Affected: Encoding:	Complement f[label]COMFf,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow (dest)$ Z Z 001001dfffffffThe contents of register 'f' are
Syntax: Operands: Operation: Status Affected: Encoding:	Complement f[label] COMF f,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow (dest)$ Z001001dffffffThe contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the
Syntax: Operands: Operation: Status Affected: Encoding: Description:	Complement f[label] COMF f,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow (dest)$ Z001001dffffffThe contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Complement f[label] COMF f,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow$ (dest)Z001001dffffffThe contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Complement f[label] COMF f,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow (dest)$ Z 00 1001dfffffThe contents of register 'f' are complemented. If 'd' is 0, the result is stored back in register 'f'.11COMFREG1, 0Before Instruction
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Complement f[label] COMF f,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow$ (dest)Z 00 1001dfffffThe contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.11COMFREG1, 0Before Instruction REG1 = 0x13After Instruction
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Complement f[label] COMF f,d $0 \le f \le 127$ $d \in [0,1]$ $(\bar{f}) \rightarrow (dest)$ Z001001dfffffThe contents of register 'f' are complemented. If 'd' is 0, the result is stored back in register 'f'.11COMFREG1, 0Before Instruction REG1 = 0x13

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0011 dfff ffff
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	decf cnt, 1
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1
DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0
Status Affected:	None
Encoding:	00 1011 dfff ffff
Description:	The contents of register 'f' are decre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
	Before Instruction
	PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ¼ 0, PC = address HERE+1

GOTO	Unconditional Branch	INCF	Increment f
Syntax:	[<i>label</i>] GOTO k	Syntax:	[<i>label</i>] INCF f,d
Operands:	$0 \le k \le 2047$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow PC < 10:0 >$		d ∈ [0,1]
	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	10 1kkk kkkk kkkk	Encoding:	00 1010 dfff ffff
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.	Description: Words:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. 1
Words:	1	Cycles:	1
Cycles:	2	Example	INCF CNT, 1
Example	GOTO THERE	·	Before Instruction
	After Instruction PC = Address THERE		CNT = 0xFF $Z = 0$ After Instruction $CNT = 0x00$

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
	If the result is 0, the next instruc- tion, which is already fetched, is	Words:	1
	discarded. A NOP is executed	Cycles:	1
	instead making it a two-cycle	Example	IORWF RESULT, 0
Words:	instruction. 1		Before Instruction RESULT = 0x13 W = 0x91
Cycles:	1(2)		After Instruction
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		$\begin{array}{rcl} RESULT &=& 0x13\\ W &=& 0x93\\ Z &=& 1 \end{array}$
	Before Instruction PC = address HERE	MOVLW	Move Literal to W
	After Instruction	Syntax:	[<i>label</i>] MOVLW k
	CNT = CNT + 1 if $CNT = 0$,	Operands:	$0 \le k \le 255$
	PC = address CONTINUE	Operation:	$k \rightarrow (W)$
	if CNT≠ 0, PC = address HERE +1	Status Affected:	None
		Encoding:	11 00xx kkkk kkkk
IORLW	Inclusive OR Literal with W	Description:	The eight-bit literal 'k' is loaded into W register. The don't cares
Syntax:	[<i>label</i>] IORLW k		will assemble as 0's.
Operands:	0 ≤ k ≤ 255	Words:	1
Operation:	(W) .OR. $k \rightarrow$ (W)	Cycles:	1
Status Affected:	Z	Example	MOVLW 0x5A
Encoding: Description:	111000kkkkkkkkThe contents of the W register areOR'ed with the eight bit literal 'k'.The result is placed in the Wregister.		After Instruction W = 0x5A
Words:	1		
Cycles:	1		
Example	IORLW 0x35		
·	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1		

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1000 dfff ffff
	moved to a destination dependant upon the status of d. If $d = 0$, des- tination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

NOP	No Oper	ation		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No operation			
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No opera	ition.		
Words:	1			
Cycles:	1			
Example	NOP			

MOVWF	Move W	to f			
Syntax:	[label]	MOVW	F f		
Operands:	$0 \leq f \leq 12$	7			
Operation:	$(W) \to (f)$				
Status Affected:	None				
Encoding:	0 0	0000	1ff	Ēf	ffff
Description:	Move dat register 'f		V reg	ister	to
Words:	1				
Cycles:	1				
Example	MOVWF	OPI	TON		
	After Inst	OPTION W	= =	0xFF 0x4F 0x4F 0x4F	:

OPTION	Load Op	tion Reg	gister				
Syntax:	[label]	OPTION	١				
Operands:	None						
Operation:	$(W) \rightarrow OPTION$						
Status Affected:	None						
Encoding:	00	0000	0110	0010			
Description:	The control loaded in This instr code con products. able/writa directly a	the OPT uction is patibility Since C able regis	FION regi supporte with PIC PTION is ster, the u	ster. ed for 16C5X a read-			
Words:	1						
Cycles:	1						
Example							
		re PIC160	rd compa C433 prod uction.	-			

RETFIE	Return from Interrupt	RETURN	Return from Subroutine
Syntax:	[label] RETFIE	Syntax:	[label] RETURN
Operands:	None	Operands:	None
Operation:	$TOS \rightarrow PC$,	Operation:	$TOS \rightarrow PC$
	$1 \rightarrow \text{GIE}$	Status Affected:	None
Status Affected:	None	Encoding:	00 0000 0000 1000
Encoding:	00 0000 0000 1001	Description:	Return from subroutine. The stack
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Inter- rupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.	Words: Cycles:	is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. 1 2
Words:	1	Example	RETURN
Cycles: Example	2 RETFIE		After Interrupt PC = TOS
	After Interrupt PC = TOS GIE = 1		

RETLW	Return wit	th Litera	al in W	
Syntax:	[label] F	RETLW	k	
Operands:	$0 \le k \le 255$	5		
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$)		
Status Affected:	None			
Encoding:	11	01xx	kkkk	kkkk
Description:	The W reg eight-bit lite counter is I stack (the two-cycle i	eral 'k'. T oaded fi return ac	The progra rom the to ddress). T	am p of the
Words:	1			
Cycles:	2			
Example TABLE	CALL TABL • •	;offse	ntains ta et value v has tab	
	ADDWF PC RETLW k1 RETLW k2 • RETLW kn	;Begin ;	offset 1 table of table	2
	Before Inst)x07	
	After Instru W	iction	value of k8	

RLF	Rotate L	eft f thro	bugh	Car	ry	
Syntax:	[<i>label</i>] RLF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$.7				
Operation:	See description below					
Status Affected:	С					
Encoding:	00	1101	dff	f	ffff	
Description:	The conternation of the Carry is placed 1, the response register 'f	ne bit to Flag. If ' in the W sult is sto '.	the le d' is (/ regi	eft the D, the ster. back	rough e result If 'd' is	
Words:	1					
Cycles:	1					
Example	RLF	REG	G1,0			
	After Inst	REG1 C	= = = =	1110 0 1110 1100	0 0110	

Syntax:	[label] SLEEP	
Operands:	None	
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	
Status Affected:	TO, PD	
Encoding:	00 0000 0110 001	1
Description:	The power-down status bit, PD cleared. Timeout status bit, TO set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEE	is
	mode with the oscillator stopped	
Words:		
Words: Cycles:	mode with the oscillator stopped	

RRF	Rotate Right f through Carry						
Syntax:	[label] F	RRF f,	d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	See descri	ption b	elow				
Status Affected:	С	С					
Encoding:	00	1100	dff	f	ffff		
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.						
			tegio				
Words:	1						
Cycles:	1						
Example	RRF		REG1	,0			
	C After Instru	EG1	= =	0) 0110) 0110		

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$
Operation:	$k - (W) \to (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)
Affected:		Status Affected:	C, DC, Z
Encoding:	11 110x kkkk kkkk	Encoding:	00 0010 dfff ffff
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in
Words:	1		register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	SUBWF REG1,1
	W = 1 $C = ?$		Before Instruction
	After Instruction		REG1 = 3
	W = 1		W = 2
	C = 1; result is positive		C = ?
Example 2:	Before Instruction		After Instruction
	W = 2 C = ?		REG1 = 1 W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
Example 3:	W = 0 C = 1; result is zero Before Instruction		REG1 = 2 W = 2 C = ?
Example 0.	W = 3		After Instruction
	C = ?		REG1 = 0
	After Instruction		W = 2
	W = 0xFF		C = 1; result is zero
	C = 0; result is negative	Example 3:	Before Instruction
			REG1 = 1 W = 2 C = ?
			After Instruction
			$\begin{array}{rcl} REG1 &=& 0xFF \\ W &=& 2 \\ C &=& 0; \ result \ is \ negative \end{array}$

SWAPF	Swap Ni	bbles in	f		
Syntax:	[label]	SWAPF	f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 12\\ d\in \left[0,1\right] \end{array}$.7			
Operation:	(f<3:0>) - (f<7:4>) -				
Status Affected:	None				
Encoding:	00	1110	dff	f	ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W regis- ter. If 'd' is 1, the result is placed in register 'f'.				
Words:	1				
Cycles:	1				
Example	SWAPF	REG,	0		
	Before In	struction			
		REG1	=	0xA	\$
	After Inst	ruction			
		REG1 W	= =	0xA 0x5	

XORLW	Exclusive OR Literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Encoding:	11 1010 kkkk kkkk				
Description:	The contents of the W register are XOR'ed with the eight bit lit- eral 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Example:	XORLW 0xAF				
	Before Instruction				
	W = 0xB5				
	After Instruction				
	W = 0x1A				

TRIS	Load TRIS Register				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \leq f \leq 7$				
Operation:	(W) \rightarrow TRIS register f;				
Status Affected:	None				
Encoding:	00 0000 0110 0fff				
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writ- able, the user can directly address them.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibility with future PIC16C433 products, do not use this instruction.				

XORWF	Exclusiv	e OR W	with	F				
Syntax:	[label]	XORWF	f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7						
Operation:	(W) .XOR	$f: (f) \to (c)$	lest)					
Status Affected:	Z							
Encoding:	00	0110	dfff	ffff				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example	XORWF	REG 1	1					
	Before In:	struction						
		REG W	= =	0xAF 0xB5				
	After Instr	ruction						
		REG W	= =	0x1A 0xB5				

11.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ®
 - PICDEM MSC
 - microID®
 - CAN
 - PowerSmart®
 - Analog

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

11.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contains source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- · Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, timekeeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

11.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

11.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

11.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

11.9 MPLAB ICE 2000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

11.10 MPLAB ICE 4000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PICmicro microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory, and the ability to view variables in real-time.

The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

11.11 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low cost, run-time development tool, connecting to the host PC via an RS-232 or high speed USB interface. This tool is based on the FLASH PICmicro MCUs and can be used to develop for these and other PICmicro microcontrollers. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single-stepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PICmicro devices.

11.12 PRO MATE II Universal Device Programmer

The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-Alone mode, the PRO MATE II device programmer can read, verify, and program PICmicro devices without a PC connection. It can also set code protection in this mode.

11.13 PICSTART Plus Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports most PICmicro devices up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

11.14 PICDEM 1 PICmicro Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs.

11.15 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

11.16 PICDEM 2 Plus Demonstration Board

The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 FLASH microcontrollers.

11.17 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

11.18 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board FLASH memory. A generous prototype area is available for user hardware expansion.

11.19 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/De-multiplexed and 16-bit Memory modes. The board includes 2 Mb external FLASH memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

11.20 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PICmicro microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature on-board LIN transceivers. A PIC16F874 FLASH microcontroller serves as the master. All three micro-controllers are programmed with firmware to provide LIN bus communication.

11.21 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

11.22 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

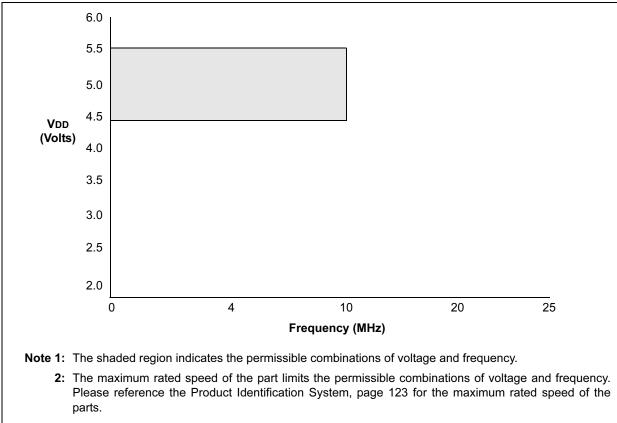
- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and RFLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

PIC16C6X PIC16C5X PIC12FXX	MPLAB Integrated Development Environment	MPLAB C17 C Compiler	MPLAB C18 C Compiler	MPASM Assembler/ MPLINK Object Linker	MPLAB C30 C Compiler	MPLAB ASM30 Assembler/Linker/Librarian	MPLAB ICE 2000	MPLAB ICE 4000	MPLAB ICD 2 In-Circuit	PICSTART Plus Entry Level Development Programmer	PRO MATE II Universal Device Programmer	PICDEM 1 Demonstration Board	PICDEM.net Demonstration Board	PICDEM 2 Plus Demonstration	PICDEM 3 Demonstration Board	PICDEM 14A Demonstration	PICDEM 17 Demonstration Board	PICDEM 18R Demonstration Board	PICDEM LIN Demonstration Board	PICDEM USB Demonstration
PIC16C43	> >			> >			> >	>		>	> >	>							>	
PIC16F62	> >			>			**/	>	*>	<pre>/** </pre>	/ **/	< ⁺		<+ <						
X7381319	>			>			>	>		>	>									
VT38F2I4	>			>			>			>	>									>
PIC16C8	>			>			>	>		>	>	>								
PIC16F8X	` `			·			· 、	-	>	·	~								>	>
PIC12C43	> >	>		>			>	>		>	> >	>			>					
XTOTION	>	>		>			>	>		>	`						`			
PIC18CXX	>		>	>			>	>		>	>		>	>						
PI18CX01								>	>									>		
PIC18FXX	>		>	>			>	>	>	>	>			>						

TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

DS41139B-page 86


12.0 ELECTRICAL SPECIFICATIONS FOR PIC16C433

Absolute Maximum Ratings †
Ambient Temperature under bias40° to +125°C
Storage Temperature
Voltage on any pin with respect to Vss (except VDD and MCLR)0.6V to VDD +0.6V
Voltage on VDD with respect to Vss 0 to +7.0V
Voltage on MCLR with respect to Vss*0 to +14V
Voltage on LIN and VBAT with respect to Vss40V
Total power Dissipation
Maximum Current out of Vss pin
Maximum Current into VDD pin
Input Clamp Current, Iк (Vi <0 or Vi> VDD)
Output Clamp Current, loк (Vo <0 or Vo>VDD)
Maximum Output Current sunk by any I/O pin25 mA
Maximum Output Current sourced by VDD (sourced by VDD)
Maximum Output Current sourced by any I/O pin (sourced by VDD)
Maximum Current sunk by GPIO (sourced by VDD)
Maximum Current sourced by GPIO (sourced by VDD)
Maximum Current sourced by VBAT (sourced by VBAT)
Maximum Current sunk by LIN (sourced by VBAT)
Maximum Current sunk by BACT1.8 mA
* Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a low level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to

Vss..

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.1	DC Characteristics	PIC16C433 (Industrial, Extended)
------	--------------------	----------------------------------

DC Cha	racterist	ics	$\begin{array}{l lllllllllllllllllllllllllllllllllll$							
Parm No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
D001	Vdd	Supply Voltage	4.5		5.5	V				
D001A	VBAT	Operating Battery Voltage	8.0	13.8	18	V				
D002	Vdr	RAM Data Retention Voltage (Note 1)		1.5*		V	Device in SLEEP mode			
D003	VPOR	VDD Start Voltage to ensure Power-on Reset		Vss		V	See Section 9.4 for details			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*			V/ms	See Section 9.4 for details			
D010	Idd	Supply Current (Note 2)	—	1.2	3.5	mA	Fosc = 4 MHz, VDD = 4.5V			
D010C			_	1.2	3.5	mA	XT and EXTRC mode (Note 3) Fosc = 4 MHz, VDD = 4.5V INTRC mode (Note 5)			
			_	2.2	9	mA	Fosc = 10 MHz, VDD = 5.5V HS mode			
D010A					-	—				
D020 D021 D021B	IPD	Power-down Current (Note 4)		0.25 2 0.8 3	7 14 9 16	μΑ μΑ μΑ	VDD = 4.5V, Industrial, WDT disabled VDD = 4.5V, Extended, WDT disabled VDD = 5.5V, Industrial, WDT disabled VDD = 5.5V, Extended, WDT disabled			
D022	ΔIWDT	Watchdog Timer Current		2.2 2.2 4	5 6 11	μΑ μΑ μΑ	VDD = 4.5V, Commercial VDD = 4.5V, Industrial VDD = 4.5V, Extended			

* These parameters are characterized but not tested.

† Data in Typical ("Typ") column is based on characterization results at 25°C unless otherwise stated.

These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature, also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: <u>OSC1</u> = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT disabled.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
 - c) IDD values include LIN bus transceiver current as defined by D313 in Table 12-1.
- **3:** For EXTRC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula:
 - Ir = VDD/2REXT (mA) with REXT in kOhm.
- 4: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss. However, The LIN Bus transceiver will still draw current. Please refer to Table 12-1.
- 5: INTRC calibration value is for 4 MHz nominal at 5V, 25°C.

12.2 DC Characteristics:

PIC16C433 (Industrial, Extended)

DC CH	ARACTERISTICS	Operat	ing temperature	-40 -40	°C ≤ TA ≤ °C ≤ TA ⊴	ິ +85°(≤ +125	herwise specified) C (industrial) °C (extended) I DC spec Section 12.1.
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	—	0.8V	V	For $4.5V \le VDD \le 5.5V$
			Vss	—	0.15Vdd	V	otherwise
D031	with Schmitt Trigger buffer		Vss	—	0.2Vdd	V	
D032	MCLR, GP2/T0CKI/AN2/INT (in EXTRC mode)		Vss	—	0.2Vdd	V	
D033	OSC1 (in EXTRC mode)		Vss	—	0.2Vdd		(Note 1)
D033	OSC1 (in XT, HS, and LP)		Vss	—	0.3Vdd	V	(Note 1)
	Input High Voltage						
	I/O ports	VIH		—			
D040	with TTL buffer		2.0V	—	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25VDD + 0.8V	—	Vdd	V	otherwise
D041	with Schmitt Trigger buffer		0.8Vdd	—	Vdd	V	For entire VDD range
D042	MCLR, GP2/T0CKI/AN2/INT		0.8Vdd	_	Vdd	V	
D042A	OSC1 (XT, HS, and LP)		0.7Vdd	—	Vdd	V	(Note 1)
D043	OSC1 (in EXTRC mode)		0.9Vdd	—	Vdd	V	
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	—	—	<u>+</u> 1	μA	Vss ≤ VPIN ≤ VDD, pin at hi-impedance
D061	GP3/MCLR (Note 5)		_	—	<u>+</u> 30	μA	$Vss \le VPIN \le VDD$
D061A	GP3 (Note 6)		_	—	<u>+</u> 5	μA	$Vss \le VPIN \le VDD$
D062	GP2/T0CKI		_	—	<u>+</u> 5	μA	$Vss \le VPIN \le VDD$
D063	OSC1		—	—	<u>+</u> 5	μA	Vss \leq VPIN \leq VDD, XT, HS, and LP osc configuration
D070	GPIO weak pull-up current (Note 4)	IPUR	50	250	400	μA	VDD = 5V, VPIN = VSS
	MCLR pull-up current	—	_	—	30	μA	VDD = 5V, VPIN = VSS
	Output Low Voltage						
D080	I/O ports	Vol	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			—	_	0.6	V	IoL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT		—	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			—	_	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C
D084	ВАСТ		_	_	1.0	V	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C433 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Does not include GP3. For GP3 see parameters D061 and D061A.

5: This specification applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.

6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

7: LIN characterized 4 MHz, 14.44 VBAT, 5.0V VDD. These parameters are characterized but not tested.

12.2	DC Characteristics: P	IC16C4	33 (Industria	I, Exte	ended)	- Cont	inued			
рс сн	ARACTERISTICS	Standard Operating Conditions (unless otherwise specified)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)Operating voltage VDD range as described in DC spec Section 12.1.								
Param No.	Characteristic	Sym	Min	Typ†	Мах	Units	Conditions			
D090	Output High Voltage I/O ports (Note 3)	Vон	Vdd - 0.7	_		V	Іон = -3.0 mA, Vdd = 4.5V, -40°C to +85°C			
D090A			Vdd - 0.7	—	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C			
D092	OSC2/CLKOUT		Vdd - 0.7	—	—	V	ІОН = 1.3 mA, VDD = 4.5V, -40°C to +85°C			
D092A			Vdd - 0.7	—	—	V	ІОН = 1.0 mA, VDD = 4.5V, -40°C to +125°C			
D093	BACT		4.0	—	_	V	Іон = 1.8 mA, VDD = 5.0V			
	Capacitive Loading Specs on Output Pins									
D100	OSC2 pin	Cosc2	—	—	15	pF	In XT and LP modes when external clock is used to drive OSC1			
D100A	LIN	CLIN	—	-	50	pF	(Note 7, 8)			
D100B	ВАСТ	Сваст	—	-	50	pF				
D101	All I/O pins	Сю	<u> </u>	—	50	pF				

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C433 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as coming out of the pin.
- 4: Does not include GP3. For GP3 see parameters D061 and D061A.
- 5: This specification applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.
- 6: This specification applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.
- 7: LIN characterized 4 MHz, 14.44 VBAT, 5.0V VDD. These parameters are characterized but not tested.
- 8: This parameter is characterized, but not tested.

TABLE 12-1: LIN TRANSCEIVER OPERATING SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C < TA < +125°C.

Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D313	VDD Quiescent Operating Current	IDD_LIN	_	_	1	mA	
D314	VBAT Low Power Current	IBAT			50	μA	LIN Bus recessive

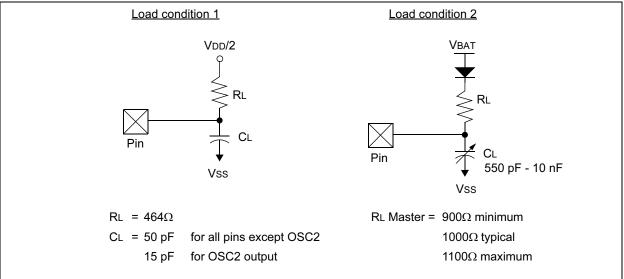
TABLE 12-2: LIN TRANSCEIVER INTERFACE SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C.

Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D315	Low level output current	IOL_LIN_DOMINAT	40	—	200	mA	VBUS = 12V
D317	Low level output current, open ground	IOH_LIN_REVERS	-1	—	1	mA	
D320	Input hysteresis*	VHYS_LIN	0.05Vbat	—	0.1Vbat	V	VIH_LIN - VIL_LIN
D321	Short circuit current limit*	ISC_LIN	0.05	—	200	mA	

* These parameters are characterized but not tested.

12.3 <u>Timing Parameter Symbology</u>


The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

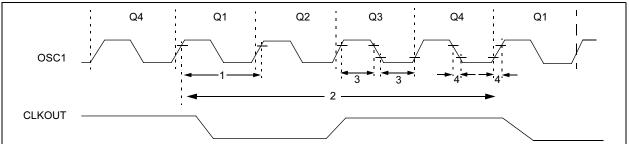

Z. TPPS			
т			
F	Frequency	Т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	ss	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	case letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance

FIGURE 12-2: LOAD CONDITIONS

12.4 <u>Timing Diagrams and Specifications</u>

FIGURE 12-3: EXTERNAL CLOCK TIMING

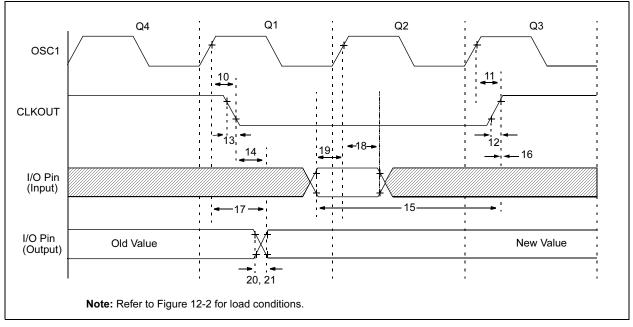
TABLE 12-3: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and EXTRC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode
			DC	_	10	MHz	HS osc mode
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	EXTRC osc mode
		(Note 1)	.455	—	4	MHz	XT osc mode
			4	—	4	MHz	HS osc mode
			4	—	10	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and EXTRC osc mode
		(Note 1)	250	—	—	ns	HS osc mode
			100	—	—	ns	HS osc mode
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	_	ns	EXTRC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode
			100	—	250	ns	HS osc mode
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	400		DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	_	_	ns	XT oscillator
	TosH	or Low Time	2.5	—	—	μs	LP oscillator
			10	_		ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	—	—	25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
		\sim			15	ns	HS oscillator

† Data in Typ column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at **Min.** values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the **Max**. cycle time limit is **DC** (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C433.

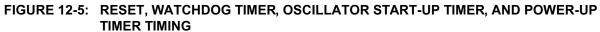

TABLE 12-4: CALIBRATED INTERNAL RC FREQUENCIES - PIC16C433

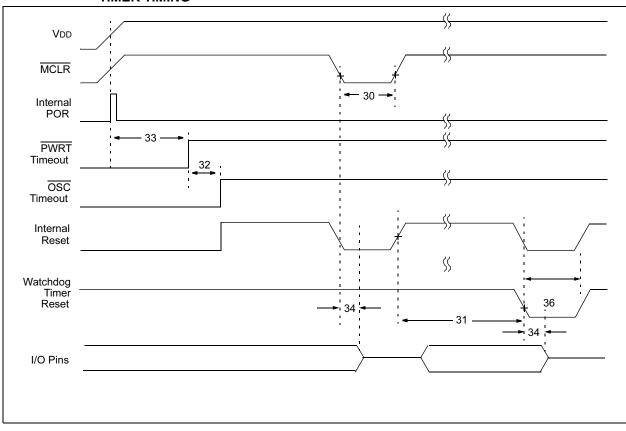
AC CharacteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) Operating Voltage VDD range is described in Section 10.1.							
Parameter No.	Sym	Characteristic	Min*	Typ ⁽¹⁾	Max*	Units	Conditions
		Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	VDD = 5.0V

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-5:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	------------------------------------

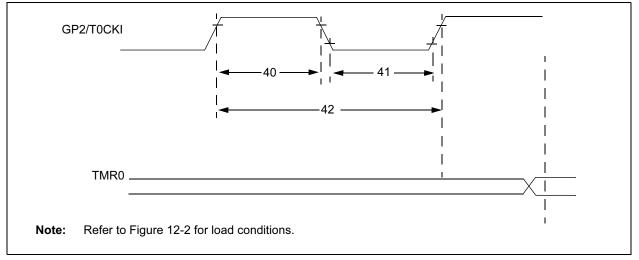

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		75	200	ns	(Note 1)
11*	TosH2ckH	OSC1↑ to CLKOUT↑	_	75	200	ns	(Note 1)
12*	TckR	CLKOUT rise time	_	35	100	ns	(Note 1)
13*	TckF	CLKOUT fall time	_	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	—	—	0.5Tcy + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKOUT ↑	Tosc + 200	—	_	ns	(Note 1)
16*	TckH2iol	Port in hold after CLKOUT ↑	0	—	—	ns	(Note 1)
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	—	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	100	—	—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	0	—	—	ns	
20*	TioR	Port output rise time	_	10	40	ns	
21*	TioF	Port output fall time		10	40	ns	
22††*	Tinp	GP2/INT pin high or low time	Тсү		_	ns	
23††*	Trbp	GP0/GP1/GP3 change INT high or low time	Тсү			ns	


* These parameters are characterized but not tested.

† Data in **Typ** column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in EXTRC and INTRC modes where CLKOUT output is 4 x Tosc.


TABLE 12-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIME	TABLE 12-6:	RESET, WATCHDOG TIME	R, OSCILLATOR START-UP	TIMER, POWER-UP TIMER
---	-------------	----------------------	------------------------	-----------------------

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Timeout Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc		—	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset		—	2.1	μs	

These parameters are characterized but not tested.

† Data in **Typ** column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-6: TIMER0 CLOCK TIMINGS

TABLE 12-7:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------------	---

Param No.	Sym	Characteris	stic	Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
			With Prescaler	10	—	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20	—	_	ns	Must also meet
			With Prescaler	10	—	_	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	_	_	ns	
			With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)
48	TCKE2tmr1	Delay from external clock increment	edge to timer	2Tosc	_	7Tosc	—	

* These parameters are characterized but not tested.

† Data in Typ column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

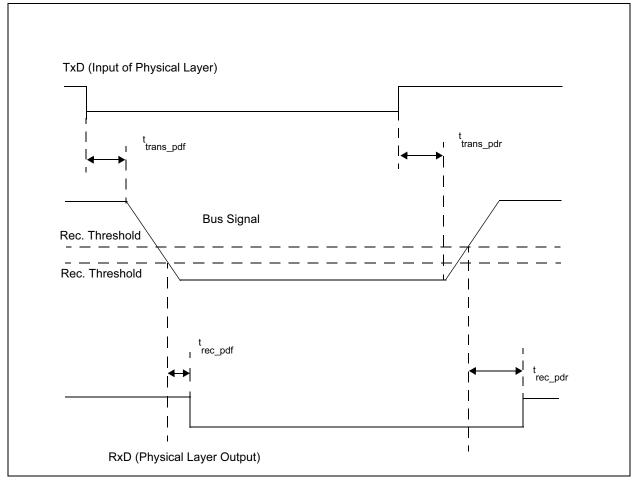
TABLE 12-0: GPIO PULL-UP RESISTOR RANGES											
VDD (Volts)	Temperature (°C)	Min	Тур	Мах	Units						
GP0/GP1											
4.5	-40	38K	42K	63K	Ω						
	25	42K	48K	63K	Ω						
	85	42K	49K	63K	Ω						
	125	50K	55K	63K	Ω						
5.5	-40	15K	17K	20K	Ω						
	25	18K	20K	23K	Ω						
	85	19K	22K	25K	Ω						
	125	22K	24K	28K	Ω						
		G	SP3								
4.5	-40	285K	346K	417K	Ω						
	25	343K	414K	532K	Ω						
	85	368K	457K	532K	Ω						
	125	431K	504K	593K	Ω						
5.5	-40	247K	292K	360K	Ω						
	25	288K	341K	437K	Ω						
	85	306K	371K	448K	Ω						
	125	351K	407K	500K	Ω						

TABLE 12-8: GPIO PULL-UP RESISTOR RANGES

* These parameters are characterized but not tested.

TABLE 12-9: LIN bus AC CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
dV/dt	Slope rising and falling edges	1	2	3	V/µs	(Note 1)
T _{trans_pd}	Propagation delay of transmitter			4	μs	$T_{trans_{pd}} = max(T_{trans_{pdr}} \text{ or } T_{trans_{pdf}})$
T _{rec_pd}	Propagation delay of receiver			6	μs	$T_{rec_pd} = max(T_{rec_pdr} \text{ or } T_{rec_pdf})$
T _{rec_sym}	Symmetry of receiver propagation delay rising edge w.r.t. falling edge	-2		2	μs	T _{rec_sym} = T _{rec_pdf} - T _{rec_pdr})
T _{trans_sym}	Symmetry of transmitter propagation delay rising edge w.r.t. falling edge	-2		2	μS	T _{trans_sym} = T _{trans_pdf} - T _{rans_pdr}) (Note 2)


Note 1: Rising edge is system dependent. Value is characterized but not tested.

2: System dependent.

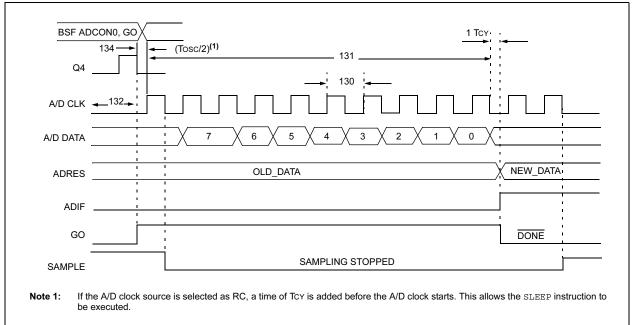
TABLE 12-10: LIN THERMAL CHARACTERISTICS

Symbol	Parameter	Тур.	Max.	Unit	Note
Θ _{recovery}	Recovery Temperature	+135		°C	Information Parameter
Θ _{shutdown}	Shutdown Temperature	+155		°C	Information Parameter
T _{THERM}	Short Circuit Recovery Time		1.5	ms	Information Parameter

FIGURE 12-7: TIMING DIAGRAM

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	—		8 bits	bit	VREF = VDD = 5.12V, VSS \leq VAIN \leq VREF
A02	Eabs	Total absolute error	—		< ±1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error	—		< ±1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential linearity error	—		< ±1	LSb	VREF = VDD = 5.12V, VSS \leq VAIN \leq VREF
A05	Efs	Full scale error	—		< ±1	LSb	VREF = VDD = 5.12V, VSS \leq VAIN \leq VREF
A06	Eoff	Offset error	—		< ±1	LSb	VREF = VDD = 5.12V, VSS \leq VAIN \leq VREF
A10	—	Monotonicity	_	guaranteed (Note 3)	_	—	$VSS \leq VAIN \leq VREF$
A20	VREF	Reference voltage	2.5V	_	VDD + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	_	VREF + 0.3	V	
A30	Zain	Recommended impedance of analog voltage source	_		10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	—	180	_	μA	Average current consumption when A/D is on (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 8.1.
			_	—	10	μA	During A/D Conversion cycle

TABLE 12-11: A/D CONVERTER CHARACTERISTICS:


Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and + are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from GP1 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

TABLE 12-12: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130	Tad	A/D clock period	1.6	_		μs	Tosc based, VREF $\geq 2.5V$
			2.0	4.0	6.0	μs	A/D RC mode
			3.0	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including S/H time) (Note 1)	11	—	11	Tad	
132	TACQ	Acquisition time	(Note 2)	20		μs	
			5*	_	_	μs	The minimum time is the amplifier setting time. This may be used if the new input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from convert \rightarrow sample time	1.5 §	—	_	Tad	

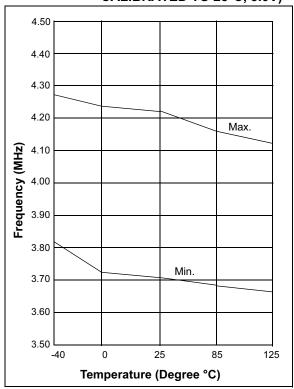
These parameters are characterized but not tested.

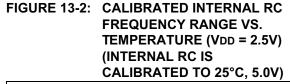
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

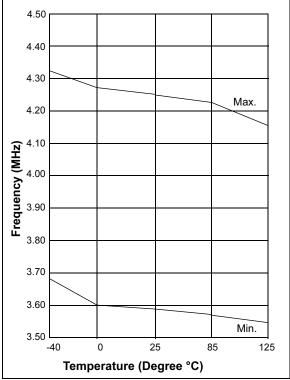
§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 8.1 for minimum conditions.

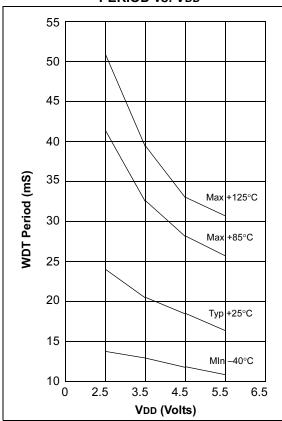

NOTES:


13.0 DC AND AC CHARACTERISTICS -

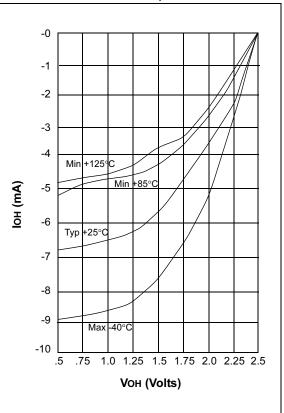

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean – 3σ) respectively, where σ is standard deviation.

FIGURE 13-1: CALIBRATED INTERNAL RC FREQUENCY RANGE VS. TEMPERATURE (VDD = 5.0V) (INTERNAL RC IS CALIBRATED TO 25°C, 5.0V)



Oscillator	Frequency	VDD = 2.5V	Vdd = 5.5V
External RC	4 MHz	400 μA*	900 μA*
Internal RC	4 MHz	400 μA	900 μA
ХТ	4 MHz	400 μA	900 μA
LP	32 kHz	15 μA	60 μA


TABLE 13-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

*Does not include current through external R&C.

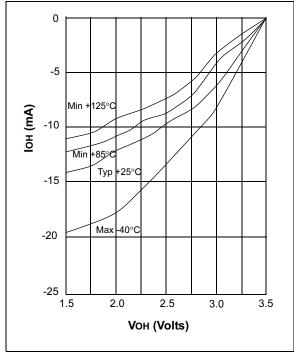
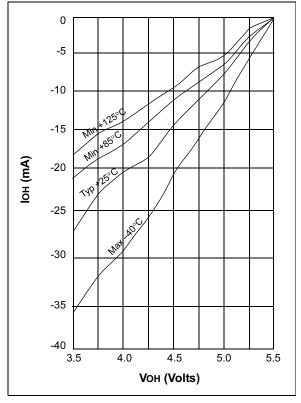


FIGURE 13-3: WDT TIMER TIMEOUT PERIOD vs. VDD


FIGURE 13-4: IOH vs. VOH, VDD = 2.5V

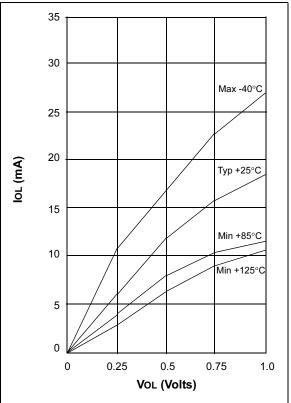
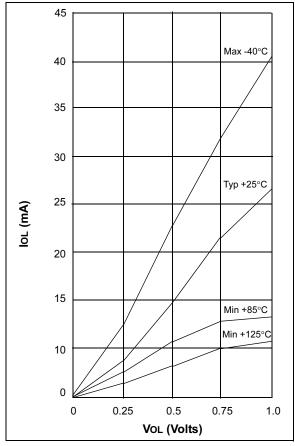
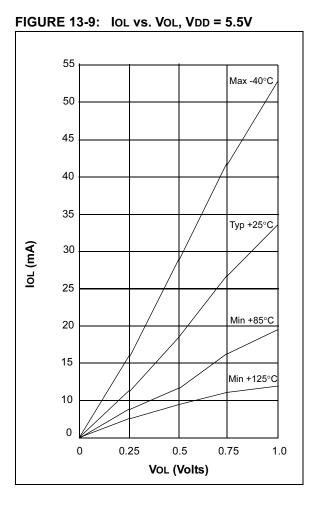
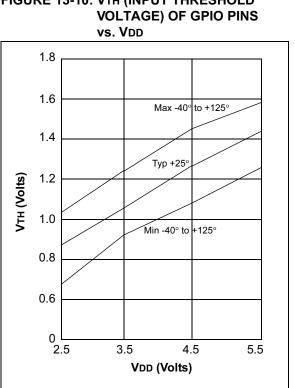


FIGURE 13-6: IOH vs. VOH, VDD = 5.5V




FIGURE 13-7: IOL vs. VOL, VDD = 2.5V



PIC16C433

FIGURE 13-8: IOL vs. VOL, VDD = 3.5V

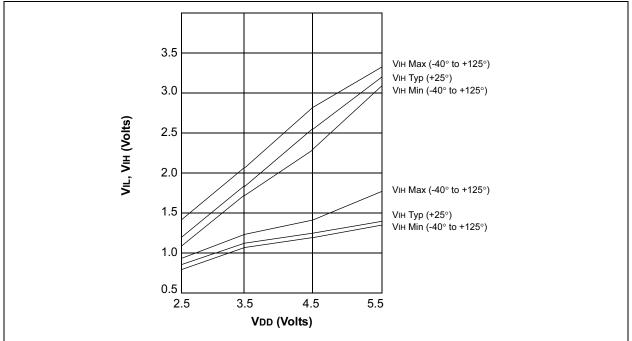


FIGURE 13-10: VTH (INPUT THRESHOLD

FIGURE 13-11: VIL, VIH OF NMCLR AND TOCKI vs. VDD

PIC16C433

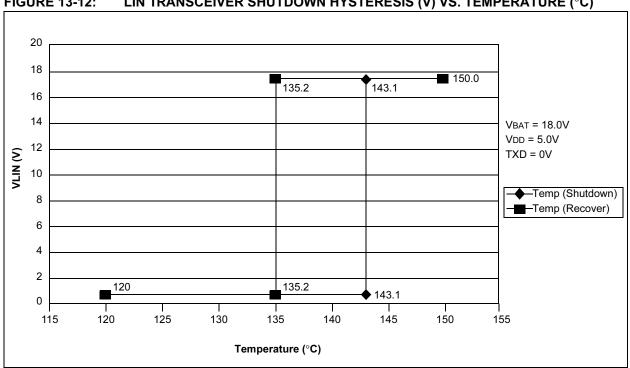
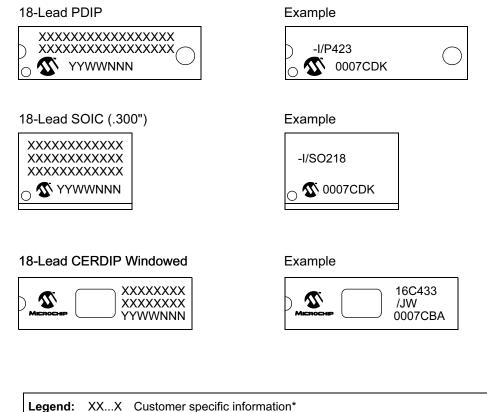
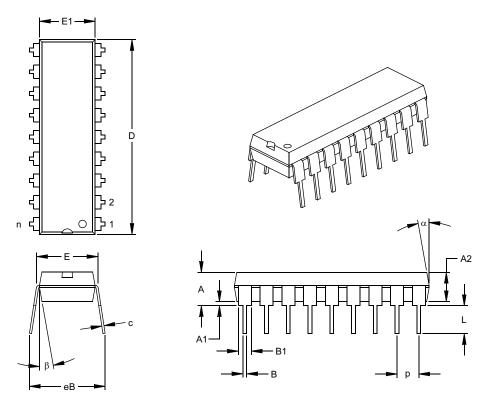



FIGURE 13-12: LIN TRANSCEIVER SHUTDOWN HYSTERESIS (V) VS. TEMPERATURE (°C)

14.0 PACKAGING INFORMATION

14.1 Package Marking Information

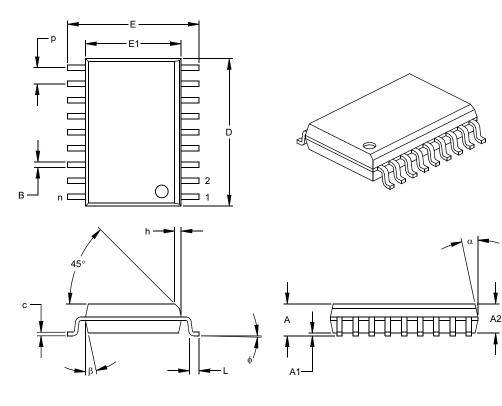


Legen	id: XXX Y YY WW NNN	Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters er specific information.

Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PIC16C433

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

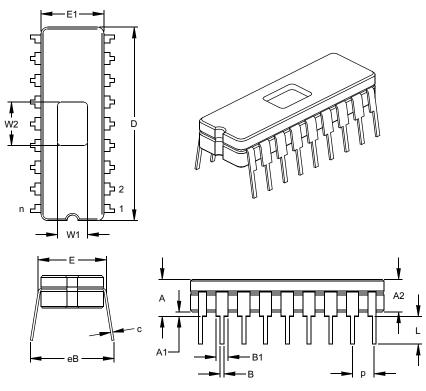

	Units		INCHES*		N	1ILLIMETERS	3
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

18-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)


	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	f	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

	Units		INCHES*		Ν	1ILLIMETERS	3
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

* Controlling Parameter
 § Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

APPENDIX A: COMPATIBILITY

To convert code written for PIC16C5X to PIC16C433, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET Vector to 0000h.

NOTES:

INDEX

L	7
-	•

A/D	
Accuracy/Error	49
ADCON0 Register	
ADIF bit	
Analog Input Model Block Diagram	
Analog-to-Digital Converter	
Configuring Analog Port Pins	47
Configuring the Interrupt	
Configuring the Module	
Connection Considerations	
Conversion Clock	
Conversions	
Converter Characteristics1	
Delays	
Effects of a RESET	49
Equations	
Flowchart of A/D Operation	
GO/DONE bit	
Internal Sampling Switch (Rss) Impedance	
Operation During SLEEP	
Sampling Requirements	
Sampling Time	
Source Impedance	
Time Delays	
Transfer Function	
ADDLW Instruction	
ADDWF Instruction	
ADIE bit	
ADIF bit	
ADRES Register	
ALU	
ADDLW Instruction	
ANDWF Instruction	
Application Notes	10
AN546	43
AN556	
Architecture	22
Harvard	7
Overview	
von Neumann	
Assembler	/
MPASM Assembler	Q1
	01
В	
BCF Instruction	71
Bit Manipulation	

Bit Manipulation	
Block Diagrams	
Analog Input Model	
On-Chip Reset Circuit	
Timer0	
Timer0/WDT Prescaler	
Watchdog Timer	64
BSF Instruction	71
BTFSC Instruction	71
BTFSS Instruction	72

С

C bit	
CAL0 bit	
CAL1 bit	
CAL2 bit	
CAL3 bit	

CALFST bit	21
CALL Instruction	72
CALSLW bit	21
Carry bit	7
Clocking Scheme	10
CLRF Instruction	72
CLRW Instruction	72
CLRWDT Instruction	73
Code Examples	
Changing Prescaler (Timer0 to WDT)	41
Changing Prescaler (WDT to Timer0)	41
Indirect Addressing	23
Code Protection	51,66
COMF Instruction	
Computed GOTO	22
Configuration Bits	51

D

-	
DC and AC Characteristics	105
DC bit	15
DC Characteristics	
PIC16C433	89
DECF Instruction	73
DECFSZ Instruction	73
Development Support	
Diagrams - See Block Diagrams	
Digit Carry bit	7
Direct Addressing	23
E	

Е

EEPROM Peripheral Operation	33
Electrical Characteristics	
PIC16C433	87
Errata	2
External Brown-out Protection Circuit	59
External Power-on Reset Circuit	59

F

Features			1
FSR Register	13,	14,	23

G

General Description	
GIE bit	60
GOTO Instruction	74
GPIF bit	62
GPIO	25, 57
GPIO Register	
GPPU bit	

I

I/O Interfacing	25
I/O Ports	25
I/O Programming Considerations	
ID Locations	
INCF Instruction	74
INCFSZ Instruction	75
In-Circuit Serial Programming	51,66
INDF Register	14, 23
Indirect Addressing	
Initialization Conditions for All Registers	57
Instruction Cycle	10
Instruction Flow/Pipelining	10
Instruction Format	67

Instruction Set	
ADDLW	
ANDLW	
ANDWF BCF	
BCF BSF	
BSFBSF	
BTFSS	
CALL	
CLRF	
CLRW	
CLRWDT	
COMF	73
DECF	73
DECFSZ	73
GOTO	74
INCF	74
INCFSZ	
IORLW	
IORWF	
MOVF	
MOVLW	
MOVWF	
OPTION	
RETFIE RETLW	
RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	80
TRIS	80
XORLW	80
XORWF	80
Section	
INTCON Register	
INTEDG bit	
Internal Sampling Switch (Rss) Impedance	
Interrupts	
GP2/INT	
GPIO Port	
Section TMR0	
TMR0	
IORLW Instruction	
IORWF Instruction	
IRP bit	
L	
LIN Hardware Interface	33
LIN Interfacing	33
LIN Protocol	33
Loading of PC	22
Μ	
MCLR	57
Memory	
Data Memory	11

Program Memory11

MOVF Instruction	76
MOVLW Instruction	
MOVWF Instruction	76
MPLAB C17 and MPLAB C18 C Compilers	82
MPLAB ICD In-Circuit Debugger	83
MPLAB ICE High Performance Universal In-Circuit Emul	lator
with MPLAB IDE	83
MPLAB Integrated Development Environment Software	81
MPLINK Object Linker/MPLIB Object Librarian	82

Ν

NOP Instruction	 76

0

O and a set of the s	07
Opcode	
OPTION Instruction	76
OPTION Register	16
Orthogonal	7
OSC selection	51
OSCCAL Register	21
Oscillator	
EXTRC	56
HS	56
INTRC	56
LP	56
ХТ	56
Oscillator Configurations	52
Oscillator Types	
EXTRC	52
HS	52
INTRC	52
LP	52
XT	52

Ρ

Packaging Information 111
Paging, Program Memory 22
PCL
PCL Register
PCLATH
PCLATH Register
PCON Register
PD bit15, 54
PICDEM 1 Low Cost PICmicro Demonstration Board 84
PICDEM 17 Demonstration Board 84
PICDEM 2 Low Cost PIC16CXX Demonstration Board 84
PICSTART Plus Entry Level Development Programmer 83
PIE1 Register
Pinout Description
PIC16C4339
PIR1 Register 19
POP
POR
Oscillator Start-up Timer (OST)51, 56
Power Control Register (PCON) 56
Power-on Reset (POR)51, 56, 57
Power-up Timer (PWRT)51, 56
Power-up-Timer (PWRT)56
Time-out Sequence56
Time-out Sequence on Power-up58
ТО
Power 54
Power-down Mode (SLEEP) 64
Power-on Rese <u>t (P</u> OR)
Time-out (TO Bit)15
Prescaler, Switching Between Timer0 and WDT41

Register File Map

PRO MATE II Universal Device Programmer	83
Program Branches	7
Program Memory	
Paging	22
Program Verification	66
PS0 bit	
PS1 bit	16
PS2 bit	16
PSA bit	16
PUSH	22

R

RC Oscillator	
Read Modify Write	
Read-Modify-Write	
Register File	11
Registers	
Мар	
PIC16C433	12
RESET Conditions	57
RESET	51, 54
RESET Conditions for Special Registers	57
RETFIE Instruction	77
RETLW Instruction	77
RETURN Instruction	77
RLF Instruction	78
RP0 bit	11, 15
RP1 bit	
RRF Instruction	78

S Servic

Services	
One-Time-Programmable (OTP)	5
Quick-Turnaround-Production (QTP)	5
Serialized Quick-Turnaround Production (SQTP)	5
SFR	8
SFR As Source/Destination	8
SLEEP	
SLEEP Instruction	8
Software Simulator (MPLAB SIM)82	2
Special Features of the CPU	1
Special Function Register	
PIC16C43313	
Special Function Registers	
Special Function Registers, Section	2
Stack	2
Overflows22	2
Underflow22	2
STATUS Register15	5
DC Bit	3
IRP Bit15, 43, 44	4
TO Bit15	
Z Bit	3
SUBLW Instruction	9
SUBWF Instruction79	9
SWAPF Instruction80	0
т	
TOCS bit	6
TAD	7
Thermal Shut-down	
Timer0	
RTCC	7
Timers	
Timer0	
Block Diagram	7

External Clock	39
External Clock Timing	
Increment Delay	
Interrupt	
Interrupt Timing	
Prescaler	
Prescaler Block Diagram	
Section	
Switching Prescaler Assignment	
Synchronization	
TOCKI	
TOIF	
Timing	
TMR0 Interrupt	
Timing Diagrams	
A/D Conversion	103
CLKOUT and I/O	
External Clock Timing	
Time-out Sequence	58
Timer0	37
Timer0 Interrupt Timing	
Timer0 with External Clock	39
Wake-up from SLEEP via Interrupt	65
TO bit	
TOSE bit	16
TRIS Instruction	80
TRIS Register	. 14, 25, 30
Two's Complement	

U

	_
UV Erasable Devices	 5

W

W Register	
ALU	7
Wake-up from SLEEP	
Watchdog Timer (WDT)	51, 54, 57, 63
WDT	
Block Diagram	
Period	
Programming Considerations	
Timeout	57
WWW, On-Line Support	
х	
XORLW Instruction	80
XORWF Instruction	
_	

Ζ

Z bit1	5
Zero bit	7

NOTES:

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent				
RE:	Reader Response					
Fron	n: Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()	FAX: ()				
Appl	ication (optional):					
Wou	ld you like a reply? <u>Y</u>					
Devi	ce: PIC16C433 Lite	erature Number: DS41139B				
Que	stions:					
1.	. What are the best features of this document?					
-						
2						
2.	2. How does this document meet your hardware and software development needs?					
-						
3.	. Do you find the organization of this document easy to follow? If not, why?					
4.	What additions to the document do y	ou think would enhance the structure and subject?				
-						
-						
5.	What deletions from the document co	ould be made without affecting the overall usefulness?				
-						
-						
6.	s there any incorrect or misleading i	nformation (what and where)?				
-						
7.	7. How would you improve this document?					
-						

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16C433-I/P = Industrial temp., PDIP, 4 MHz - 10 MHz, normal VDD limits b) PIC16C433-E/P = Extended temp., PDIP, 4 MHz - 10 MHz, normal VDD limits
Device	PIC16C433 PIC16C433 (Tape & reel for SOIC only)	
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C$ $E = -40^{\circ}C \text{ to } +125^{\circ}C$	
Package	P = PDIP JW* = Windowed CERDIP SM = SOIC	
Pattern	Special Requirements	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 **China - Shenzhen** Microchip Technology Consulting (Shanghai)

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-82966626 **China - Qingdao**

Rm. B503, Fuilhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 **India** Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 **EUROPE** Austria Microchip Technology Austria GmbH Durisolstrasse 2

Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 **Denmark** Microchip Technology Nordic ApS Regus Business Centre

Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 **France** Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany** Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 **Haly** Microchip Technology SRL

Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 **United Kingdom** Microchip Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

12/05/02

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 8-bit Microcontrollers - MCU category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

CY8C20524-12PVXIT CY8C28433-24PVXIT MB95F012KPFT-G-SNE2 MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2 MB95F478KPMC2-G-SNE2 MB95F562KPF-G-SNE2 MB95F564KPF-G-SNE2 MB95F634KPMC-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2 MB95F698KPMC1-G-SNE2 MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 MC908JK1ECDWER MC9S08PT60AVLD R5F1076CMSPV0 C8051F389-B-GQ C8051F392-A-GMR C8051F580-IQR ISD-ES1600_USB_PROG 901015X SC705C8AE0VFBE STM8TL53G4U6 PIC16F877-04/P-B CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2 MB95F564KPFT-G-SNE2 MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F636KPMC-G-SNE2 MB95F694KPMC-G-SNE2 MB95F78JPMC1-G-SNE2 MB95F818KPMC-G-SNE2 MC908QY8CDWER MC9S08PT16AVLD MC9S08PT32AVLH MC9S08PT60AVLC MC9S08PT60AVLH C8051F500-IQR LC87F0G08AUJA-AH CP8361BT STM8S207C6T3 CG8421AF CYTMA445-48LQI36AA STM8L151G4Y6TR