

High-Performance ROM-less Microcontrollers with External Memory Bus

High Performance RISC CPU:

- · C compiler optimized architecture instruction set
- · Linear program memory addressing up to 2 Mbytes
- · Linear data memory addressing to 4 Kbytes

	External Prog							
Device	On-	On-Chip						
Device	Maximum Addressing (bytes)	Maximum Single Word Instructions	On-Chip RAM (bytes)					
PIC18C601	256K	128K	1.5K					
PIC18C801	2M	1M	1.5K					

- · Up to 160 ns instruction cycle: - DC - 25 MHz clock input
- 4 MHz 6 MHz clock input with PLL active
- · 16-bit wide instructions, 8-bit wide data path
- · Priority levels for interrupts
- 8 x 8 Single Cycle Hardware Multiplier

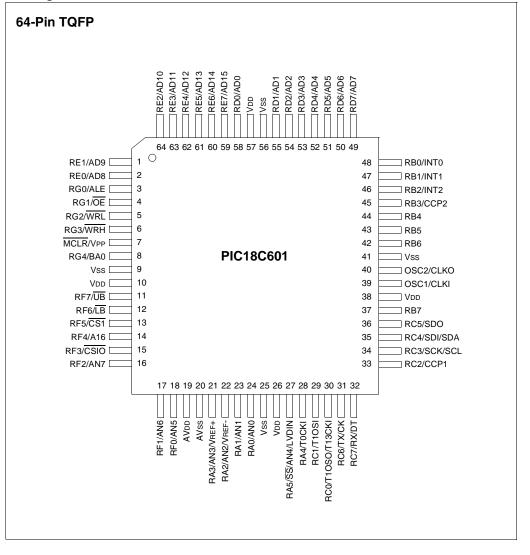
Peripheral Features:

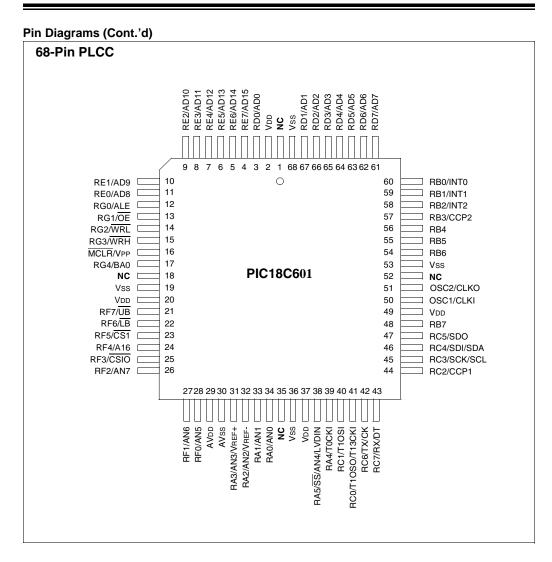
- High current sink/source 25 mA/25 mA
- Up to 47 I/O pins with individual direction control
- Three external interrupt pins
- · Timer0 module: 8-bit/16-bit timer/counter with 8-bit programmable prescaler
- Timer1 module: 16-bit timer/counter (time-base for CCP)
- Timer2 module: 8-bit timer/counter with 8-bit period register
- Timer3 module: 16-bit timer/counter
- · Secondary oscillator clock option Timer1/Timer3
- Two Capture/Compare/PWM (CCP) modules CCP pins can be configured as:
- Capture input: 16-bit, max. resolution 10 ns
- Compare is 16-bit, max. resolution 160 ns (TCY)
- PWM output: PWM resolution is 1- to 10-bit
- Max. PWM freq. @: 8-bit resolution = 99 kHz
 - 10-bit resolution = 24.4 kHz
- Master Synchronous Serial Port (MSSP) with two modes of operation:
 - 3-wire SPI™ (Supports all 4 SPI modes)
 - I²C[™] Master and Slave mode
- Addressable USART module: Supports Interrupt on Address bit

Advanced Analog Features:

- 10-bit Analog-to-Digital Converter module (A/D) with:
 - Fast sampling rate
 - Conversion available during SLEEP
 - $DNL = \pm 1 LSb$, $INL = \pm 1 LSb$
 - Up to 12 channels available
- Programmable Low Voltage Detection (LVD) module
 - Supports interrupt on Low Voltage Detection

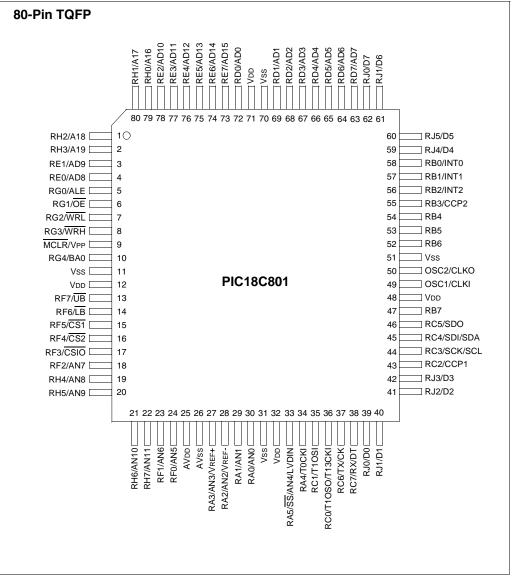
Special Microcontroller Features:


- · Power-on Reset (POR), Power-up Timer (PWRT), and Oscillator Start-up Timer (OST)
- · Watchdog Timer (WDT) with its own on-chip RC oscillator
- · On-chip Boot RAM for boot loader application
- · 8-bit or 16-bit external memory interface modes
- Up to two software programmable chip select signals ($\overline{CS1}$ and $\overline{CS2}$)
- One programmable chip I/O select signal (CSIO) for memory mapped I/O expansion
- · Power saving SLEEP mode
- · Different oscillator options, including:
- 4X Phase Lock Loop (of primary oscillator)
- Secondary Oscillator (32 kHz) clock input

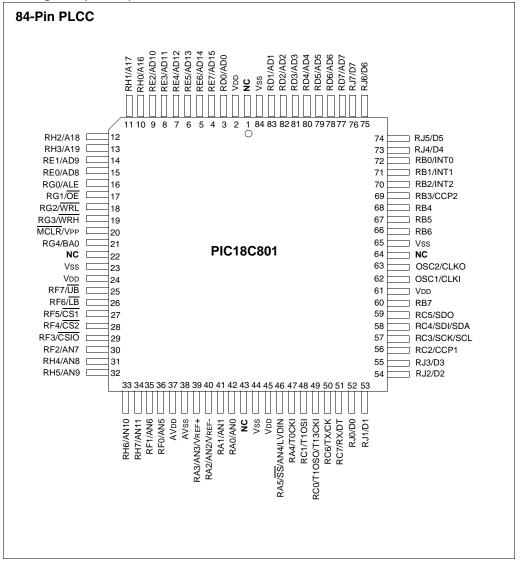

CMOS Technology:

- · Low power, high speed CMOS technology
- · Fully static design
- Wide operating voltage range (2.0V to 5.5V)
- · Industrial and Extended temperature ranges
- · Low power consumption

© 2001-2013 Microchip Technology Inc.


Pin Diagrams

© 2001-2013 Microchip Technology Inc.



© 2001-2013 Microchip Technology Inc.

۲

PIC18C601/801

Pin Diagrams (Cont.'d)

© 2001-2013 Microchip Technology Inc.

C

۲

PIC18C601/801

Table of Contents

1.0	Device Overview	9
2.0	Oscillator Configurations	
3.0	RESET	
4.0	Memory Organization	
5.0	External Memory Interface	63
6.0	Table Reads/Table Writes	73
7.0	8 X 8 Hardware Multiplier	
8.0	Interrupts	
9.0	I/O Ports	
10.0	Timer0 Module	
11.0	Timer1 Module	
12.0	Timer2 Module	
13.0	Timer3 Module	
14.0	Capture/Compare/PWM (CCP) Modules	141
15.0	Master Synchronous Serial Port (MSSP) Module	
16.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
17.0	10-bit Analog-to-Digital Converter (A/D) Module	
18.0	Low Voltage Detect	
19.0	Special Features of the CPU	
20.0	Instruction Set Summary	
21.0	Development Support	
22.0	Electrical Characteristics	
23.0	DC and AC Characteristics Graphs and Tables	
24.0	Packaging Information	
Appe	ndix A: Data Sheet Revision History	
Appe	ndix B: Device Differences	
Appe	ndix C: Device Migrations	
Appe	ndix D: Migrating from other PICmicro Devices	
Appe	ndix E: Development Tool Version Requirements	
Index	(
On-Li	ine Support	
Read	ler Response	
Produ	uct Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

© 2001-2013 Microchip Technology Inc.

39541a.book Page 8 Tuesday, January 29, 2013 2:34 PM

۲

PIC18C601/801

NOTES:

DS39541B-page 8

1.0 DEVICE OVERVIEW

This document contains device specific information for the following two devices:

1. PIC18C601

2. PIC18C801

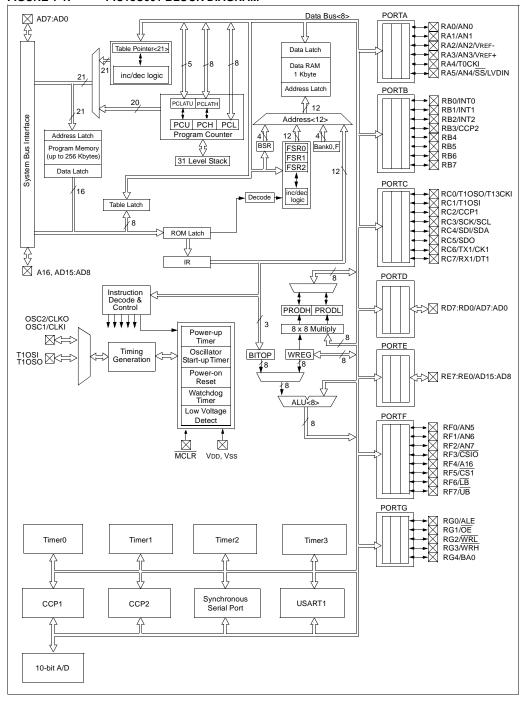
The PIC18C601 is available in 64-pin TQFP and 68-pin PLCC packages. The PIC18C801 is available in 80-pin TQFP and 84-pin PLCC packages.

TABLE 1-1: DEVICE FEATURES

PIC18C601 Features PIC18C801 DC - 25 MHz DC - 25 MHz **Operating Frequency** 256K 2M Bytes External Max. # of Single Word 128K 1M **Program Memory** Instructions Data Memory (Bytes) 1536 1536 Interrupt Sources 15 15 Ports A - H, J I/O Ports Ports A - G Timers 4 4 Capture/Compare/PWM modules 2 2 MSSP. MSSP, Serial Communications Addressable USART Addressable USART 10-bit Analog-to-Digital Module 8 input channels 12 input channels POR, POR, RESET Instruction, Stack Full, **RESETS** (and Delays) RESET Instruction, Stack Full, Stack Underflow (PWRT, OST) Stack Underflow (PWRT, OST) Programmable Low Voltage Detect Yes Yes 8-bit External Memory Interface Yes Yes 8-bit De-multiplexed External No Yes Memory Interface 16-bit External Memory Interfaces Yes Yes CS1 CS1, CS2 **On-chip Chip Select Signals** On-chip I/O Chip Select Signal Yes Yes Instruction Set 75 Instructions 75 Instructions 64-pin TQFP 80-pin TQFP Packages . 68-pin PLCC . 84-pin PLCC

An overview of features is shown in Table 1-1.

Device block diagrams are provided in Figure 1-1 for the 64/68-pin configuration, and Figure 1-2 for the 80/ 84-pin configuration. The pinouts for both packages are listed in Table 1-2.

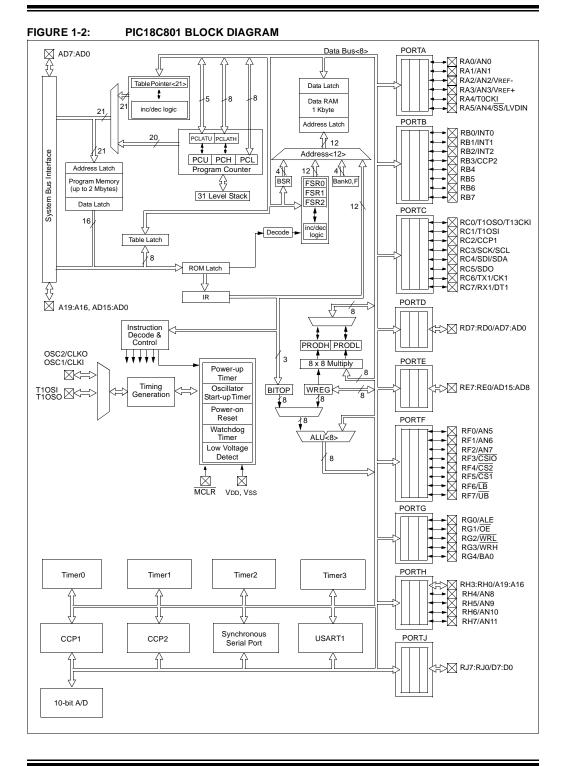

© 2001-2013 Microchip Technology Inc.

۲

PIC18C601/801

FIGURE 1-1:

PIC18C601 BLOCK DIAGRAM


DS39541B-page 10

Advance Information

© 2001-2013 Microchip Technology Inc.

 (\bullet)

PIC18C601/801

© 2001-2013 Microchip Technology Inc.

		Pin N	umber				
Pin Name	PIC18C601		PIC18C801		Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Description
MCLR/VPP MCLR	7	16	9	20	1	ST	Master clear (RESET) input. This pin is
VPP					P	0.	an active low RESET to the device. Programming voltage input.
NC	—	1, 18, 35, 52	—	1, 22, 43, 64	—		These pins should be left unconnected.
OSC1/CLKI OSC1	39	50	49	62	I	CMOS/ST	Oscillator crystal input or external clock source input. ST buffer when in RC
CLKI					I	CMOS	mode. Otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
OSC2/CLKO OSC2	40	51	50	63	ο	_	Oscillator crystal output. Connects to crystal or resonator in
CLKO					0	_	Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
Legend: $TTL = TTL$ ST = Sch I = Inpi P = Pov	mitt Trigg ut		with CMC)S levels		nalog = Ana = Outj	DS compatible input or output log input

TABLE 1-2: PINOUT I/O DESCRIPTIONS

		Pin N	umber				
Pin Name	PIC1	BC601	PIC1	BC801	Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-76-	Description
							PORTA is a bi-directional I/O port.
RA0/AN0	24	34	30	42			
RA0					I/O	TTL	Digital I/O.
AN0					I	Analog	Analog input 0.
RA1/AN1	23	33	29	41			
RA1					I/O	TTL	Digital I/O.
AN1					I.	Analog	Analog input 1.
RA2/AN2/VREF-	22	32	28	40			
RA2					I/O	TTL	Digital I/O.
AN2					1	Analog	Analog input 2.
VREF-					I.	Analog	A/D reference voltage (Low) input.
RA3/AN3/VREF+	21	31	27	39			
RA3					I/O	TTL	Digital I/O.
AN3					I.	Analog	Analog input 3.
VREF+					I.	Analog	A/D reference voltage (High) input.
RA4/T0CKI	28	39	34	47			
RA4					I/O	ST/OD	Digital I/O – Open drain when
							configured as output.
TOCKI					I.	ST	Timer0 external clock input.
RA5/AN4/SS/LVDIN	27	38	33	46			
RA5					I/O	TTL	Digital I/O.
AN4					I	Analog	Analog input 4.
SS					I.	ST	SPI slave select input.
LVDIN					I	Analog	Low voltage detect input.

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

CMOS = CMOS compatible input or output Analog = Analog input

O = Output

OD = Open Drain (no P diode to VDD)

		Pin N	umber				
Pin Name	PIC18C601		PIC18C801		Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Type	Description
							PORTB is a bi-directional I/O port. PORTI
							can be software programmed for internal
							weak pull-ups on all inputs.
RB0/INT0	48	60	58	72			
RB0					I/O	TTL	Digital I/O.
INT0					I	ST	External interrupt 0.
RB1/INT1	47	59	57	71			
RB1					I/O	TTL	Digital I/O.
INT1					I	ST	External interrupt 1.
RB2/INT2	46	58	56	70			
RB2					I/O	TTL	Digital I/O.
INT2					I	ST	External interrupt 2.
RB3/CCP2	45	57	55	69			
RB3					I/O	TTL	Digital I/O.
CCP2					I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RB4	44	56	54	68	I/O	TTL	Digital I/O, Interrupt-on-change pin.
RB5	43	55	53	67	I/O	TTL	Digital I/O, Interrupt-on-change pin.
RB6	42	54	52	66	I/O	TTL	Digital I/O, Interrupt-on-change pin.
					I	ST	ICSP programming clock.
RB7	37	48	47	60	I/O	TTL	Digital I/O, Interrupt-on-change pin.
					I/O	ST	ICSP programming data.

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

end: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

= Input = Power

l P CMOS = CMOS compatible

Analog = Analog input

O = Output OD = Open Drain (no P diode to VDD)

		Pin N	umber				
Pin Name	PIC1	8C601	PIC1	BC801	Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1960	Description
							PORTC is a bi-directional I/O port.
RC0/T1OSO/T13CKI	30	41	36	49			
RC0					I/O	ST	Digital I/O.
T1OSO					0	_	Timer1 oscillator output.
T13CKI					I	ST	Timer1/Timer3 external clock input.
RC1/T1OSI	29	40	35	48			
RC1					I/O	ST	Digital I/O.
T1OSI					I	CMOS	Timer1 oscillator input.
RC2/CCP1	33	44	43	56			
RC2					I/O	ST	Digital I/O.
CCP1					I/O	ST	Capture1 input/Compare1
							output/PWM1 output.
RC3/SCK/SCL	34	45	44	57			
RC3					I/O	ST	Digital I/O.
SCK					I/O	ST	Synchronous serial clock
							input/output for SPI mode.
SCL					I/O	ST	Synchronous serial clock
							input/output for I ² C mode.
RC4/SDI/SDA	35	46	45	58			
RC4					I/O	ST	Digital I/O.
SDI					I	ST	SPI data in.
SDA					I/O	ST	I ² C data I/O.
RC5/SDO	36	47	46	59			
RC5					I/O	ST	Digital I/O.
SDO					0	—	SPI data out.
RC6/TX/CK	31	42	37	50			
RC6					I/O	ST	Digital I/O.
ТХ					0	—	USART asynchronous transmit.
CK					I/O	ST	USART synchronous clock.
RC7/RX/DT	32	43	38	51			
RC7					I/O	ST	Digital I/O.
RX					I	ST	USART asynchronous receive.
DT					I/O	ST	USART synchronous data.
Legend: TTL = TTL	compati	ble input			CI	NOS = CM	OS compatible input or output
ST = Sch	mitt Trigg	ger input v	with CMC	S levels	Ar	alog = Ana	alog input

PINOUT I/O DESCRIPTIONS (CONTINUED) TABLE 1-2:

L = Input Ρ = Power O OD = Output

= Open Drain (no P diode to VDD)

			Pin N	umber				
Pin Nar	ne	PIC18C601		PIC18C801		Pin Type	Buffer Type	
		TQFP	PLCC	TQFP	PLCC	Type	Type	Description
								PORTD is a bi-directional I/O port. These pins have TTL input buffers when externa memory is enabled.
RD0/AD0		58	3	72	3			
RD0						I/O	ST	Digital I/O.
AD0						I/O	TTL	External memory address/data 0.
RD1/AD1		55	67	69	83			
RD1						I/O	ST	Digital I/O.
AD1						I/O	TTL	External memory address/data 1.
RD2/AD2		54	66	68	82			
RD2						I/O	ST	Digital I/O.
AD2						I/O	TTL	External memory address/data 2.
RD3/AD3		53	65	67	81			
RD3						I/O	ST	Digital I/O.
AD3						I/O	TTL	External memory address/data 3.
RD4/AD4		52	64	66	80			
RD4						I/O	ST	Digital I/O.
AD4						I/O	TTL	External memory address/data 4.
RD5/AD5		51	63	65	79			
RD5						I/O	ST	Digital I/O.
AD5						I/O	TTL	External memory address/data 5.
RD6/AD6		50	62	64	78			
RD6						I/O	ST	Digital I/O.
AD6						I/O	TTL	External memory address/data 6.
RD7/AD7		49	61	63	77			
RD7						I/O	ST	Digital I/O.
AD7						I/O	TTL	External memory address/data 7.

Î. = Input

O OD = Output

= Open Drain (no P diode to VDD)

		Pin N	umber				
Pin Name	PIC1	BC601	PIC1	BC801	Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Description
							PORTE is a bi-directional I/O port.
RE0/AD8	2	11	4	15			
RE0					I/O	ST	Digital I/O.
AD8					I/O	TTL	External memory address/data 8.
RE1/AD9	1	10	3	14			
RE1					1/O 1/O	ST TTL	Digital I/O.
AD9					1/0	116	External memory address/data 9.
RE2/AD10 RE2	64	9	78	9	I/O	ST	Divital I/O
AD10					1/O 1/O	TTL	Digital I/O. External memory address/data 10.
RE3/AD11	63	8	77	8	1/0	116	External memory address/data 10.
RE3	03	0		0	1/0	ST	Digital I/O.
AD11					1/0	TTL	External memory address/data 11.
RE4/AD12	62	7	76	7			
RE4					I/O	ST	Digital I/O.
AD12					I/O	TTL	External memory address/data 12.
RE5/AD13	61	6	75	6			
RE5					I/O	ST	Digital I/O.
AD13					I/O	TTL	External memory address/data 13.
RE6/AD14	60	5	74	5			
RE6					I/O	ST	Digital I/O.
AD14					I/O	TTL	External memory address/data 14.
RE7/AD15	59	4	73	4			
RE7					I/O	ST	Digital I/O.
AD15	<u> </u>				I/O	ST	External memory address/data 15.
Legend: TTL = TTL	. compati				CI	MOS = CM	OS compatible input or output

PINOUT I/O DESCRIPTIONS (CONTINUED) TABLE 1-2:

ST = Schmitt Trigger input with CMOS levels

= Input = Power L P

Analog = Analog input = Output 0

OD = Open Drain (no P diode to VDD) ۲

PIC18C601/801

TABLE 1-2:	PINOUT I/O DESCRIPTIONS (CONTINUED)
------------	-------------------------------------

			Pin N	umber		Din D		
Pin N	ame	PIC1	8C601	PIC1	8C801	Pin Type	Buffer Type	
		TQFP	PLCC	TQFP	PLCC	1,100	Type	Description
								PORTF is a bi-directional I/O port.
RF0/AN5		18	28	24	36			
RF0						I/O	ST	Digital I/O.
AN5						I	Analog	Analog input 5.
RF1/AN6		17	27	23	35	1/0	ST	Distant/O
RF1 AN6						I/O I	Analog	Digital I/O. Analog input 6.
RF2/AN7		16	26	18	30		Analog	Analog input 0.
RF2		10	20	10	30	I/O	ST	Digital I/O.
AN7						1	Analog	Analog input 7.
RF3/CSIO		15	25	17	29		Ū	5 1
RF3			_			I/O	ST	Digital I/O.
CSIO						I/O	ST	System bus chip select I/O.
RF4/A16		14	24	—	—			
RF4/CS2		—	—	16	28			
RF4						I/O	ST	Digital I/O.
A16 CS2						I/O O	TTL TTL	External memory address 16. Chip select 2.
RF5/CS1		13	23	15	27	0	116	Chip Select 2.
RF5/CS1		13	23	15	21	I/O	ST	Digital I/O.
CS1						0	TTL	Chip select 1.
RF6/LB		12	22	14	26			
RF6					-	I/O	ST	Digital I/O.
LB						0	TTL	Low byte select signal for external
								memory interface.
RF7/UB		11	21	13	25			
RF7						I/O	ST	Digital I/O.
UB						0	TTL	High byte select signal for external memory interface.
Legend:	TTL = TTL	. compati	ble input	1	1	CI	MOS = CM	OS compatible input or output
			ger input v	with CMC	S levels		nalog = Ana	
	l = Inpu					0	= Out	· · · · · · · · · · · · · · · · · · ·
	P = Pow	ver				O	D = Ope	en Drain (no P diode to VDD)

		Pin N	umber				
Pin Name	PIC1	BC601	PIC1	BC801	Pin Type	Buffer Type	
	TQFP	PLCC	TQFP	PLCC	1,100	1960	Description
							PORTG is a bi-directional I/O port.
RG0/ALE RG0	3	12	5	16	I/O	ST	Digital I/O.
ALE					0	TTL	Address Latch Enable.
RG1/OE	4	13	6	17	_		
RG1					I/O	ST	Digital I/O.
OE RG2/WRL	5	14	7	10	0	TTL	Output Enable.
RG2/WRL RG2	э	14	1	18	I/O	ST	Digital I/O.
WRL					0	TTL	Write Low control.
RG3/WRH	6	15	8	19			
RG3 WRH					1/O O	ST TTL	Digital I/O. Write High control.
RG4/BA0	8	17	10	21	Ŭ		white high control.
RG4					I/O	ST	Digital I/O.
BA0					0	TTL	System bus byte address 0.
RH0/A16			79	10			PORTH is a bi-directional I/O port.
RH0			79	10	I/O	ST	Digital I/O.
A16					0	TTL	External memory address 16.
RH1/A17	—	—	80	11			
RH1 A17					1/O O	ST	Digital I/O. External memory address 17.
RH2/A18	_	_	1	12	Ũ		
RH2					I/O	ST	Digital I/O.
A18				10	0	—	External memory address 18.
RH3/A19 RH3	_	_	2	13	I/O	ST	Digital I/O.
A19					0	_	External memory address 19.
RH4/AN8	—	—	19	31			
RH4 AN8					1/O 1	ST Analog	Digital I/O. Analog input 8.
RH5/AN9	_	_	20	32		7 maiog	, malog inpaco.
RH5					I/O	ST	Digital I/O.
AN9					I	Analog	Analog input 9.
RH6/AN10 RH6			21	33	I/O	ST	Digital I/O.
AN10					1	Analog	Analog input 10.
RH7/AN11	—	—	22	34			
RH7 AN11					I/O I	ST Analog	Digital I/O. Analog input 11.
Legend: TTL = TTL	compati	ble input		I		, v	OS compatible input or output
ST = Sch			with CMC	S levels		nalog = Ana	
l = Inpu P = Pov					0		
P = Pow	ver				0	o = Ope	en Drain (no P diode to VDD)

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

© 2001-2013 Microchip Technology Inc.

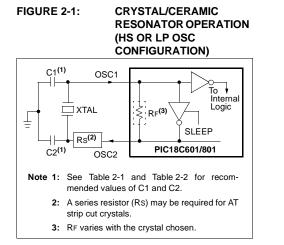
			Pin N	Pin Number				
Pin	Name	PIC1	PIC18C601		BC801	Pin Type	Buffer Type	
		TQFP	PLCC	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	туре	Description
								PORTJ is a bi-directional I/O port.
RJ0/D0		—	_	39	52			
RJ0						I/O	ST	Digital I/O.
D0						I/O	TTL	System bus data bit 0.
RJ1/D1		—	_	40	53			
RJ1						I/O	ST	Digital I/O.
D1						I/O	TTL	System bus data bit 1.
RJ2/D2		-	—	41	54			
RJ2		1				I/O	ST	Digital I/O.
D2		1				I/O	TTL	System bus data bit 2.
RJ3/D3		-	—	42	55			
RJ3		1				I/O	ST	Digital I/O.
D3		1				I/O	TTL	System bus data bit 3.
RJ4/D4		—	_	59	73			
RJ4						I/O	ST	Digital I/O.
D4						I/O	TTL	System bus data bit 4.
RJ5/D5		—	_	60	74			
RJ5						I/O	ST	Digital I/O.
D5						I/O	TTL	System bus data bit 5.
RJ6/D6		—	—	61	75			
RJ6						I/O	ST	Digital I/O.
D6						I/O	TTL	System bus data bit 6.
RJ7/D7		—	—	62	76			
RJ7		1				I/O	ST	Digital I/O.
D7						I/O	TTL	System bus data bit 7.
Vss		9, 25,	19, 36,	11,31,	23, 44,	Р	—	Ground reference for logic and I/O pins
		41, 56	53, 68	51, 70	65, 84			
Vdd		10,26,	2, 20,	12,32,	2, 24,	Р	—	Positive supply for logic and I/O pins.
		38, 57	37, 49	48, 71	45, 61			
Avss		20	30	26	38	Р	_	Ground reference for analog modules.
Avdd		19	29	25	37	Р	_	Positive supply for analog modules.
_egend:	TTL = TTI							IOS compatible input or output
	ST = Sch	nmitt Trigg	jer input v	with CMC	S levels		nalog = Ana	
	I = Inp					0		
	P = Pov	ver				0	D = Op	en Drain (no P diode to VDD)

PINOUT I/O DESCRIPTIONS (CONTINUED) TABLE 1-2:

2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

PIC18C601/801 can be operated in one of four oscillator modes, programmable by configuration bits FOSC1:FOSC0 in CONFIG1H register:


- 1. LP Low Power Crystal
- 2. HS High Speed Crystal/Resonator
- 3. RC External Resistor/Capacitor
- 4. EC External Clock

2.2 Crystal Oscillator/Ceramic Resonators

In LP or HS oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections. An external clock source may also be connected to the OSC1 pin, as shown in Figure 2-3 and Figure 2-4.

PIC18C601/801 oscillator design requires the use of a parallel cut crystal.

Note: Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

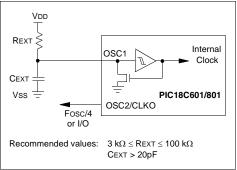
Ranges Tested:							
Mode	Freq.	OSC1	0862				
HS	8.0 MHz	10 - 68 pF	₹q 8∂ €07				
	16.0 MHz	10 - 22 pF 🏠	10 22 pF				
	20.0 MHz		√ÌBĎ				
	25.0 MHz	IBD////	TBD				
HS+PLL	4.0 MHz	MBD///	TBD				
These	values are to	design guida	nce only.				
See no	tes on this pa	ğe.					
	Resona	ators Used:					
40MHz	A Murata Erie CSA4.00MG ± 0.5%						
& MHz Murata Erie CSA8.00MT ± 0.5%							
16.0 MHz	16.0 MHz Murata Erie CSA16.00MX ± 0.5%						
All reso	nators used d	id not have built-	in capacitors.				

TABLE 2-1: CERAMIC RESONATORS

TABLE 2-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal	Cap. Range	Cap. Range
Osc Type	Freq.	C1	C2
LP	32.0 kHz	33 pF	33 pF
	200 kHz	15 pF	15¢€
HS	4.0 MHz	15 pF	(15-RFV
	8.0 MHz	15-33 pF	15-33 pF
	20.0 MHz	15-83.0F	15-33 pF
	25.0 MHz	U/ABD	TBD
HS+PLL	4.0 MHZ	1 1 1 5 pF	15 pF
	////////////////////////////////////	or design guida	ance only.
See no	tés on this pa	-	
	Cryst	tals Used	
\32,0 kHz	Epson C-00	1R32.768K-A	± 20 PPM
200 kHz	STD XTL	200.000kHz	± 20 PPM
1.0 MHz	ECS EC	S-10-13-1	± 50 PPM
4.0 MHz	ECS EC	S-40-20-1	± 50 PPM
8.0 MHz	EPSON CA-	± 30 PPM	
20.0 MHz	EPSON CA-	301 20.000M-C	± 30 PPM

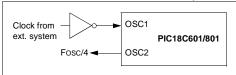
Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 2-1).


- Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode to avoid overdriving crystals with low drive level specification.

2.3 RC Oscillator

For timing insensitive applications, the "RC" oscillator mode offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 2-2 shows how the RC combination is connected.

In the RC oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic.



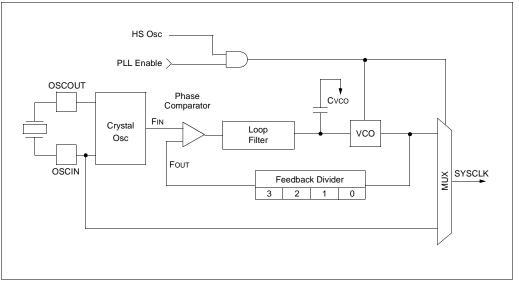
2.4 External Clock Input

The EC oscillator mode requires an external clock source to be connected to the OSC1 pin. The feedback device between OSC1 and OSC2 is turned off in these modes to save current. There is no oscillator start-up time required after a Power-on Reset or after a recovery from SLEEP mode.

In the EC oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-3 shows the pin connections for the EC oscillator mode.

FIGURE 2-3:

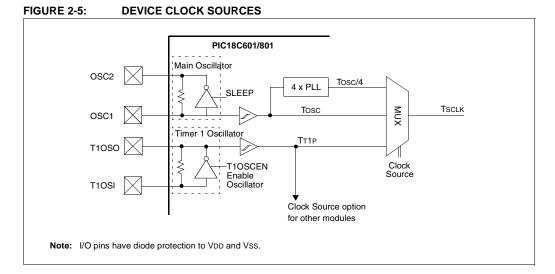
FIGURE 2-4: PLL BLOCK DIAGRAM


EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

A Phase Lock Loop (PLL) circuit is provided as a software programmable option for users that want to multiply the frequency of the incoming crystal oscillator signal by 4. For an input clock frequency of 6 MHz, the internal clock frequency will be multiplied to 24 MHz. This is useful for customers who are concerned with EMI due to high frequency crystals.

The PLL is enabled by configuring HS oscillator mode and setting the PLLEN bit in the OSCON register. If HS oscillator mode is not selected, or PLLEN bit in OSCCON register is clear, the PLL is not enabled and the system clock will come directly from OSC1. HS oscillator mode is the default for PIC18C601/801. In all other modes, the PLLEN bit and the SCS1 bit are forced to '0'.

A PLL lock timer is used to ensure that the PLL has locked before device execution starts. The PLL lock timer has a time-out, referred to as TPLL.


2.6 Oscillator Switching Feature

PIC18C601/801 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low frequency clock source. For PIC18C601/801 devices, this alternate clock source is the Timer1 oscillator. If a low frequency crystal (32 kHz, for example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has been enabled, the device can switch to a low power execution mode. Figure 2-5 shows a block diagram of the system clock sources.

2.6.1 SYSTEM CLOCK SWITCH BIT

The system clock source switching is performed under software control. The system clock switch bit, SCS0 (OSCCON register), controls the clock switching. When the SCS0 bit is '0', the system clock source comes from the main oscillator, selected by the FOSC2:FOSC0 configuration bits in CONFIG1H register. When the SCS0 bit is set, the system clock source will come from the Timer1 oscillator. The SCS0 bit is cleared on all forms of RESET.

Note: The Timer1 oscillator must be enabled to switch the system clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 control register (T1CON). If the Timer1 oscillator is not enabled, any write to the SCS0 bit will be ignored (SCS0 bit forced cleared) and the main oscillator will continue to be the system clock source.

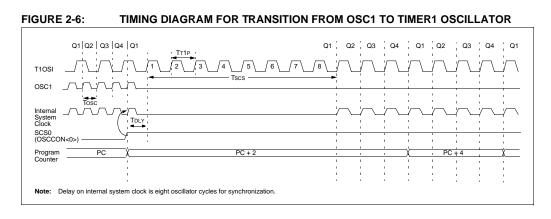
REGISTER 2-1: OSCCON REGISTER

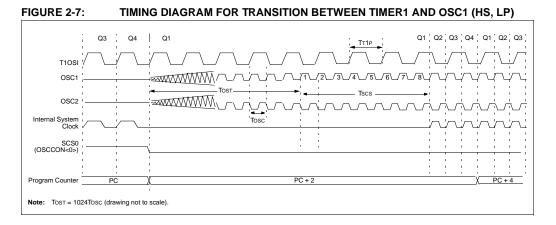
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	—	—	LOCK	PLLEN	SCS1	SCS0	
	bit 7							bit 0	
bit 7-4	Unimpleme	ented: Rea	d as '0'						
bit 3	LOCK: Pha								
	1 = Phase L	•	•						
			•		cannot be used	as system	I CIOCK		
bit 2	1 = Enable				alaak				
	0 = Disable			ul as system	ICIUCK				
bit 1	SCS1: Syst	em Clock S	Switch bit 1						
	When PLLE			et:					
	1 = Use PLI								
	0 = Use prir	,							
	When PLLEN bit or LOCK bit is cleared: Bit is forced clear								
bit 0	SCS0: Syst		Switch hit 0						
bit 0	When T105								
	1 = Switch to Timer1 oscillator/clock pin								
	0 = Use prir	-		put pin					
	When T1OS		eared:						
	Bit is forced	clear							
	Legend:								
	R = Readat	ole bit	W = V	Vritable bit	U = Unimpl	emented b	it, read as '	D'	

'1' = Bit is set

2.6.2 OSCILLATOR TRANSITIONS

PIC18C601/801 devices contain circuitry to prevent "glitches" when switching between oscillator sources. Essentially, the circuitry waits for eight rising edges of the clock source that the processor is switching to. This ensures that the new clock source is stable and that its pulse width will not be less than the shortest pulse width of the two clock sources.

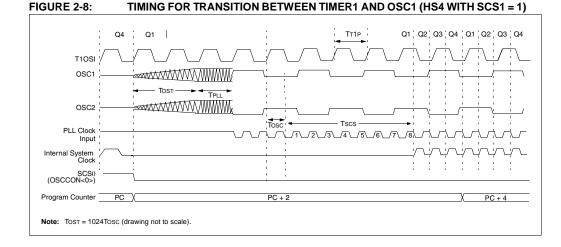

- n = Value at POR


A timing diagram indicating the transition from the main oscillator to the Timer1 oscillator is shown in Figure 2-6. The Timer1 oscillator is assumed to be running all the time. After the SCS0 bit is set, the processor is frozen at the next occurring Q1 cycle. After eight synchronization cycles are counted from the Timer1 oscillator, operation resumes. No additional delays are required after the synchronization cycles. The sequence of events that takes place when switching from the Timer1 oscillator to the main oscillator will depend on the mode of the main oscillator. In addition to eight clock cycles of the main oscillator, additional delays may take place.

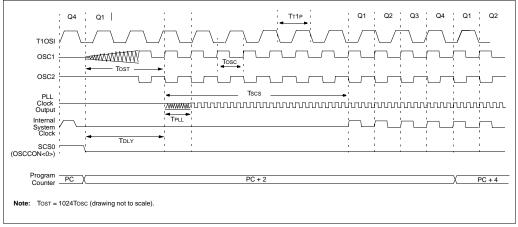
'0' = Bit is cleared

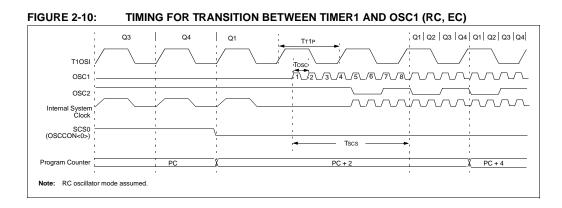
x = Bit is unknown

If the main oscillator is configured for an external crystal (HS, LP), the transition will take place after an oscillator start-up time (TOST) has occurred. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS and LP modes is shown in Figure 2-7.



If the main oscillator is configured for HS4 (PLL) mode with SCS1 bit set to '1', an oscillator start-up time (TOST), plus an additional PLL time-out (TPLL) will occur. The PLL time-out is typically 2 ms and allows the PLL to lock to the main oscillator frequency. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS4 mode is shown in Figure 2-8.


If the main oscillator is configured for HS4 (PLL) mode, with SCS1 bit set to '0', only oscillator start-up time (TOST) will occur. Since SCS1 bit is set to '0', PLL out-


put is not used, so the system oscillator will come from OSC1 directly and additional delay of TPLL is not required. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for HS4 mode is shown in Figure 2-9.

If the main oscillator is configured in the RC or EC modes, there is no oscillator start-up time-out. Operation will resume after eight cycles of the main oscillator have been counted. A timing diagram indicating the transition from the Timer1 oscillator to the main oscillator for RC and EC modes is shown in Figure 2-10.

2.6.3 SCS0, SCS1 PRIORITY

If both SCS0 and SCS1 are set to '1' simultaneously, the SCS0 bit has priority over the SCS1 bit. This means that the low power option will take precedence over the PLL option. If both bits are cleared simultaneously, the system clock will come from OSC1, after a TOST timeout. If only the SCS0 bit is cleared, the system clock will come from the PLL output, following TOST and TPLL time.

TABLE 2-3: SCS0, SCS1 PRIORITY

SCS1	SCS0	Clock Source
0	0	Ext Oscillator OSC1
0	1	Timer1 Oscillator
1	0	HS + PLL
1	1	Timer1 Oscillator

2.7 Effects of SLEEP Mode on the On-Chip Oscillator

When the device executes a SLEEP instruction, the on-chip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP, will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt.

2.8 Power-up Delays

Power-up delays are controlled by two timers, so that no external RESET circuitry is required for most applications. The delays ensure that the device is kept in RESET until the device power supply and clock are stable. For additional information on RESET operation, see Section 3.0 RESET.

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of TPWRT (parameter #33) on power-up only. The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable.

PIC18C601/801 devices provide a configuration bit, PWRTEN in CONFIG2L register, to enable or disable the Power-up Timer. By default, the Power-up Timer is enabled.

With the PLL enabled (HS4 oscillator mode), the time-out sequence following a Power-on Reset is different from other oscillator modes. The time-out sequence is as follows: the PWRT time-out is invoked after a POR time delay has expired, then, the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional time-out, called TPLL (parameter #7), to allow the PLL ample time to lock to the incoming clock frequency.

TABLE 2-4: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

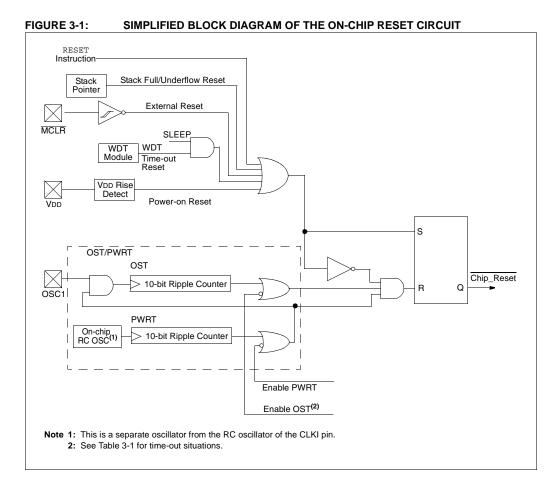
OSC Mode	OSC1 Pin	OSC2 Pin
RC	Floating, external resistor should pull high	At logic low
EC	Floating	At logic low
LP and HS	Feedback inverter disabled, at quiescent voltage level	Feedback inverter disabled, at guiescent voltage level

Note: See Table 3-1 in Section 3.0 RESET, for time-outs due to SLEEP and MCLR Reset.

DS39541B-page 28

3.0 RESET

PIC18C601/801 devices differentiate between various kinds of RESET:

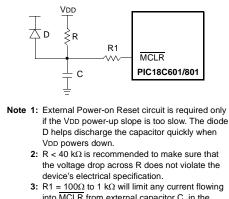

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) Watchdog Timer (WDT) Reset during normal operation
- e) RESET Instruction
- f) Stack Full Reset
- g) Stack Underflow Reset

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET" state on Power-on Reset, MCLR, WDT Reset, MCLR Reset during SLEEP, and by the RESET instruction. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , PD and \overline{POR} , are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 3-1.

PIC18C601/801 has a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

A WDT Reset does not drive MCLR pin low.


© 2001-2013 Microchip Technology Inc.

3.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when a VDD rise is detected. To take advantage of the POR circuitry, connect the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Power-on Reset may be used to meet the voltage start-up condition.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

into MCLR from external capacitor C, in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD), or Electrical Overstress (EOS).

3.2 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33), only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT time delay allows VDD to rise to an acceptable level. PIC18C601/801 devices are available with PWRT enabled or disabled.

The power-up time delay will vary from chip to chip, due to VDD, temperature and process variation. See DC parameter #33 for details.

3.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for LP, HS and HS4 modes and only on Power-on Reset or wake-up from SLEEP.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 1 ms and follows the oscillator startup time-out (OST).

3.5 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired; then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18C601/801 device operating in parallel.

Table 3-2 shows the RESET conditions for some Special Function Registers, while Table 3-3 shows the RESET conditions for all registers.

TABLE 3-1: TIME-OUT IN VARIOUS SITUATIONS

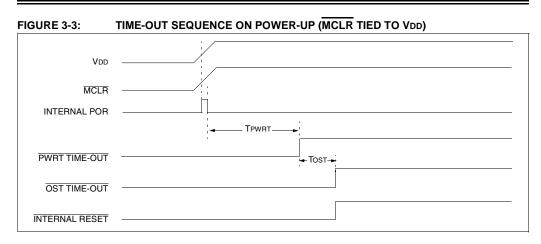
Oscillator	Powe	Wake-up from	
Configuration	PWRTEN = 0	PWRTEN = 1	SLEEP or Oscillator Switch ⁽¹⁾
HS with PLL enabled ⁽¹⁾	72 ms + 1024Tosc	1024Tosc	1024Tosc + 1 ms
HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
EC	72 ms	—	—
External RC	72 ms	—	—

Note 1: 1 ms is the nominal time required for the 4X PLL to lock. Maximum time is 2 ms.

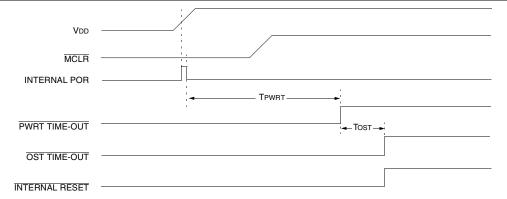
2: 72 ms is the nominal Power-up Timer delay.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	U-0
IPEN	r	—	RI	TO	PD	POR	r
bit 7							bit 0


TABLE 3-2: STATUS BITS, THEIR SIGNIFICANCE, AND THE INITIALIZATION CONDITION FOR RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	STKFUL	STKUNF
Power-on Reset	00000h	0r-1 110r	1	1	1	0	u	u
MCLR Reset during normal operation	00000h	0r-u uuur	u	u	u	u	u	u
Software Reset during normal operation	00000h	0r-0 uuur	0	u	u	u	u	u
Stack Full Reset during normal operation	00000h	0r-u uulr	u	u	u	1	u	1
Stack Underflow Reset during normal operation	00000h	0r-u uulr	u	u	u	1	1	u
MCLR Reset during SLEEP	00000h	0r-u 10ur	u	1	0	u	u	u
WDT Reset	00000h	0r-u 01ur	u	0	1	u	u	u
WDT Wake-up	PC + 2	ur-u 00ur	u	0	0	u	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	ur-u 00ur	u	0	0	u	u	u


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', r = reserved, maintain '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (000008h or 000018h).

© 2001-2013 Microchip Technology Inc.

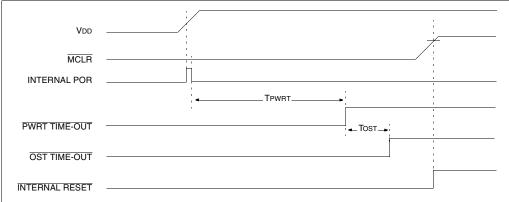
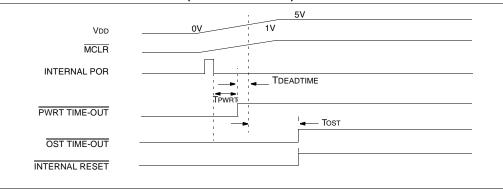
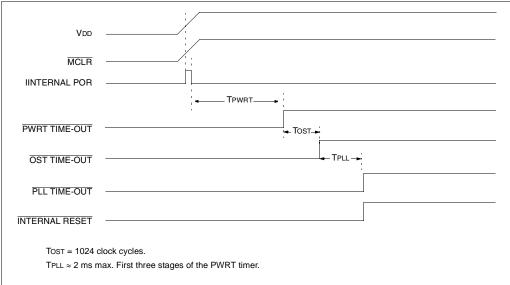




FIGURE 3-6:

FIGURE 3-7: TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD)

TABLE 3-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS							
Register	Applicable Devices Power-on Reset MCLR Reset WDT Reset Reset Instruction Stack Over/Underflow Reset 601 801 0 0000 0 0000		Power-on Reset	WDT Reset Reset Instruction	Wake-up via WDT or Interrupt			
TOSU			0 0000	u uuuu (3)				
TOSH	601	801	0000 0000	0000 0000	uuuu uuuu ⁽³⁾			
TOSL	601	801	0000 0000	0000 0000	uuuu uuuu (3)			
STKPTR	601	801	00-0 0000	00-0 0000	uu-u uuuu (3)			
PCLATU	601	801	0 0000	0 0000	u uuuu			
PCLATH	601	801	0000 0000	0000 0000	uuuu uuuu			
PCL	601	801	0000 0000	0000 0000	PC + 2 (2)			
TBLPTRU	601	801	00 0000	00 0000	uu uuuu			
TBLPTRH	601	801	0000 0000	0000 0000	uuuu uuuu			
TBLPTRL	601	801	0000 0000	0000 0000	uuuu uuuu			
TABLAT	601	801	0000 0000	0000 0000	uuuu uuuu			
PRODH	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PRODL	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu			
INTCON	601	801	0000 000x	0000 000u	uuuu uuuu (1)			
INTCON2	601	801	1111 -1-1	1111 -1-1	uuuu -u-u (1)			
INTCON3	601	801	11-0 0-00	11-0 0-00	uu-u u-uu (1)			
INDF0	601	801	(Note 5)	(Note 5)	(Note 5)			
POSTINC0	601	801	(Note 5)	(Note 5)	(Note 5)			
POSTDEC0	601	801	(Note 5)	(Note 5)	(Note 5)			
PREINC0	601	801	(Note 5)	(Note 5)	(Note 5)			
PLUSW0	601	801	(Note 5)	(Note 5)	(Note 5)			
FSR0H	601	801	0000	0000	uuuu			
FSR0L	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
WREG	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
INDF1	601	801	(Note 5)	(Note 5)	(Note 5)			
POSTINC1	601	801	(Note 5)	(Note 5)	(Note 5)			
POSTDEC1	601	801	(Note 5)	(Note 5)	(Note 5)			
PREINC1	601	801	(Note 5)	(Note 5)	(Note 5)			
PLUSW1	601	801	(Note 5)	(Note 5)	(Note 5)			
FSR1H	601	801	0000	0000	uuuu			
FSR1L	601	801	XXXX XXXX	սսսս սսսս	uuuu uuuu			
BSR	601	801	0000	0000	uuuu			
INDF2	601	801	(Note 5)	(Note 5)	(Note 5)			

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain '0'

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (00008h or 00018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are updated with the current value of the PC. The SKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: This is not a physical register. It is an indirect pointer that addresses another register. The contents returned is the value contained in the addressed register.

TABLE 3-3:	111117	NITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)							
Register	Applicable Devices		Power-on Reset	MCLR Reset WDT Reset Reset Instruction Stack Over/Underflow Reset	Wake-up via WDT or Interrupt				
POSTINC2	601	801	(Note 5)	(Note 5)	(Note 5)				
POSTDEC2	601	801	(Note 5)	(Note 5)	(Note 5)				
PREINC2	601	801	(Note 5)	(Note 5)	(Note 5)				
PLUSW2	601	801	(Note 5)	(Note 5)	(Note 5)				
FSR2H	601	801	0000	0000	uuuu				
FSR2L	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
STATUS	601	801	x xxxx	u uuuu	u uuuu				
TMR0H	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
TMR0L	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
T0CON	601	801	1111 1111	1111 1111	uuuu uuuu				
OSCCON	601	801	00 0-00	uu u-u0	uu u-uu				
LVDCON	601	801	00 0101	00 0101	uu uuuu				
WDTCON	601	801	1111	uuuu	uuuu				
RCON ⁽⁴⁾	601	801	0r-1 11qr	0r-1 qqur	ur-u qqur				
TMR1H	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
TMR1L	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
T1CON	601	801	0-00 0000	u-uu uuuu	u-uu uuuu				
TMR2	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
PR2	601	801	1111 1111	1111 1111	1111 1111				
T2CON	601	801	-000 0000	-000 0000	-uuu uuuu				
SSPBUF	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
SSPADD	601	801	0000 0000	0000 0000	uuuu uuuu				
SSPSTAT	601	801	0000 0000	0000 0000	uuuu uuuu				
SSPCON1	601	801	0000 0000	0000 0000	uuuu uuuu				
SSPCON2	601	801	0000 0000	0000 0000	uuuu uuuu				
ADRESH	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
ADRESL	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
ADCON0	601	801	00 0000	00 0000	uu uuuu				
ADCON1	601	801	-000 0000	-000 0000	-uuu uuuu				
ADCON2	601	801	0000	0000	uuuu				
CCPR1H	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
CCPR1L	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
CCP1CON	601	801	00 0000	00 0000	uu uuuu				

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', $\, q$ = value depends on condition, $\, r$ = reserved, maintain '0'

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (00008h or 00018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are updated with the current value of the PC. The SKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: This is not a physical register. It is an indirect pointer that addresses another register. The contents returned is the value contained in the addressed register.

© 2001-2013 Microchip Technology Inc.

TABLE 3-3:	INITI	NITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)							
Register Applicable Devices			Power-on Reset	MCLR Reset WDT Reset Reset Instruction Stack Over/Underflow Reset	Wake-up via WDT or Interrupt				
CCPR2H	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
CCPR2L	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
CCP2CON	601	801	00 0000	00 0000	uu uuuu				
TMR3H	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
TMR3L	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
T3CON	601	801	0000 0000	սսսս սսսս	uuuu uuuu				
SPBRG	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
RCREG	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
TXREG	601	801	xxxx xxxx	սսսս սսսս	uuuu uuuu				
TXSTA	601	801	0000 -01x	0000 -01u	uuuu -uuu				
RCSTA	601	801	0000 000x	0000 000u	uuuu uuuu				
IPR2	601	801	-1 1111	-1 1111	-u uuuu				
PIR2	601	801	-1 0000	-1 0000	-u uuuu (1)				
PIE2	601	801	-1 0000	-1 0000	-u uuuu				
IPR1	601	801	1111 1111	1111 1111	uuuu uuuu				
	601	801	-111 1111	-111 1111	-uuu uuuu				
PIR1	601	801	0000 0000	0000 0000	uuuu uuuu (1)				
	601	801	-000 0000	-000 0000	-uuu uuuu (1)				
PIE1	601	801	0000 0000	0000 0000	uuuu uuuu				
	601	801	-000 0000	-000 0000	-uuu uuuu				
MEMCON	601	801	000000	0000 00	uuuuuu				
TRISJ	601	801	1111 1111	1111 1111	uuuu uuuu				
TRISH	601	801	1111 1111	1111 1111	uuuu uuuu				
TRISG	601	801	1 1111	1 1111	u uuuu				
TRISF	601	801	1111 1111	1111 1111	uuuu uuuu				
TRISE	601	801	1111 1111	1111 1111	uuuu uuuu				
TRISD	601	801	1111 1111	1111 1111	uuuu uuuu				
TRISC	601	801	1111 1111	1111 1111	uuuu uuuu				
TRISB	601	801	1111 1111	1111 1111	uuuu uuuu				
TRISA	601	801	11 1111	11 1111	uu uuuu				
LATG	601	801	x xxxx	u uuuu	u uuuu				
LATF	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
LATE	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu				
	hongo	1		ed bit read as '0' α = value dep					

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition,

r = reserved, maintain '0'

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (00008h or 00018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are updated with the current value of the PC. The SKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: This is not a physical register. It is an indirect pointer that addresses another register. The contents returned is the value contained in the addressed register.

TABLE 3-3.	1111117		LIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)					
Register	Applicable Devices		Power-on Reset	MCLR Reset WDT Reset Reset Instruction Stack Over/Underflow Reset	Wake-up via WDT or Interrupt			
LATD	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATC	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATB	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATA	601	801	xx xxxx	uu uuuu	uu uuuu			
PORTJ	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTH	601	801	0000 xxxx	0000 uuuu	uuuu uuuu			
PORTG	601	801	x xxxx	u uuuu	u uuuu			
PORTF	601	801	xxxx x000	uuuu u000	uuuu uuuu			
PORTE	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTD	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTC	601	801	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTB	601	801	xxxx xxxx	սսսս սսսս	սսսս սսսս			
PORTA	601	801	0x 0000	0u 0000	uu uuuu			
CSEL2	601	801	1111 1111	սսսս սսսս	սսսս սսսս			
CSELIO	601	801	1111 1111	uuuu uuuu	uuuu uuuu			

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', $\,q$ = value depends on condition, $\,r$ = reserved, maintain '0'

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (00008h or 00018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH, and TOSL are updated with the current value of the PC. The SKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: This is not a physical register. It is an indirect pointer that addresses another register. The contents returned is the value contained in the addressed register.

39541a.book Page 38 Tuesday, January 29, 2013 2:34 PM

PIC18C601/801

NOTES:

 \bigcirc

 $\overline{\mathbf{\Phi}}$

DS39541B-page 38

4.0 MEMORY ORGANIZATION

There are two memory blocks in PIC18C601/801 devices. These memory blocks are:

- Program Memory
- Data Memory

Each block has its own bus so that concurrent access can occur.

4.1 Program Memory Organization

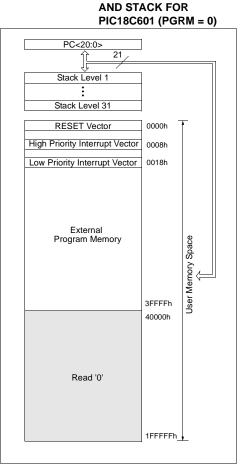
PIC18C601/801 devices have a 21-bit program counter that is capable of addressing up to 2 Mbyte of external program memory space. The PIC18C601 has an external program memory address space of 256 Kbytes. Any program fetch or TBLRD from a program location greater than 256K will return all NOPS. The PIC18C801 has an external program memory address space of 2Mbytes. Refer to Section 5.0 ("External Memory Interface") for additional details.

The RESET vector address is mapped to 00000h and the interrupt vector addresses are at 000008h and 000018h. PIC18C601/801 devices have a 31-level stack to store the program counter values during subroutine calls and interrupts. Figure 4-1 shows the program memory map and stack for PIC18C601. Figure 4-2 shows the program memory map and stack for the PIC18C801.

4.1.1 "BOOT RAM" PROGRAM MEMORY

PIC18C601/801 devices have a provision for configuring the last 512 bytes of general purpose user RAM as program memory, called "Boot RAM". This is achieved by configuring the PGRM bit in the MEMCON register to '1'. (Refer to Section 5.0, "External Memory Interface" for more information.) When the PGRM bit is '1', the RAM located in data memory locations 400h through 5FFh (bank 4 through 5) is mapped to program memory locations 1FFE00h to 1FFFFFh.

When configured as program memory, the Boot RAM is to be used as a temporary "boot loader" for programming purposes. It can only be used for program execution. A read from locations 400h to 5FFh in data memory returns all '0's. Any attempt to write this RAM as data memory when PGRM = 1, does not modify any of these locations. TBLWT instructions to these locations will cause writes to occur on the external memory bus. The boot RAM program memory cannot be modified using TBLWT instruction. TBLRD instructions from boot RAM will read memory located on the external memory bus, not from the on-board RAM. Constants that are stored in boot RAM are retrieved using the RETLW instruction.


The default RESET state (power-up) for the PGRM bit is '0', which configures 1.5K of data RAM and all program memory as external. The PGRM bit can be set and cleared in the software.

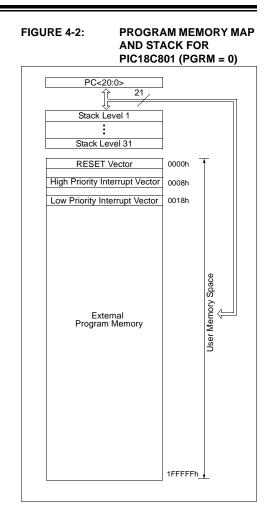

When execution takes place from "Boot RAM", the external system bus and all of its control signals will be deactivated. If execution takes place from outside of "Boot RAM", the external system bus and all of its control signals are activated again.

Figure 4-3 and Figure 4-4 show the program memory map and stack for PIC18C601 and PIC18C801, when the PGRM bit is set.

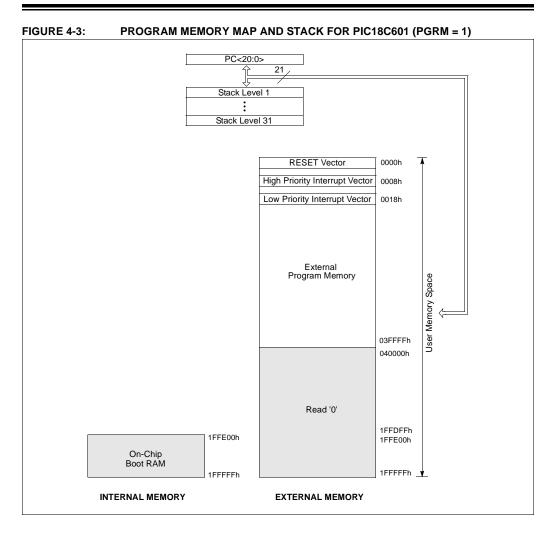
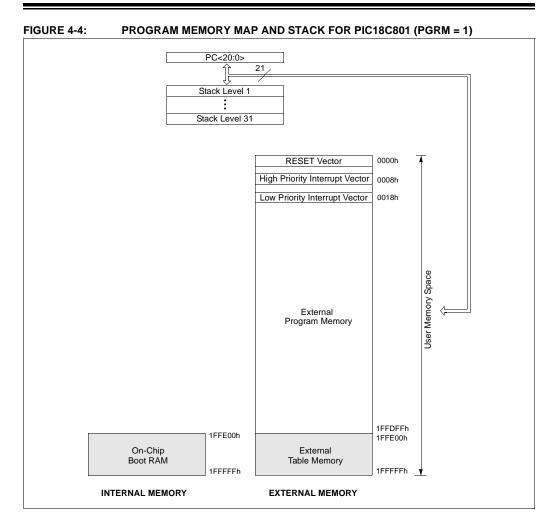

PROGRAM MEMORY MAP

FIGURE 4-1:



DS39541B-page 40

© 2001-2013 Microchip Technology Inc.

DS39541B-page 42

4.1.2 BOOT LOADER

When configured as Program Memory, Boot RAM can be used as a temporary "Boot Loader" for programming purposes. If an external memory device is used as program memory, any updates performed by the user program will have to be performed in the "Boot RAM", because the user program cannot program and fetch from external memory, simultaneously.

A typical boot loader execution and external memory programming sequence would be as follows:

- The boot loader program is transferred from the external program memory to the last 2 banks of data RAM by TBLRD and MOVWF instructions.
- Once the "boot loader" program is loaded into internal memory and verified, open combination lock and set PGRM bit to configure the data RAM into program RAM.
- Jump to beginning of Boot code in Boot RAM. Program execution begins in Boot RAM to begin programming the external memory. System bus changes to an inactive state.
- Boot loader program performs the necessary external TBLWT and TBLWRD instructions to perform programming functions.
- When the boot loader program is finished programming external memory, jump to known valid external program memory location and clear PGRM bit in MEMCON register to set Boot RAM as data memory, or reset the part.

4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a PUSH, CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the return instructions.

The stack operates as a 31-word by 21-bit stack memory and a five-bit stack pointer, with the stack pointer initialized to 0000b after all RESETS. There is no RAM associated with stack pointer 00000b. This is only a RESET value. During a CALL type instruction, causing a push onto the stack, the stack pointer is first incremented and the RAM location pointed to by the stack pointer is written with the contents of the PC. During a RETURN type instruction, causing a pop from the stack, the contents of the RAM location indicated by the STKPTR is transferred to the PC and then the stack pointer is decremented.

The stack space is not part of either program or data space. The stack pointer is readable and writable, and the data on the top of the stack is readable and writable through SFR registers. Status bits STKOVF and STKUNF in STKPTR register, indicate whether stack over/underflow has occurred or not.

4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL, allow access to the contents of the stack location indicated by the STKPTR register. This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user should disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the stack pointer value, the STKFUL (stack full) status bit, and the STKUNF (stack underflow) status bits. Register 4-1 shows the STKPTR register. The value of the stack pointer can be 0 through 31. The stack pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At RESET, the stack pointer value will be 0. The user may read and write the stack pointer value. This feature can be used by a Real Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR. Any subsequent push operation that causes stack overflow will be ignored.

The action that takes place when the stack becomes full, depends on the state of STVREN (stack overflow RESET enable) configuration bit in CONFIG4L register. Refer to Section 4.2.4 for more information. If STVREN is set (default), stack over/underflow will set the STKFUL bit, and reset the device. The STKFUL bit will remain set and the stack pointer will be set to 0.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the stack pointer will increment to 31. All subsequent push attempts will be ignored and STKPTR remains at 31.

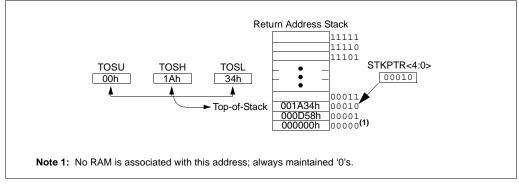
When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at 0. The STKUNF bit will remain set until cleared in software, or a POR occurs.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the RESET vector, where the stack conditions can be verified and appropriate actions can be taken.

© 2001-2013 Microchip Technology Inc.

REGISTER 4-1:

ER 4-1: STKPTR - STACK POINTER REGISTER


R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0
bit 7							bit 0

- bit 7 STKFUL: Stack Full Flag bit 1 = Stack became full or overflowed
 - 0 = Stack has not become full or overflowed
- bit 6 STKUNF: Stack Underflow Flag bit
 - 1 = Stack underflow occurred
 - 0 = Stack underflow did not occur
- bit 5 Unimplemented: Read as '0'
- bit 4-0 SP4:SP0: Stack Pointer Location bits

Mater	Dit 7 and hit C as a sub	the cleaned in the cash and	
Note:	Bit / and bit 6 can only	/ be cleared in user software.	or by a POR.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

FIGURE 4-5: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pop values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the stack pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The POP instruction discards the current TOS by decrementing the stack pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These RESETS are enabled/disabled by programming the STVREN configuration bit in CONFIG4L register.

When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a RESET. When the STVREN bit is enabled, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a RESET. The STKFUL or STKUNF bits are only cleared by the user software or a POR.

4.3 Fast Register Stack

A "fast return" option is available for interrupts and calls. A fast register stack is provided for the STATUS, WREG and BSR registers, and is only one layer in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the fast register stack are then loaded back into the working registers, if the fast return instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a fast call instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

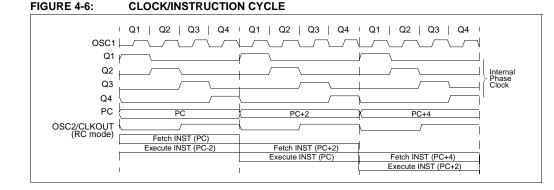
EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
•	
-	
•	
SUB1 •	
•	
-	
RETURN FAST	RESTORE VALUES SAVED
	;IN FAST REGISTER STACK
	•

© 2001-2013 Microchip Technology Inc.

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register may be performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.


The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSb of the PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (See Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

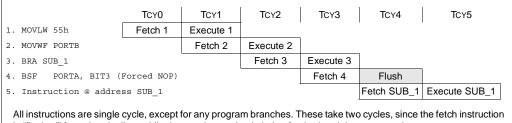
The clock input (from OSC1 or PLL output) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-6.

DS39541B-page 46

4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined, such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), two cycles are required to complete the instruction (Example 4-2).

A fetch cycle begins with the program counter (PC) incrementing in Q1.


In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

4.7 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = '0'). Figure 4-1 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4).

The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-1 shows how the instruction "GOTO 0x06" is encoded in the program memory. Program branch instructions that encode a relative address offset operate in the same manner. The offset value stored in a branch instruction represents the number of single word instructions by which the PC will be offset. Section 20.0 provides further details of the instruction set.

EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW

is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

TABLE 4-1: INSTRUCTIONS IN PROGRAM MEMORY

Instruction	Opcode	Memory	Address
_	—	—	000007h
MOVLW 055h	0E55h	55h	000008h
		0Eh	000009h
GOTO 000006h	EF03h, F000h	03h	00000Ah
		EFh	00000Bh
		00h	00000Ch
		F0h	00000Dh
MOVFF 123h, 456h	C123h, F456h	23h	00000Eh
		C1h	00000Fh
		56h	000010h
		F4h	000011h
_	—	—	000012h

© 2001-2013 Microchip Technology Inc.

4.7.1 TWO-WORD INSTRUCTIONS

PIC18C601/801 devices have four two-word instructions: MOVFF, CALL, GOTO and LFSR. The second word of these instructions has the four MSB's set to 1's and is a special kind of NOP instruction. The lower 12 bits of the second word contain data to be used by the instruction. If the first word of the instruction is executed, the data in the second word is accessed. If the second word of the instruction is executed by itself (first word was skipped), it will execute as a NOP. This action is necessary when the two-word instruction is preceded by a conditional instruction that changes the PC and skips one instruction. A program example that demonstrates this concept is shown in Example 4-3. Refer to Section 19.0 for further details of the instruction set.

4.8 Lookup Tables

Lookup tables are implemented two ways:

- Computed GOTO
- Table Reads

4.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL).

A lookup table can be formed with an ADDWF PCL instruction and a group of RETLW 0xnn instructions. WREG is loaded with an offset into the table, before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW 0xnn instructions that returns the value 0xnn to the calling function.

EXAMPLE 4-3: Two-Word Instructions

The offset value (value in WREG) specifies the number of bytes that the program counter should advance.

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

Warning: The LSb of the PCL is fixed to a value of '0'. Hence, computed GOTO to an odd address is not possible.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows 2 bytes of data to be stored in each instruction location.

Lookup table data may be stored as 2 bytes per program word by using table reads and writes. The table pointer (TBLPTR) specifies the byte address and the table latch (TABLAT) contains the data that is read from, or written to, program memory. Data is transferred to/from program memory one byte at a time.

A description of the Table Read/Table Write operation is shown in Section 6.0.

Note:	If execution is taking place from Boot RAM				
	Program Me	emory,	RETLW	instruc	tions
	must be used	to rea	id lookup	values	from
	the Boot RAM	1 itself.			

CASE 1.					
Object Code			Source Code		
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?		
1100 0001 0010 0011	MOVFF	REG1, REG2	; No, execute 2-word instruction		
1111 0100 0101 0110			; 2nd operand holds address of REG2		
0010 0100 0000 0000	ADDWF	REG3	; continue code		
		CA	SE 2:		
Object Code			Source Code		
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?		
1100 0001 0010 0011	MOVFF	REG1, REG2	; Yes		
1111 0100 0101 0110			; 2nd operand executed as NOP		
0010 0100 0000 0000	ADDWF	REG3	; continue code		

CASE 1

4.9 Data Memory Organization

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. Figure 4-8 shows the data memory organization for PIC18C601/801 devices.

The data memory map is divided into banks that contain 256 bytes each. The lower four bits of the Bank Select Register (BSR<3:0>) select which bank will be accessed. The upper 4 bits for the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR). The SFR's are used for control and status of the controller and peripheral functions, while GPR's are used for data storage and scratch pad operations in the user's application. The SFR's start at the last location of Bank 15 (0FFFh) and grow downwards. GPR's start at the first location of Bank 0 and grow upwards. Any read of an unimplemented location will read as '0's.

GPR banks 4 and 5 serve as a Program Memory called "Boot RAM", when PGRM bit in MEMCON is set. When PGRM bit is set, any read from "Boot RAM" returns '0's, while any write to it is ignored.

The entire data memory may be accessed directly or indirectly. Direct addressing may require the use of the BSR register. Indirect addressing requires the use of a File Select Register (FSR). Each FSR holds a 12-bit address value that can be used to access any location in the Data Memory map without banking.

The instruction set and architecture allow operations across all banks. This may be accomplished by indirect addressing, or by the use of the MOVFF instruction. The MOVFF instruction is a two-word/two-cycle instruction that moves a value from one register to another.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15 comprise the Access bank. Section 4.10 provides a detailed description of the Access bank.

4.9.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly. Indirect addressing operates through the File Select Registers (FSR). The operation of indirect addressing is shown in Section 4.12.

PIC18C601/801 devices have banked memory in the GPR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other RESETS.

Data RAM is available for use as GPR registers by all instructions. Bank 15 (0F80h to 0FFFh) contains SFR's. All other banks of data memory contain GPR registers starting with bank 0.

4.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 4-2.

The SFR's can be classified into two sets: those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations are unimplemented and read as '0's. See Table 4-2 for addresses for the SFRs.

4.9.3 SECURED ACCESS REGISTERS

PIC18C601/801 devices contain software programming options for safety critical peripherals. Because these safety critical peripherals can be programmed in software, registers used to control these peripherals are given limited access by the user code. This way, errant code will not accidentally change settings in peripherals that could cause catastrophic results.

The registers that are considered safety critical are the Watchdog Timer register (WDTCON), the External Memory Control register (MEMCON), the Oscillator Control register (OSCCON) and the Chip Select registers (CSSEL2 and CSELIO).

Two bits called Combination Lock (CMLK) bits, located in the lower two bits of the PSPCON register, must be set in sequence by user code to gain access to Secured Access registers.

© 2001-2013 Microchip Technology Inc.

REGISTER 4-2: PSPCON REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	W-0	W-0
_	—	—	—	—	—	CMLK1	CMLK0
bit 7	•						bit 0

bit 7-2 Unimplemented: Read as '0'

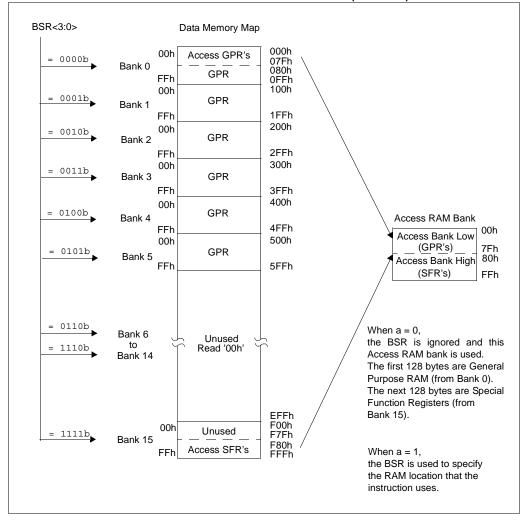
bit 1-0 CMLK<1:0>: Combination Lock bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The Combination Lock bits must be set sequentially, meaning that as soon as Combination Lock bit CMLK1 is set, the second Combination Lock bit CMLK0 must be set on the following instruction cycle. If user waits more than one machine cycle to set the second bit after setting the first, both bits will automatically be cleared in hardware and the lock will remain closed. To satisfy this condition, all interrupts must be disabled before attempting to unlock the Combination Lock. Once secured registers are modified, interrupts may be re-enabled.

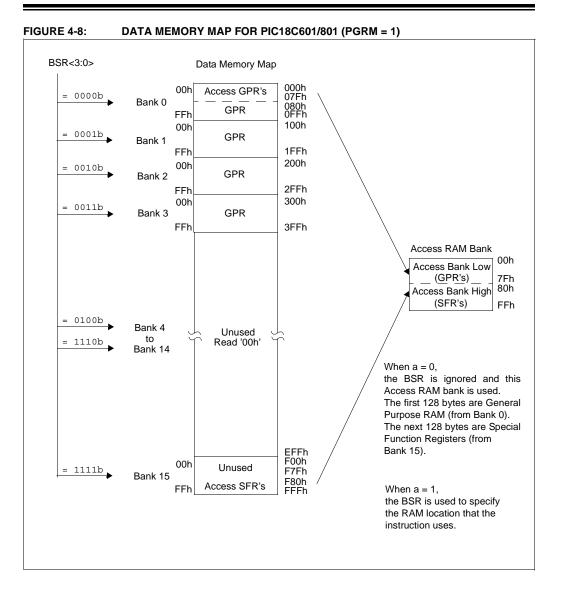
Each instruction must only modify one combination lock bit at a time. This means, user code must use the BSF instruction to set CMLK bits in the PSPCON register.

Note: The Combination Lock bits are write-only bits. These bits will always return '0' when read. When the Combination Lock is opened, the user will have three instruction cycles to modify the safety critical register of choice. After three instruction cycles have expired, the CMLK bits are cleared, the lock will close and the user will have to set the CMLK bits again, in order to open the lock. Since there are only three instruction cycles allowed after the Combination Lock is opened, if a subroutine is used to unlock Combination Lock bits, user code must preload WREG with the desired value, call unlock subroutine, and write to the desired safety critical register itself.


Note: Successive attempts to unlock the Combination Lock must be separated by at least three instruction cycles.

EXAMPLE 4-4: COMBINATION UNLOCK SUBROUTINE EXAMPLE CODE

MOVLW 5Ah	; Preload WREG with data to be stored in a safety critical register
BCF INTCON, GIE	; Disable all interrupts
CALL UNLOCK	; Now unlock it
	; Write must take place in next instruction cycle
MOVWF OSCCON	
	; Lock is closed
BSF INTCON, GIE	; Re-enable interrupts
•	
•	
UNLOCK	
BSF PSPCON, CMLK1	
BSF PSPCON, CMLK0	
RETURN	
•	
•	


EXAMPLE 4-5: COMBINATION UNLOCK MACRO EXAMPLE CODE

UNLOCK_N_MODIFY @REG	MACRO	
	BCF INTCON, GIE	; Disable interrupts
	BSF PSPCON, CMLK1	
	BSF PSPCON, CMLK0	
	MOVWF @REG	; Modify given register
	BSF INTCON, GIE	; Enable interrupts
	ENDM	
•		
•		
	MOVLW 5Ah	; Preload WREG for OSCCON register
	UNLOCK_N_MODIFY OSCCON	; Modify OSCCON

FIGURE 4-7: THE DATA MEMORY MAP FOR PIC18C801/601 (PGRM = 0)

© 2001-2013 Microchip Technology Inc.

DS39541B-page 52

۲

FIGURE 4-9:

SPECIAL FUNCTION REGISTER MAP

FFFh	TOSU	FDFh	INDF2	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2	FBCh	CCPR2H	F9Ch	MEMCON
FFBh	PCLATU	FDBh	PLUSW2	FBBh	CCPR2L	F9Bh	
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	TRISJ
FF9h	PCL	FD9h	FSR2L	FB9h	Reserved	F99h	TRISH
FF8h	TBLPTRU	FD8h	STATUS	FB8h	Reserved	F98h	TRISG
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	Reserved	F97h	TRISF
FF6h	TBLPTRL	FD6h	TMR0L	FB6h		F96h	TRISE
FF5h	TABLAT	FD5h	T0CON	FB5h	—	F95h	TRISD
FF4h	PRODH	FD4h	Reserved	FB4h	—	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ
FF0h	INTCON3	FD0h	RCON	FB0h	PSPCON	F90h	LATH
FEFh	INDF0	FCFh	TMR1H	FAFh	SPBRG	F8Fh	LATG
FEEh	POSTINC0	FCEh	TMR1L	FAEh	RCREG	F8Eh	LATF
FEDh	POSTDEC0	FCDh	T1CON	FADh	TXREG	F8Dh	LATE
FECh	PREINC0	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD
FEBh	PLUSW0	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh		F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h		F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h		F88h	PORTJ
FE7h	INDF1	FC7h	SSPSTAT	FA7h	CSEL2	F87h	PORTH
FE6h	POSTINC1	FC6h	SSPCON1	FA6h	CSELIO	F86h	PORTG
FE5h	POSTDEC1	FC5h	SSPCON2	FA5h	—	F85h	PORTF
FE4h	PREINC1	FC4h	ADRESH	FA4h		F84h	PORTE
FE3h	PLUSW1	FC3h	ADRESL	FA3h		F83h	PORTD
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

۲

PIC18C601/801

IADL	E 4-2:	REGIST	ER FILE S								Materia
Fi	le Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS ⁽¹⁾
FFFh	TOSU	—	—		Top-of-Stac	k Upper Byte	e (TOS<20:16	ô>)		0 0000	0 0000
FFEh	TOSH	Top-of-Stack	High Byte (T	OS<15:8>)						0000 0000	0000 0000
FFDh	TOSL	Top-of-Stack	Low Byte (TO	DS<7:0>)						0000 0000	0000 0000
FFCh	STKPTR	STKOVF	STKUNF	I	Return Stac	k Pointer				00-0 0000	00-0 0000
FFBh	PCLATU	_	_	_	Holding Re	gister for PC	<20:16>			0 0000	0 0000
FFAh	PCLATH	Holding Reg	ister for PC<1	5:8>						0000 0000	0000 0000
FF9h	PCL	PC Low Byte	e (PC<7:0>)							0000 0000	0000 0000
FF8h	TBLPTRU	_	r Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)							r0 0000	r0 0000
FF7h	TBLPTRH	Program Me	rogram Memory Table Pointer High Byte (TBLPTR<15:8>)						0000 0000	0000 0000	
FF6h	TBLPTRL	Program Me	mory Table Po	pinter Low By	e (TBLPTR<	7:0>)				0000 0000	0000 0000
FF5h	TABLAT	Program Me	mory Table La	atch						0000 0000	0000 0000
FF4h	PRODH	Product Reg	ister High Byt	е						xxxx xxxx	uuuu uuuu
FF3h	PRODL	Product Reg	ister Low Byte	e						xxxx xxxx	uuuu uuuu
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0E	RBIE	TMR0IF	INTOF	RBIF	0000 000x	0000 000u
FF1h	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	T0IP	_	RBIP	1111 -1-1	1111 -1-1
FF0h	INTCON3	INT2P	INT1P	-	INT2E	INT1E	_	INT2F	INT1F	11-0 0-00	11-0 0-00
FEFh	INDF0	Uses conten	ts of FSR0 to	address data	memory - val	ue of FSR0	not changed	(not a physic	al register)	N/A	N/A
FEEh	POSTINC0	Uses content	ts of FSR0 to a	iddress data m	emory - value	of FSR0 pos	st-incremente	d (not a physi	cal register)	N/A	N/A
FEDh	POSTDEC0		ses contents of FSR0 to address data memory - value of FSR0 post-decremented tot a physical register)							N/A	N/A
FECh	PREINC0		Jses contents of FSR0 to address data memory - value of FSR0 pre-incremented not a physical register)							N/A	N/A
FEBh	PLUSW0	Uses conten (not a physic	ts of FSR0 to al register)	address data	memory -valu	ue of FSR0 o	offset by WRE	G		N/A	N/A
FEAh	FSR0H	_	—	_	_	Indirect Dat	ta Memory Ad	ddress Pointe	er 0 High	xxxx	uuuu
FE9h	FSR0L	Indirect Data	Memory Add	ress Pointer (Low Byte					xxxx xxxx	uuuu uuuu
FE8h	WREG	Working Reg	gister							xxxx xxxx	uuuu uuuu
FE7h	INDF1	Uses conten	ts of FSR1 to	address data	memory - val	ue of FSR1	not changed	(not a physic	al register)	N/A	N/A
FE6h	POSTINC1	Uses conten (not a physic	ts of FSR1 to al register)	address data	memory - val	ue of FSR1	post-increme	nted		N/A	N/A
FE5h	POSTDEC1	Uses conten (not a physic	ts of FSR1 to cal register)	address data	memory - val	ue of FSR1	post-decreme	ented		N/A	N/A
FE4h	PREINC1	Uses conten	ts of FSR1 to a	address data r	nemory - valu	e of FSR1 pr	e-incremented	d (not a physi	cal register)	N/A	N/A
FE3h	PLUSW1	Uses content	ts of FSR1 to a	address data n	nemory - valu	e of FSR1 of	fset by WREC	G (not a physi	ical register)	N/A	N/A
FE2h	FSR1H	—	—	_	_	Indirect Dat	ta Memory Ad	ddress Pointe	er 1 High	xxxx	uuuu
FE1h	FSR1L	Indirect Data	Memory Add	ress Pointer 1	Low Byte					xxxx xxxx	uuuu uuuu
FE0h	BSR	_	—	_	_	Bank Selec	t Register			0000	0000
FDFh	INDF2	Uses conten	ts of FSR2 to	address data	memory - val	ue of FSR2	not changed	(not a physic	al register)	N/A	N/A
FDEh	POSTINC2	Uses content	s of FSR2 to a	iddress data m	emory - value	of FSR2 pos	st-incremente	d (not a physi	cal register)	N/A	N/A
FDDh	POSTDEC2		Jses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register) Jses contents of FSR2 to address data memory - value of FSR2 post-decremented not a physical register)						N/A	N/A	
FDCh	PREINC2	Uses conten	Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical registe						cal register)	N/A	N/A
FDBh	PLUSW2	Uses conten	Jses contents of FSR2 to address data memory -value of FSR2 offset by WREG (not a physical regis						cal register)	N/A	N/A
FDAh	FSR2H	_	— — — Indirect Data Memory Address Pointer 2 Hig					er 2 High	xxxx	uuuu	
FD9h	FSR2L	Indirect Data	tirect Data Memory Address Pointer 2 Low Byte							xxxx xxxx	uuuu uuuu
	STATUS				N	OV	7	DC	С	x xxxx	u uuuu

Legend x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved

 Note 1: Other (non-power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

 2: These registers can only be modified when the Combination Lock is open.

 3: These registers are available on PIC18C801 only.

Advance Information

© 2001-2013 Microchip Technology Inc.

IADL	.C 4-2.	REGISTI			- FIG10			INVED)			
Fi	ile Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS ⁽¹⁾
FD7h	TMR0H	Timer0 Regi	ster High Byte	9					•	0000 0000	0000 0000
FD6h	TMR0L	Timer0 Regi	ster Low Byte							xxxx xxxx	uuuu uuuu
FD5h	T0CON	TMR0ON	16BIT	TOCS	TOSE	T0PS3	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
FD4h	Reserved									rrrr rrrr	rrrr rrrr
FD3h	OSCCON ⁽²⁾	_	_	_	_	LOCK	PLLEN	SCS1	SCS0	0000	uuu0
FD2h	LVDCON ⁽²⁾	_	_	IRVST	LVDEN	LVV3	LVV2	LVV1	LVV0	00 0101	00 0101
FD1h	WDTCON ⁽²⁾	_	_	_	_	WDPS2	WDPS1	WDPS0	SWDTEN	0000	xxxx
FD0h	RCON	IPEN	r	_	RI	TO	PD	POR	r	00-1 11qq	00-q qquu
FCFh	TMR1H	Timer1 Regi	ster High Byte	9						xxxx xxxx	uuuu uuuu
FCEh	TMR1L	Timer1 Regi	I Register Low Byte								uuuu uuuu
FCDh	T1CON	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	u-uu uuuu
FCCh	TMR2	Timer2 Regi	ster							0000 0000	0000 0000
FCBh	PR2	Timer2 Perio	d Register							1111 1111	1111 1111
FCAh	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
FC9h	SSPBUF	SSP Receive	e Buffer/Trans	mit Register						xxxx xxxx	uuuu uuuu
FC8h	SSPADD	SSP Addres	s Register in I	² C Slave Mod	e. SSP Baud	Rate Reload	d Register in	I ² C Master N	lode	0000 0000	0000 0000
FC7h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
FC6h	SSPCON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
FC5h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
FC4h	ADRESH	A/D Result F	Register High	Byte						xxxx xxxx	uuuu uuuu
FC3h	ADRESL	A/D Result F	Register Low E	Byte						xxxx xxxx	uuuu uuuu
FC2h	ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
FC1h	ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
FC0h	ADCON2	ADFM	_	_	-	_	ADCS2	ADCS1	ADCS0	0000	0000
FBFh	CCPR1H	Capture/Cor	npare/PWM R	Register1 High	Byte					xxxx xxxx	uuuu uuuu
FBEh	CCPR1L	Capture/Cor	npare/PWM R	Register1 Low I	Byte					xxxx xxxx	uuuu uuuu
FBDh	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
FBCh	CCPR2H	Capture/Cor	npare/PWM R	Register2 High	Byte					xxxx xxxx	uuuu uuuu
FBBh	CCPR2L	Capture/Cor	npare/PWM R	Register2 Low I	Byte					xxxx xxxx	uuuu uuuu
FBAh	CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	uu uuuu
FB9h	Reserved									rrrr rrrr	rrrr rrrr
FB8h	Reserved									rrrr rrrr	rrrr rrrr
FB7h	Reserved									rrrr rrrr	rrrr rrrr
FB6h											
FB5h											
FB4h											
FB3h	TMR3H	Timer3 Regi	ster High Byte	9						xxxx xxxx	uuuu uuuu
FB2h	TMR3L	Timer3 Regi	ster Low Byte							xxxx xxxx	uuuu uuuu
FB1h	T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu
											*

TABLE 4-2: **REGISTER FILE SUMMARY - PIC18C601/801 (CONTINUED)**

 Legn
 I3CUP
 I3CUP2
 I3CUP51
 <thI3CUP51</th>
 <thI3CUP51</th>
 <thI3CUP51

TABL	.E 4-2:	REGISTE	ER FILE S	SUMMAR	Y - PIC18	BC601/80	1 (CON	TINUED)			
F	ile Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS ⁽¹⁾
FB0h	PSPCON	—	—	_	_	—	_	CMLK1	CMLK0	0	0 00
FAFh	SPBRG	USART Bau	d Rate Gener	ator		·		·		0000 000	0000 0000
FAEh	RCREG	USART Rec	eive Register							0000 000	0000 0000
FADh	TXREG	USART Tran	smit Register		1		1	1		0000 000	0000 0000
FACh	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -01	0000 -010
FABh	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 0003	< 0000 000x
FAAh											
FA9h											
FA8h	(2)				1	1	[1	1		
FA7h	CSEL2 ⁽²⁾	CSL7	CSL6	CSL5	CSL4	CSL3	CSL2	CSL1	CSL0	1111 1111	
FA6h	CSELIO ⁽²⁾	CSI07	CSIO6	CSI05	CSIO4	CSIO3	CSIO2	CSIO1	CSIO0	1111 1111	L uuuu uuuu
FA5h											
FA4h											
FA3h FA2h	IPR2				T	BCLIP	LVDIP	TMR3IP	CCP2IP	111:	L 1111
FA2n FA1h	PIR2					BCLIF	LVDIF	TMR3IF TMR3IF	CCP2IP CCP2IF	000	
FA0h	PIE2					BCLIE	LVDIE	TMR3IF	CCP2IF CCP2IE	000	
F9Fh	IPR1		ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-111 1111	
F9Eh	PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 000	
F9Dh	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 000	
F9Ch	MEMCON ⁽²⁾	EBDIS	PGRM	WAIT1	WAIT0	_	_	WM1	WM0	00000	
F9Bh					1						
F9Ah	TRISJ ⁽³⁾	Data Directio	on Control Re	gister for POR	TJ					1111 111	1 1111 1111
F99h	TRISH(3)	Data Directio	on Control Re	gister for POR	TH					1111 111	1 1111 1111
F98h	TRISG	_	_	_	Read POR	TG Data Late	ch, Write POF	RTG Data La	tch	1 1111	1 1111
F96h	TRISF	Read PORT	F Data Latch,	Write PORTF	Data Latch					1111 111	1 1111 1111
F96h	TRISE	Data Directio	on Control Re	gister for POR	TE					1111 111	1 1111 1111
F95h	TRISD	Data Directio	on Control Re	gister for POR	TD					1111 1111	1 1111 1111
F94h	TRISC	Data Directio	on Control Re	gister for POR	TC					1111 111	1 1111 1111
F93h	TRISB	Data Directio	on Control Re	gister for POR	ТВ					1111 111	1 1111 1111
F92h	TRISA	—	—	Data Directio	on Control Re	gister for PC	ORTA			11 1111	l11 1111
F91h	LATJ ⁽³⁾	Read PORT	J Data Latch,	Write PORTJ	Data Latch					XXXX XXX	k uuuu uuuu
F90h	LATH ⁽³⁾	Read PORT	H Data Latch,	Write PORTH	Data Latch					XXXX XXXX	e uuuu uuuu
F8Fh	LATG	_	—	_	Read POR	TG Data Late	ch, Write POF	RTG Data La	tch	x xxxx	<u td="" uuuu<=""></u>
F8Eh	LATF			Write PORTF						XXXX XXX	e uuuu uuuu
F8Dh	LATE			Write PORTE						XXXX XXXX	< uuuu uuuu
F8Ch	LATD		tead PORTD Data Latch, Write PORTD Data Latch							XXXX XXXX	< uuuu uuuu
F8Bh	LATC		ead PORTC Data Latch, Write PORTC Data Latch							XXXX XXX	
F8Ah	LATB	Read PORT	tead PORTB Data Latch, Write PORTB Data Latch							XXXX XXX	
F89h	LATA	-	— Read PORTA Data Latch, Write PORTA Data Latch							xx xxx	
F88h	PORTJ ⁽³⁾			PORTJ Data L						XXXX XXX	
F87h	PORTH ⁽³⁾	Read PORT	ad PORTH pins, Write PORTH Data Latch							XXXX XXX	
F86h	PORTG	-				i G pins, Wri	te PORTG Da	ata Latch		x xxx	
F85h	PORTF			PORTF Data I						xxxx xx0	0 uuuu uu00

 $\label{eq:logistical_logistical$

 Note 1: Other (non-power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

 2: These registers can only be modified when the Combination Lock is open.

 3: These registers are available on PIC18C801 only.

Advance Information

© 2001-2013 Microchip Technology Inc.

REGISTER FILE SUMMARY - PIC18C601/801 (CONTINUED) TABLE 4-2:

Fi	File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						Value on POR	Value on all other RESETS ⁽¹⁾			
F84h	PORTE	Read PORT	ead PORTE Pins, Write PORTE Data Latch								
F83h	PORTD	Read PORTI	Read PORTD pins, Write PORTD Data Latch xxxxx								
F82h	PORTC	Read PORT	C pins, Write I	PORTC Data L	atch					xxxx xxxx	uuuu uuuu
F81h	PORTB	Read PORT	Read PORTB pins, Write PORTB Data Latch								uuuu uuuu
F80h	PORTA	—	Read PORTA pins, Write PORTA Data Latch 0x 0000								0u 0000

x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved Legend

 Note 1: Other (non-power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

 2: These registers can only be modified when the Combination Lock is open.

 3: These registers are available on PIC18C801 only.

© 2001-2013 Microchip Technology Inc.

4.10 Access Bank

The Access Bank is an architectural enhancement that is very useful for C compiler code optimization. The techniques used by the C compiler are also useful for programs written in assembly.

This data memory region can be used for:

- · Intermediate computational values
- Local variables of subroutines
- · Faster context saving/switching of variables
- Common variables
- · Faster evaluation/control of SFR's (no banking)

The Access Bank is comprised of the upper 128 bytes in Bank 15 (SFR's) and the lower 128 bytes in Bank 0. These two sections will be referred to as Access Bank High and Access Bank Low, respectively. Figure 4-8 indicates the Access Bank areas.

A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register, or in the Access Bank.

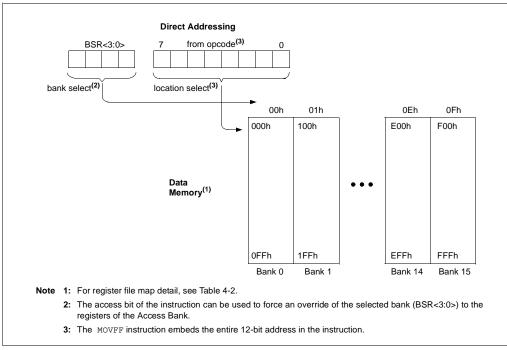
When forced in the Access Bank (a = '0'), the last address in Access Bank Low is followed by the first address in Access Bank High. Access Bank High maps all Special Function Registers so that these registers can be accessed without any software overhead.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's, and writes will have no effect.

A MOVLB instruction has been provided in the instruction set to assist in selecting banks.


If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The STATUS register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to 0FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR, since the 12-bit addresses are embedded into the instruction word.

Section 4.12 provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

FIGURE 4-10: DIRECT ADDRESSING

Advance Information

© 2001-2013 Microchip Technology Inc.

4.12 Indirect Addressing, INDF and FSR Registers

Indirect addressing is a mode of addressing data memory, where the data memory address in the instruction is not fixed. A SFR register is used as a pointer to the data memory location that is to be read or written. Since this pointer is in RAM, the contents can be modified by the program. This can be useful for data tables in the data memory and for software stacks. Figure 4-11 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Indirect addressing is possible by using one of the INDFn ($0 \le n \le 2$) registers. Any instruction using the INDFn register actually accesses the register indicated by the File Select Register, FSRn ($0 \le n \le 2$). Reading the INDFn register itself indirectly (FSRn = '0'), will read 00h. Writing to the INDFn register indirectly, results in a no-operation. The FSRn register contains a 12-bit address, which is shown in Figure 4-11.

Example 4-6 shows a simple use of indirect addressing to clear the RAM in Bank 1 (locations 100h-1FFh) in a minimum number of instructions.

EXAMPLE 4-6: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

LFSR	FSR0, 100h	;	
NEXTCLRF	POSTINC0	;	Clear INDF
		;	register
		;	& inc pointer
BTFSS	FSROH, 1	;	All done
		;	with Bank1?
BRA	NEXT	;	NO, clear next
CONTINUE;			
:		;	YES, continue

There are three indirect addressing registers. To address the entire data memory space (4096 bytes), these registers are 12-bit wide. To store the 12-bits of addressing information, two 8-bit registers are required. These indirect addressing registers are:

- 1. FSR0: composed of FSR0H:FSR0L
- 2. FSR1: composed of FSR1H:FSR1L
- 3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDF0, INDF1 and INDF2, which are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data.

If an instruction writes a value to INDF0, the value will be written to the address indicated by FSR0H:FSR0L. A read from INDF1 reads the data from the address indicated by FSR1H:FSR1L. INDFn can be used in code anywhere an operand can be used. If INDF0, INDF1, or INDF2 are read indirectly via an FSR, all '0's are read (zero bit is set). Similarly, if INDF0, INDF1, or INDF2 are written to indirectly, the operation will be equivalent to a NOP instruction and the STATUS bits are not affected.

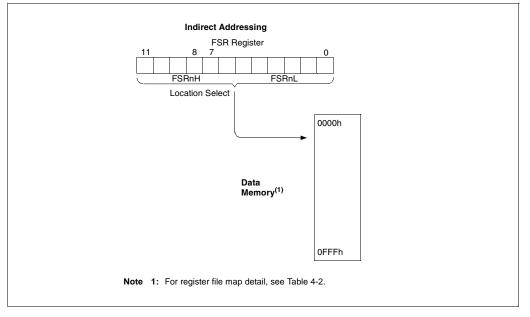
4.12.1 INDIRECT ADDRESSING OPERATION

Each FSR register has an INDF register associated with it, plus four additional register addresses. Performing an operation on one of these five registers determines how the FSR will be modified during indirect addressing.

When data access is done to one of the five INDFn locations, the address selected will configure the FSRn register to:

- Do nothing to FSRn after an indirect access (no change) INDFn
- Auto-decrement FSRn after an indirect access (post-decrement) - POSTDECn
- Auto-increment FSRn after an indirect access (post-increment) - POSTINCn
- Auto-increment FSRn before an indirect access (pre-increment) - PREINCn
- Use the value in the WREG register as an offset to FSRn. Do not modify the value of the WREG or the FSRn register after an indirect access (no change) - PLUSWn

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the STATUS register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.


Incrementing or decrementing an FSR affects all 12 bits. That is, when FSRnL overflows from an increment, FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a software stack pointer, in addition to its uses for table operations in data memory.

Each FSR has an address associated with it that performs an indexed indirect access. When a data access to this INDFn location (PLUSWn) occurs, the FSRn is configured to add the 2's complement value in the WREG register and the value in FSR to form the address before an indirect access. The FSR value is not changed.

If an indirect addressing operation is done where the target address is an FSRnH or FSRnL register, the write operation will dominate over the pre- or post-increment/decrement functions.

DS39541B-page 60

For example, CLRF STATUS will clear all implemented

bits and set the Z bit. This leaves the STATUS register

It is recommended, therefore, that only BCF, BSF,

SWAPF, MOVFF and MOVWF instructions are used to

alter the STATUS register, because these instructions

do not affect the Z, C, DC, OV, or N bits from the

STATUS register. For other instructions which do not

The C and DC bits operate as a borrow and

digit borrow bit respectively, in subtraction.

as ---0 0100 (where - = unimplemented).

affect the status bits, see Table 20-2.

4.13 STATUS Register

The STATUS register, shown in Register 4-3, contains the arithmetic status of the ALU. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV, or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

REGISTER 4-3: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	N	OV	Z	DC	С
bit 7							bit 0

Note:

bit 7-5 Unimplemented: Read as '0'

bit 4 N: Negative bit

This bit is used for signed arithmetic (2's complement). It indicates whether the result of the ALU operation was negative (ALU MSb = 1).

- 1 = Result was negative
- 0 = Result was positive

OV: Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude, which causes the sign bit (bit 7) to change state.

1 = Overflow occurred for signed arithmetic (in this arithmetic operation)

- 0 = No overflow occurred
- bit 2 Z: Zero bit

bit 3

- 1 = The result of an arithmetic or logic operation is zero
- 0 = The result of an arithmetic or logic operation is not zero
- bit 1 DC: Digit carry/borrow bit
 - For arithmetic addition and subtraction instructions
 - 1 = A carry-out from the 4th low order bit of the result occurred
 - 0 = No carry-out from the 4th low order bit of the result
 - Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRCF, RRNCF, RLCF, and RLNCF) instructions, this bit is loaded with either the bit 4, or bit 3 of the source register.

bit 0 C: Carry/borrow bit

- For arithmetic addition and subtraction instructions
- 1 = A carry-out from the most significant bit of the result occurred
- 0 = No carry-out from the most significant bit of the result occurred
 - Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRCF, RLCF) instructions, this bit is loaded with either the high, or low order bit of the source register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.14 RCON Register

The Reset Control (RCON) register contains flag bits that allow differentiation between the sources of a device RESET. These flags include the TO, PD, POR and RI bits. This register is readable and writable.

Note: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent Power-on Resets may be detected.

REGISTER 4-4: RCON REGISTER

R/W-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	U-0
IPEN	r	—	RI	TO	PD	POR	r
bit 7							bit 0

- bit 7 IPEN: Interrupt Priority Enable bit
 - 1 = Enable priority levels on interrupts
 - 0 = Disable priority levels on interrupts (16CXXX compatibility mode)
- bit 6 Reserved: Maintain as '0'

bit 5 Unimplemented: Read as '0'

- bit 4 RI: RESET Instruction Flag bit
 - 1 = The RESET instruction was not executed
 - The RESET instruction was executed causing a device RESET (must be set in software after RESET instruction was executed)
- bit 3 **TO:** Watchdog Time-out Flag bit
 - 1 = After power-up, CLRWDT instruction, or SLEEP instruction
 - 0 = A WDT time-out occurred
- bit 2 PD: Power-down Detection Flag bit
 - 1 = After power-up or by the CLRWDT instruction
 - 0 = By execution of the SLEEP instruction
- bit 1 **POR:** Power-on Reset Status bit
 - 1 = A Power-on Reset has not occurred
 - 0 = A Power-on Reset occurred
 - (must be set in software after a Power-on Reset occurs)
- bit 0 Reserved: Maintain as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
r = Reserved			

R/W-0

R/W-0

5.0 EXTERNAL MEMORY INTERFACE

The External Memory Interface is a feature of the PIC18C601/801 that allows the processor to access external memory devices, such as FLASH, EPROM, SRAM, etc. Memory mapped peripherals may also be accessed.

The External Memory Interface physical implementation includes up to 26 pins on the PIC18C601 and up to 38 pins on the PIC18C801. These pins are reserved for external address/data bus functions.

R/W-0

R/W-0

R/W-0

REGISTER 5-1: MEMCON REGISTER

These pins are multiplexed with I/O port pins, but the I/O functions are only enabled when program execution takes place in internal Boot RAM and the EBDIS bit in the MEMCON register is set (see Register 5-1).

5.1 Memory Control Register (MEMCON)

U-0

Register 5-1 shows the Memory Control Register (MEMCON). This register contains bits used to control the operation of the External Memory Interface.

U-0

	EBDIS	PGRM	WAIT1	WAIT0	_	—	WM1	WM0					
	bit7							bit0					
bit 7	EBDIS: EX	kternal Bus	Disable										
						are mapped	as I/O ports						
	0 = Externa	al system bu	us enabled,	and I/O por	ts are disab	led							
bit 6		PGRM: Program RAM Enable											
		1 = 512 bytes of internal RAM enabled as internal program memory from location 1FFE00h to											
		1FFFFFh, external program memory at these locations is unused. Internal GPR memory from 400h to 5FFh is disabled and returns 00h.											
	0 = Interna	I RAM enab	led as inter	nal GPR me	mory from 4	00h to 5FFh.	Program m	emory from					
	locatio	n 1FFE00h	to 1FFFFF	n is configur	ed as extern	al program m	emory.	•					
bit 5-4	WAIT<1:0	: Table Rea	ads and Wri	tes Bus Cyc	le Wait Cou	nt							
		reads and											
		reads and v											
		reads and											
bit 3-2	Unimplem	ented: Rea	d as '0'										
bit 1-0	WM<1:0>:	TABLWT O	peration wit	th 16-bit Bus	6								
	1X = Word	Write mode	TABLAT0 a	and TABLAT	1 word outpu	ut, WRH active	when TABL	AT1 written					
	01 = Byte \$	 1X = Word Write mode: TABLAT0 and TABLAT1 word output, WRH active when TABLAT1 written 01 = Byte Select mode: TABLAT data copied on both MS and LS Byte, WRH and (UB or LB) will activate 											
	00 = Byte \	Write mode:	TABLAT da	ita copied or	h both MS ar	nd LS Byte, W	RH or WRL	will activate					
	Legend:												

R/W-0

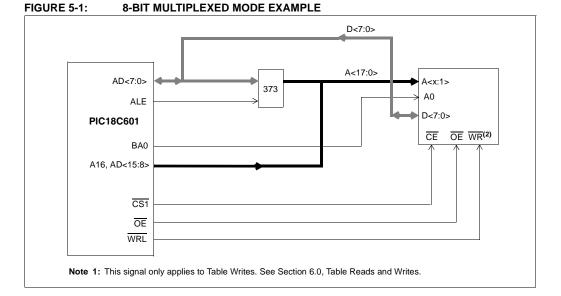
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.2 8-bit Mode

The External Memory Interface can operate in 8-bit mode. The mode selection is not software configurable, but is programmable via the configuration bits.

There are two types of connections in 8-bit mode. They are referred to as:

- 8-bit Multiplexed
- 8-bit De-Multiplexed


5.2.1 8-BIT MULTIPLEXED MODE

The 8-bit Multiplexed mode applies only to the PIC18C601. Data and address lines are multiplexed on port pins and must be decoded with glue logic.

For 8-bit Multiplexed mode on the PIC18C601, the instructions will be fetched as two 8-bit bytes on a shared data/address bus (PORTD). The two bytes are sequentially fetched within one instruction cycle (TcY).

Therefore, the designer must choose external memory devices according to timing calculations based on 1/2 Tcy (2 times instruction rate). For proper memory speed selection, glue logic propagation delay times must be considered along with setup and hold times.

The Address Latch Enable (ALE) pin indicates that the address bits A<7:0> are available on the External Memory Interface bus. The \overline{OE} output enable signal will enable one byte of program memory for a portion of the instruction cycle, then BA0 will change and the second byte will be enabled to form the 16-bit instruction word. The least significant bit of the address, BA0, must be connected to the memory devices in this mode. Figure 5-1 shows an example of 8-bit Multiplexed mode are outlined in Table 5-1. Register 5-2 describes 8-bit Multiplexed mode timing.

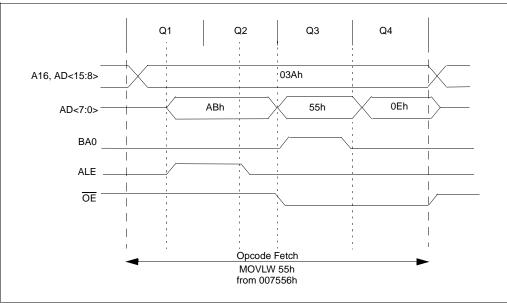


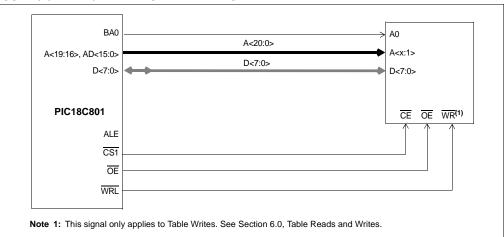
TABLE 5-1: 8-BIT MULTIPLEXED MODE CONTROL SIGNALS

Name	8-bit Mux Mode	Function	
RG0/ALE	ALE	Address Latch Enable (ALE) control pin	
RG1/OE	OE	Output Enable (OE) control pin	
RG2/WRL	WRL	Write Low (WRL) control pin	
RG4/BA0	BA0	Byte address bit 0	
RF3/CSIO	CSIO	Chip Select I/O (See Section 5.4)	
RF5/CS1	CS1	Chip Select 1 (See Section 5.4)	

Advance Information

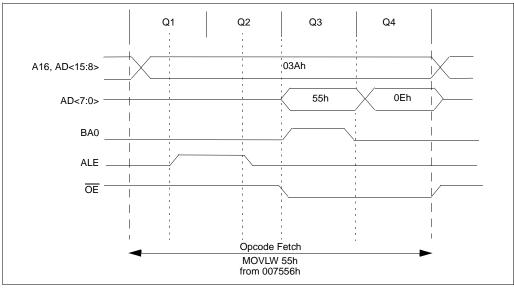
© 2001-2013 Microchip Technology Inc.

FIGURE 5-2: 8-BIT MULTIPLEXED MODE TIMING


5.2.2 8-BIT DE-MULTIPLEXED MODE

The 8-bit De-Multiplexed mode applies only to the PIC18C801. Data and address lines are available separately. External components are not necessary in this mode.

For 8-bit De-Multiplexed mode on the PIC18C801, the instructions are fetched as two 8-bit bytes on a dedicated data bus (PORTJ). The address will be presented for the entire duration of the fetch cycle on a separate address bus. The two instruction bytes are sequentially fetched within one instruction cycle (TcY). Therefore, the designer must choose external memory devices according to timing calculations, based on 1/2 TcY (2 times instruction rate). For proper memory speed selection, setup and hold times must be considered. The Address Latch Enable (ALE) pin is left unconnected, since glue logic is not necessary. The \overline{OE} output enable signal will enable one byte of program memory for a portion of the instruction cycle, then BAO will change and the second byte will be enabled to form the 16-bit instruction word. The least significant bit of the address, BAO, must be connected to the memory devices in this mode. Figure 5-3 shows an example of 8-bit De-Multiplexed mode on the PIC18C801. The control signals used in 8-bit De-Multiplexed mode are outlined in Register 5-2. Register 5-4 describes 8-bit De-Multiplexed mode timing.


8-BIT DE-MULTIPLEXED MODE EXAMPLE

Name	8-bit De-Mux Mode	Function	
RG0/ALE	ALE	Address Latch Enable (ALE) control pin	
RG1/OE	OE	Output Enable (OE) control pin	
RG2/WRL	WRL	Write Low (WRL) control pin	
RG4/BA0	BA0	Byte address bit 0	
RF3/CSIO	CSIO	Chip Select I/O (See Section 5.4)	
RF4/CS2	CS2	Chip Select 2 (See Section 5.4)	
RF5/CS1	CS1	Chip Select 1 (See Section 5.4)	

FIGURE 5-4:

8-BIT DE-MULTIPLEXED MODE TIMING

DS39541B-page 66

Advance Information

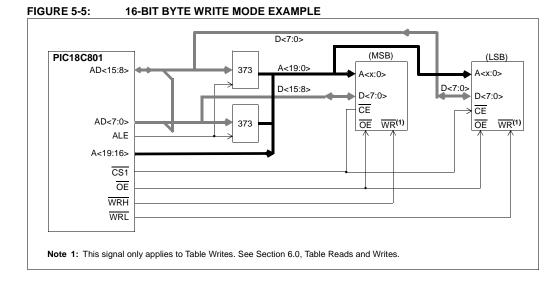
© 2001-2013 Microchip Technology Inc.

5.3 16-bit Mode

The External Memory Interface can operate in 16-bit mode. The mode selection is not software configurable, but is programmable via the configuration bits.

The WM<1:0> bits in the MEMCON register determine three types of connections in 16-bit mode. They are referred to as:

- 16-bit Byte Write
- 16-bit Word Write
- 16-bit Byte Select

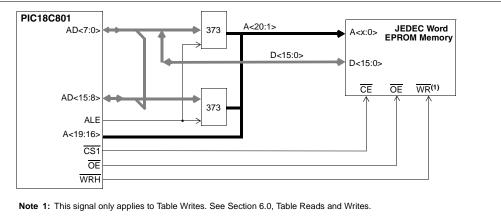

These three different configurations allow the designer maximum flexibility in using 8-bit and 16-bit memory devices.

For all 16-bit modes, the Address Latch Enable (ALE) pin indicates that the address bits A<15:0> are available on the External Memory Interface bus. Following the address latch, the output enable signal (\overline{OE}) will enable both bytes of program memory at once to form a 16-bit instruction word.

In Byte Select mode, JEDEC standard FLASH memories will require BA0 for the byte address line, and one I/O line, to select between byte and word mode. The other 16-bit modes do not need BA0. JEDEC standard static RAM memories will use the UB or UL signals for byte selection.

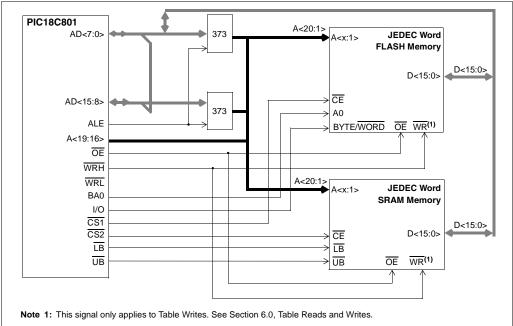
5.3.1 16-BIT BYTE WRITE MODE

Figure 5-5 shows an example of 16-bit Byte Write mode for the PIC18C601/801.



5.3.2 16-BIT WORD WRITE MODE

Figure 5-6 shows an example of 16-bit Word Write mode for the PIC18C801.


: 16-BIT WORD WRITE MODE EXAMPLE

5.3.3 16-BIT BYTE SELECT MODE

Figure 5-7 shows an example of 16-bit Byte Select mode for the $\ensuremath{\mathsf{PIC18C801}}$.

FIGURE 5-7: 16-BIT BYTE SELECT MODE EXAMPLE

DS39541B-page 68

Advance Information

© 2001-2013 Microchip Technology Inc.

5.3.4 16-BIT MODE CONTROL SIGNALS

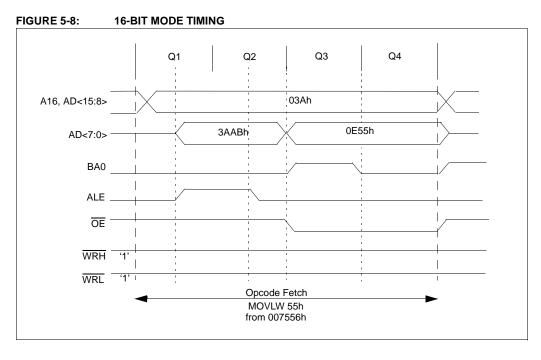

Table 5-3 describes the 16-bit mode control signals for the PIC18C601/801.

TABLE 5-3: PIC18C601/801 16-BIT MODE CONTROL SIGNALS

Name	18C601 16-bit Mode	18C801 16-bit Mode	Function	
RG0/ALE	ALE	ALE	Address Latch Enable (ALE) control pin	
RG1/OE	OE	OE	Output Enable (OE) control pin	
RG2/WRL	WRL	WRL	Write Low (WRL) control pin	
RG3/WRH	WRH	WRH	Write High (WRH) control pin	
RG4/BA0	BA0	BA0	Byte address bit 0	
RF3/CSIO	CSIO	CSIO	Chip Select I/O (See Section 5.4)	
RF4/CS2	N/A	CS2	Chip Select 2 (See Section 5.4)	
RF5/CS1	CS1	CS1	Chip Select 1 (See Section 5.4)	
RF6/UB	UB	UB	Upper Byte Enable (UB) control pin	
RF7/LB	LB	LB	Lower Byte Enable (LB) control pin	
I/O	I/O	I/O	I/O as BYTE/WORD control pin for JEDEC FLASH	

5.3.5 16-BIT MODE TIMING

Figure 5-8 describes the 16-bit mode timing for the $\mathsf{PIC18C601}/801.$

© 2001-2013 Microchip Technology Inc.

5.4 Chip Selects

Chip select signals are used to select regions of external memory and I/O devices for access. The PIC18C801 has three chip selects and all are programmable. The chip select signals are CS1, CS2 and CSIO. CS1 and CS2 are general purpose chip selects that are used to enable large portions of program memory. CSIO is used to enable external I/O expansion. The PIC18C601uses two of these programmable chip selects: CS1 and CSIO.

Two SFRs are used to control the chip select signals. These are CSEL2 and CSELIO (see Register 5-2 and Register 5-3). A chip select signal is asserted low when the CPU makes an access to a dedicated range of addresses specified in the chip select registers, CSEL2 and CSELIO. The 8-bit value found in either of these registers is decoded as one of 256, 8K banks of program memory. If both chip select registers are 00h, all of the chip select signals are disabled and their corresponding pins are configured as I/O. Since the last 512 bytes of program memory are dedicated to internal program RAM, the chip select signals will not activate if the program memory address falls in this range.

REGISTER 5-2: CSEL2 REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSL7 | CSL6 | CSL5 | CSL4 | CSL3 | CSL2 | CSL1 | CSL0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0

CSL<7:0>: Chip Select 2 Address Decode bits

 $XXh = All eight bits are compared to the Most Significant bits PC<20:13> of the program counter. If PC<20:13> <math>\geq$ CSL<7:0> register, then the CS2 signal is low. If PC<20:13> < CSL<7:0>, CS2 is high.

 $00h = \overline{CS2}$ is inactive

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 5-3: CSELIO REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSI07 | CSIO6 | CSIO5 | CSIO4 | CSI03 | CSIO2 | CSIO1 | CSIO0 |
| bit7 | | | | | | | bit0 |

bit 7-0

XXh = AII eight bits are compared to the Most Significant bits PC<20:13> of the program

CSIO<7:0>: Chip Select IO Address Decode bits

counter. If PC<20:13 = CSIO<7:0>, then the CSIO signal is low. If not, \overline{CSIO} is high. 00h = \overline{CSIO} is inactive

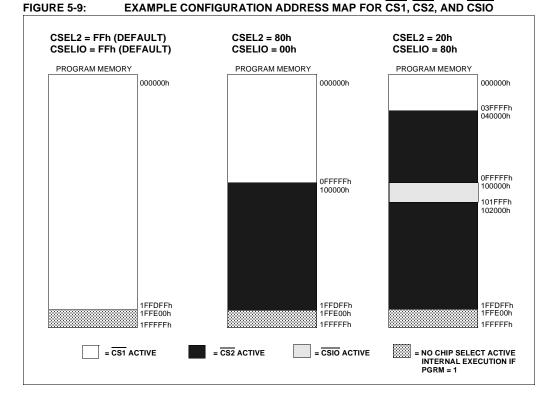
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.4.1 CHIP SELECT 1 (CS1)

CS1 is enabled by writing a value other than 00h into either the CSEL2 register, or the CSELIO register. If both of the chip select registers are programmed to 00h, the CS1 signal is not enabled and the RF5 pin is configured as I/O.

 $\overline{\text{CS1}}$ is low for all addresses in which $\overline{\text{CS2}}$ and $\overline{\text{CSELIO}}$ are high. Therefore, if CSEL2 = 20h and CSELIO = 80h, then the $\overline{\text{CS1}}$ signal will be low for the address that falls between 000000h and (2000h x 20h) - 1 = 03FFFh. $\overline{\text{CS1}}$ will always be low for the lower 8K of program memory. Figure 5-9 shows an example address map for $\overline{\text{CS1}}$.

5.4.2 CHIP SELECT 2 (CS2)


 $\overline{\text{CS2}}$ is enabled for program memory accesses, starting at the address derived by the 8-bit value contained in CSEL2. For example, if the value contained in the CSEL2 register is 80h, then the $\overline{\text{CS2}}$ signal will be asserted low whenever the address is greater than or equal to 2000h x 80h = 100000h. A 00h value in the CSEL2 register will disable the $\overline{CS2}$ signal and will configure the RF4 pin as I/O. Figure 5-9 shows an example address map for $\overline{CS2}$.

5.4.3 CHIP SELECT I/O (CSIO)

 $\overline{\text{CSIO}}$ is enabled for a fixed 8K address range starting at the address defined by the 8-bit value contained in CSELIO. If, for instance, the value contained in the CSELIO register is 80h, then the $\overline{\text{CSIO}}$ signal will be low for the address range between 100000h and 101FFFh.

If the 8K address block overlaps the address range specified in the CSEL2 register, the \overline{CSIO} signal will be low, and the $\overline{CS2}$ signal will be high, for that region.

<u>A 00h</u> value in the CSELIO register will disable the CSIO signal and will configure the RF3 pin <u>as I/O</u>. Figure 5-9 shows an example address map for CSIO.

© 2001-2013 Microchip Technology Inc.

5.5 External Wait Cycles

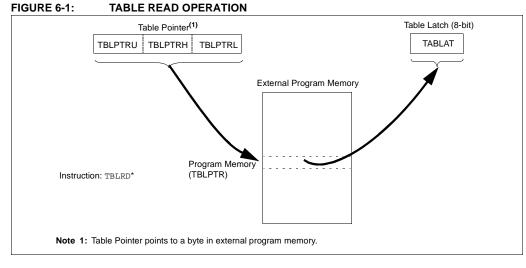
The external memory interface supports wait cycles. Wait cycles only apply to Table Read and Table Write operations over the external bus. See Section 6.0 for more details.

Since the device execution is tied to instruction fetches, there is no need to execute faster than the fetch rate. So, if the program needs to be slowed, the processor speed must be slowed with a different Tcy time.

DS39541B-page 72

6.0 TABLE READS/TABLE WRITES

PIC18C601/801 devices use two memory spaces: the external program memory space and the data memory space. Table Reads and Table Writes have been provided to move data between these two memory spaces through an 8-bit register (TABLAT).


The operations that allow the processor to move data between the data and external program memory spaces are:

- Table Read (TBLRD)
- Table Write (TBLWT)

Table Read operations retrieve data from external program memory and place it into the data memory space. Figure 6-1 shows the operation of a Table Read with program and data memory.

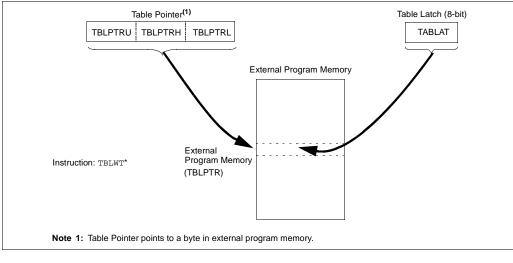

Table Write operations store data from the data memory space into external program memory. Figure 6-2 shows the operation of a Table Write with external program and data memory.

Table operations work with byte entities. A table block containing data is not required to be word aligned, so a table block can start and end at any byte address. If a Table Write is being used to write an executable program to program memory, program instructions must be word aligned.

FIGURE 6-2:

TABLE WRITE OPERATION

© 2001-2013 Microchip Technology Inc.

6.1 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include:

- TABLAT register
- TBLPTR registers

6.1.1 TABLAT - TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch is used to hold 8-bit data during data transfers between program memory and data memory.

6.1.2 TBLPTR - TABLE POINTER REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers (Table Pointer Upper byte, High byte and Low byte). These three registers (TBLPTRU:TBLPTRH:TBLPTRL) join to form a 21-bit wide pointer. The 21-bits allow the device to address up to 2 Mbytes of program memory space.

The table pointer TBLPTR is used by the TBLRD and TBLWRT instructions. These instructions can update the TBLPTR in one of four ways, based on the table operation. These operations are shown in Table 6-1. These operations on the TBLPTR only affect the low order 21-bits.

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

6.2 Table Read

The TBLRD instruction is used to retrieve data from external program memory and place it into data memory.

TBLPTR points to a byte address in external program memory space. Executing TBLRD places the byte into TABLAT. In addition, TBLPTR can be modified automatically for the next Table Read operation.

Table Reads from external program memory are performed one byte at a time. If the external interface is 8-bit, the bus interface circuitry in TABLAT will load the external value into TABLAT. If the external interface is 16-bit, interface circuitry in TABLAT will select either the high or low byte of the data from the 16-bit bus, based on the least significant bit of the address.

Example 6-1describes how to use TBLRD. Figure 6-3 and Figure 6-4 show Table Read timings for an 8-bit external interface, and Figure 6-5 describes Table Read timing for a 16-bit interface.

EXAMPLE 6-1: TABLE READ CODE EXAMPLE

; Read	a byte from	location	0020h
CLRF	TBLPTRU	;	clear upper 5 bits of TBLPTR
CLRF	TBLPTRH	;	clear higher 8 bits of TBLPTR
MOVLW	20h	;	Load 20h into
MOVWF	TBLPTRL	;	TBLPTRL
TBLRD*		;	Data is in TABLAT

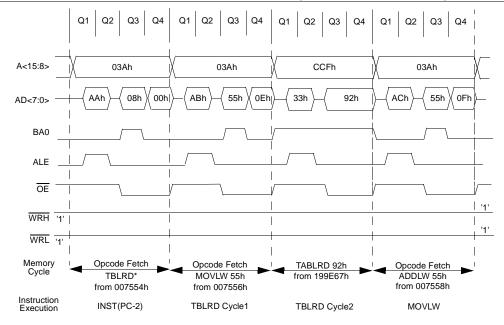
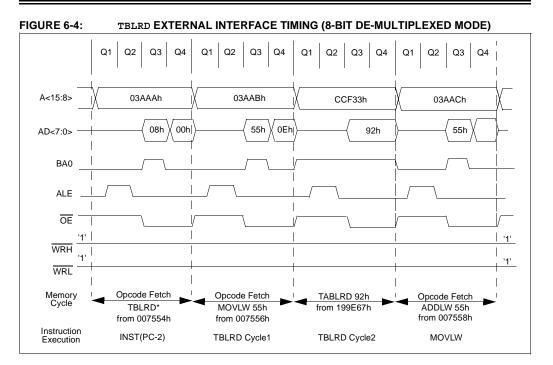
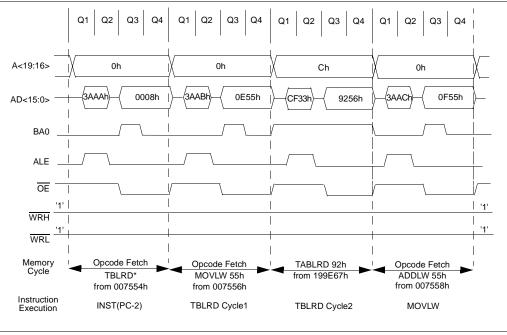



FIGURE 6-3: TBLRD EXTERNAL INTERFACE TIMING (8-BIT MULTIPLEXED MODE)

© 2001-2013 Microchip Technology Inc.


.

PIC18C601/801

TBLRD EXTERNAL BUS TIMING (16-BIT MODE)

DS39541B-page 76

6.3 Table Write

Table Write operations store data from the data memory space into external program memory.

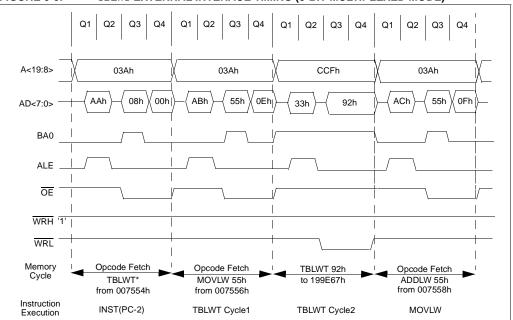
PIC18C601/801devices perform Table Writes one byte at a time. Table Writes to external memory are two-cycle instructions, unless wait states are enabled. The last cycle writes the data to the external memory location.

16-bit interface Table Writes depend on the type of external device that is connected and the WM<1:0> bits in the MEMCON register (See Figure 5-2).

Example 6-2 describes how to use TBLWT.

EXAMPLE 6-2: TABLE WRITE CODE EXAMPLE

: Write	a byte to location	C	020h	
CLRF	TBLPTRU		clear upper 5 bits of TBLPTR	
CLRF	TBLPTRH	;	clear higher 8 bits of TBLPTR	
MOVLW	20h	;	Load 20h into	
MOVWF	TBLPTRL	;	TBLPTRL	
MOVLW	55h	;	Load 55h into	
MOVWF	TBLAT	;	TBLAT	
TBLWT*		;	Write it	


© 2001-2013 Microchip Technology Inc.

6.3.1 8-BIT EXTERNAL TABLE WRITES

When the external bus is 8-bit, the byte-wide Table Write exactly corresponds to the bus length and there are no special considerations required.

The $\overline{\text{WRL}}$ signal is used as the active write signal.

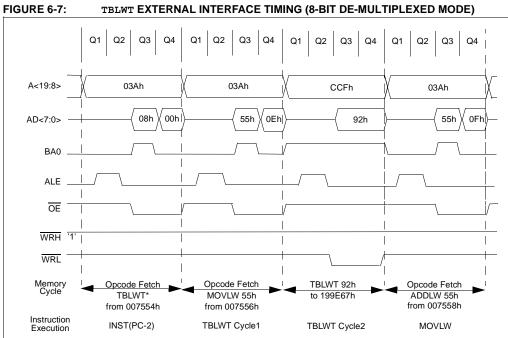
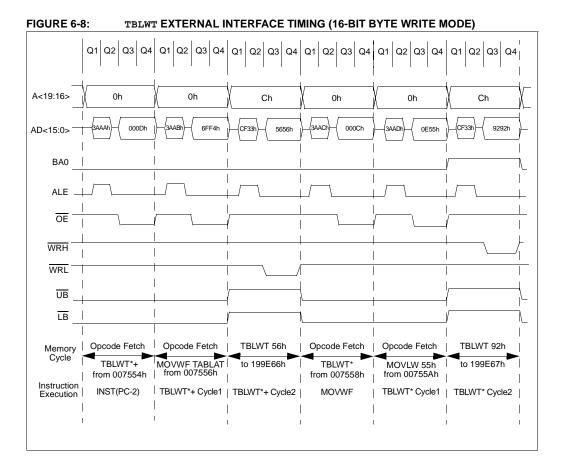

Figure 6-6 and Figure 6-7 show the timings associated with the 8-bit modes.

FIGURE 6-6: TBLWT EXTERNAL INTERACE TIMING (8-BIT MULTIPLEXED MODE)

.


PIC18C601/801

© 2001-2013 Microchip Technology Inc.

6.3.2 16-BIT EXTERNAL TABLE WRITE (BYTE WRITE MODE)

This mode allows Table Writes to byte-wide external memories. During a TBLWT cycle, the TABLAT data is presented on the upper and lower byte of the AD<15:0> bus. The appropriate WRH or WRL line is strobed based on the LSb of the TBLPTR. Figure 6-8 shows the timing associated with this mode.

DS39541B-page 80

6.3.3 EXTERNAL TABLE WRITE IN 16-BIT WORD WRITE MODE

This mode allows Table Writes to any type of word-wide external memories.

This method makes a distinction between ${\tt TBLWT}$ cycles to even or odd addresses.

During a TBLWT cycle to an even address, where TBLPTR<0> = 0, the TABLAT data is transferred to a holding latch and the external address data bus is tristated for the data portion of the bus cycle. No write signals are activated.

During a TBLWT cycle to an odd address, where TBLPTR<0> = 1, the TABLAT data is presented on the upper byte of the AD<15:0> bus. The contents of the holding latch are presented on the lower byte of the AD<15:0> bus. The WRH line is strobed for each write cycle and the WRL line is unused. The BA0 line indicates the LSb of TBLPTR, but it is unnecessary. The UB and LB lines are active to select both bytes.

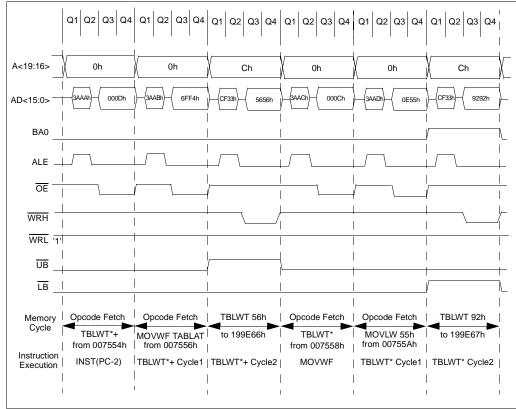
The obvious limitation to this method is that the TBLWT must be done in pairs on a specific word boundary to correctly write a word location.

Figure 6-9 shows the timing associated with this mode.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
A<19:16>	Oh	0h	Ch	Oh	Oh	Ch
AD<15:0>	(3AAAh) 000Dh	J-(3AABh)-(6FF4h)(CF33h)	000Ch	(3AADh) 0E55h	CF33h 9256h
BA0		 			 	
ALE						
OE		/			 /	
WRH						
WRL '1'						
UB		 				
LB			, \	L		
Memory	Opcode Fetch	Opcode Fetch	TBLWT 56h	Opcode Fetch	Opcode Fetch	TBLWT 92h
Cycle	TBLWT*+ from 007554h	MOVWF TABLAT from 007556h	to 199E66h	TBLWT* from 007558h	MOVLW 55h from 00755Ah	to 199E67h
Instruction Execution			TBLWT*+ Cycle2	MOVWF	TBLWT* Cycle1	TBLWT* Cycle2
		I				

FIGURE 6-9: TBLWT EXTERNAL INTERFACE TIMING (16-BIT WORD WRITE MODE)

© 2001-2013 Microchip Technology Inc.


6.3.4 16-BIT EXTERNAL TABLE WRITE (BYTE SELECT MODE)

This mode allows Table Writes to word-wide external memories that have byte selection capabilities. This generally includes word-wide FLASH devices and word-wide static RAM devices.

During a TBLWT cycle, the TABLAT data is presented on the upper and lower byte of the AD<15:0> bus. The WRH line is strobed for each write cycle and the $\overline{\text{WRL}}$ line is unused. The BA0 or $\overline{\text{UB}}$ or $\overline{\text{UL}}$ lines are used to select the byte to be written, based on the LSb of the TBLPTR.

JEDEC standard flash memories will require a I/O port line to become a BYTE/WORD input signal and will use the BA0 signal as a byte address. JEDEC standard static RAM memories will use the $\overline{\text{UB}}$ or $\overline{\text{UL}}$ signals to select the byte.

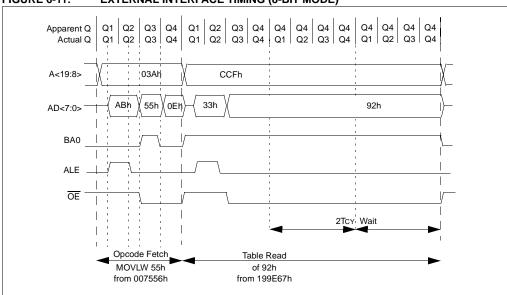
Figure 6-10 shows the timing associated with this mode.

FIGURE 6-10: TBLWT EXTERNAL INTERFACE TIMING (16-BIT BYTE SELECT MODE)

DS39541B-page 82

6.4 Long Writes

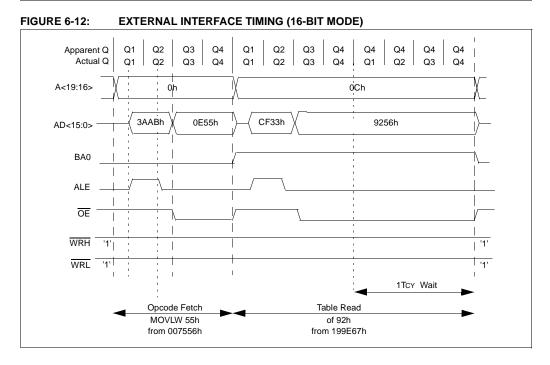
Long writes will not be supported on the PIC18C601/ 801 to program FLASH configuration memory. The configuration locations can only be programmed in ICSP mode.


6.5 External Wait Cycles

The Table Reads and Writes have the capability to insert wait states when accessing external memory. These wait states only apply to the execution of a Table Read or Write to external memory and not to instruction fetches out of external memory. The guidelines presented in Section 5.0 must be followed to select the proper memory speed grade for the device operating frequency.

The WAIT<1:0> bits in the MEMCON register will select 0, 1, 2, or 3 extra TCY cycles per TBLRD/TBWLT cycle. The wait will occur on Q4.

The default setting of the wait on power-up is to assert a maximum wait of 3TCY cycles. This insures that slow memories will work in Microprocessor mode immediately after RESET.


Figure 6-11 shows 8-bit external bus timing for a Table Read with 2 wait cycles. Figure 6-12 shows 16-bit external bus timing for a Table Read with 1 wait cycle.

.

PIC18C601/801

DS39541B-page 84

7.0 8 X 8 HARDWARE MULTIPLIER

An 8 x 8 hardware multiplier is included in the ALU of PIC18C601/801 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the STATUS register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in some applications previously reserved for Digital Signal Processors.

Table 7-1 shows a performance comparison between enhanced devices using the single cycle hardware multiply, and performing the same function without the hardware multiply.

		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 25 MHz	@ 10 MHz	@ 4 MHz	
8 x 8 unsigned	Without hardware multiply	13	69	11.0 μs	27.6 μs	69.0 μs	
o x o unsigneu	Hardware multiply	1	1	160.0 ns	400.0 ns		
8 x 8 signed	Without hardware multiply	33	91	14.6 μs	36.4 μs	91.0 μs	
o x o signed	Hardware multiply	6	6	960.0 ns	2.4 μs	91.0 μs 6.0 μs	
16 x 16 unsigned	Without hardware multiply	21	242	38.7 μs	96.8 μs	242.0 μs	
to x to unsigned	Hardware multiply	24	24	3.8 μs	9.6 μs	24.0 μs	
16 x 16 signed	Without hardware multiply	52	254	40.6 μs	102.6 μs	254.0 μs	
To x To signed	Hardware multiply	36	36	5.8 μs	14.4 μs	36.0 μs	

TABLE 7-1: PERFORMANCE COMPARISON

7.1 Operation

Example 7-1 shows the sequence to perform an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 7-2 shows the sequence to do an 8×8 signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 7-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVFF	ARG1,	WREG	;					
MULWF	ARG2		;	ARG1	*	ARG2	->	
			;	PRO	DDI	H:PROI	DL	

EXAMPLE 7-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVFF	ARG1,	WREG		
MULWF	ARG2		;	ARG1 * ARG2 ->
			;	PRODH: PRODL
BTFSC	ARG2,	SB	;	Test Sign Bit
SUBWF	PRODH		;	PRODH = PRODH
			;	- ARG1
MOVFF	ARG2,	WREG		
BTFSC	ARG1,	SB	;	Test Sign Bit
SUBWF	PRODH		;	PRODH = PRODH
			;	- ARG2

Example 7-3 shows the sequence to perform a 16 x 16 unsigned multiply. Equation 7-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers RES3:RES0.

EQUATION 7-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	(ARG1H • ARG2H • 2 ¹⁶)+
		(ARG1H • ARG2L • 2 ⁸)+
		(ARG1L • ARG2H • 2 ⁸) +
		(ARG1L • ARG2L)

EXAMPLE 7-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVFF	ARG1L,	WREG		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES1	;	
	MOVFF	PRODL,	RES0	;	
;					
	MOVFF				
	MULWF	ARG2H		;	ARG1H * ARG2H ->
				;	PRODH: PRODL
	MOVFF	PRODH,		;	
	MOVFF	PRODL,	RES2	;	
;					
	MOVFF	ARG1L,	WREG		
	MULWF	ARG2H		'	ARG1L * ARG2H ->
				;	PRODH: PRODL
	MOVF		W	;	
	ADDWF	RES1			Add cross
	MOVF	PRODH,	W	;	products
	ADDWFC			;	
	CLRF			;	
	ADDWFC	RES3		;	
;	MOUTER	a D C 1 U	MDDG		
	MOVFF	. ,		;	300111 + 30001
	MULWF	ARG2L		'	ARG1H * ARG2L ->
	MOUTE	PRODL,			PRODH: PRODL
	MOVF ADDWF	RES1	W	;	Add cross
			1.7		
	MOVF ADDWFC		W	;	products
	CLRF	WREG			
	ADDWFC				
	ADDWEC	1000		,	

Example 7-4 shows the sequence to perform a 16 x 16 signed multiply. Equation 7-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs' most significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 7-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:R	ESO		
=	ARG1H:ARG1L • ARG2H:ARG2L		
=	(ARG1H • ARG2H • 2 ¹⁶) +		
	(ARG1H • ARG2L • 2 ⁸) +		
	(ARG1L • ARG2H • 2 ⁸) +		
	(ARG1L • ARG2L) +		
	(-1 ● ARG2H<7> ● ARG1H:ARG1L ● 2 ¹⁶)	+	
	(-1 ● ARG1H<7> ● ARG2H:ARG2L ● 2 ¹⁶)		
			L.

EXAMPLE 7-4:

٠

PIC18C601/801

			IPL	Y ROUTINE
MOVEE	ARG1L,	WREG		
MULWF	ARG2L	medo		ARG1L * ARG2L ->
1102111	1110000			PRODH: PRODL
MOVEE	PRODH,	RES1		
MOVFF	PRODL,			
;	INODE,	пшоо	'	
, MOVFF	ARG1H,	WREG		
	ARG2H		;	ARG1H * ARG2H ->
				PRODH: PRODL
MOVFF	PRODH,	RES3	;	
MOVFF	PRODL,	RES2	;	
;			,	
MOVFF	ARG1L,	WREG		
MULWF	ARG2H		;	ARG1L * ARG2H ->
				PRODH: PRODL
MOVF	PRODL,	W	;	
ADDWF	RES1			Add cross
MOVF	PRODH,	W		products
ADDWFC			;	-
CLRF	WREG		;	
ADDWFC			;	
;			,	
	ARG1H,	WREG	;	
MULWF	ARG2L			ARG1H * ARG2L ->
				PRODH: PRODL
MOVF	PRODL,	W	;	
ADDWF	RES1			Add cross
MOVF	PRODH,	W		products
ADDWFC			;	
CLRF	WREG		;	
ADDWFC	RES3		;	
;				
BTFSS	ARG2H,	7	;	ARG2H:ARG2L neg?
GOTO	SIGN A	RG1	;	ARG2H:ARG2L neg? no, check ARG1
MOVFF	ARG1L,	WREG	;	
SUBWF	RES2		;	
MOVFF	ARG1H,	WREG	;	
SUBWFB	RES3			
;				
SIGN_ARG1				
BTFSS	ARG1H,	7	;	ARG1H:ARG1L neg?
GOTO	CONT C	ODE	;	no, done
MOVFF	ARG2L,	WREG	;	
SUBWF	RES2		;	
MOVFF	ARG2H,	WREG	;	
SUBWFB				
;				
CONT_CODE				

16 x 16 SIGNED

© 2001-2013 Microchip Technology Inc.

39541a.book Page 88 Tuesday, January 29, 2013 2:34 PM

PIC18C601/801

NOTES:

۲

DS39541B-page 88

8.0 INTERRUPTS

PIC18C601/801 devices have 15 interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high priority level, or a low priority level. The high priority interrupt vector is at 000008h and the low priority interrupt vector is at 000018h. High priority interrupt events will override any low priority interrupts that may be in progress.

There are 10 registers that are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2
- PIE1, PIE2
- IPR1, IPR2

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

Each interrupt source has three bits to control its operation. The functions of these bits are:

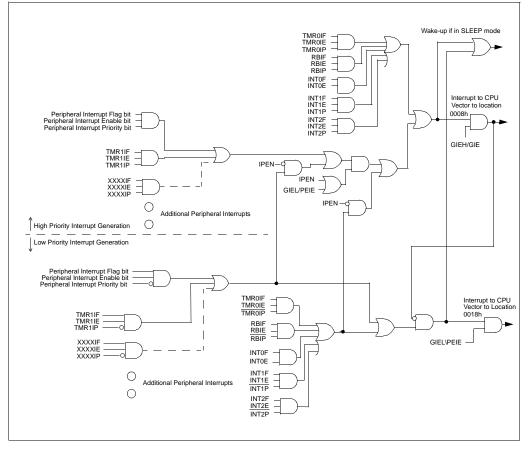
- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- · Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON register). When interrupt priority is enabled, there are two bits that enable interrupts globally. Setting the GIEH bit (INTCON register) enables all interrupts that have the priority bit set. Setting the GIEL bit (INTCON register) enables all interrupts that have the priority bit cleared. When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority level. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. The PEIE bit (INTCON register) enables/disables all peripheral interrupt sources. The GIE bit (INTCON register) enables/disables all interrupt sources. All interrupts branch to address 000008h in Compatibility mode.

When an interrupt is responded to, the Global Interrupt Enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts, to avoid recursive interrupts.


The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit or the GIE bit.

(

PIC18C601/801

DS39541B-page 90

8.1 Control Registers

This section contains the control and status registers.

8.1.1 INTCON REGISTERS

The INTCON Registers are readable and writable registers, which contain various enable, priority, and flag bits.

REGISTER 8-1: INTCON REGISTER

R/W-)	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W
GIE/GI	ΞH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBI
bit 7								I
GIE/GII	:н.	Global Interr	unt Enable b	it				
When I				n.				
		s all unmaske	ed interrupts					
0 = Dis	able	s all interrupt	s					
When I								
		s all high prio						
		s all high pric						
		: Peripheral I	nterrupt Enal	ble bit				
When I		<u>i = 0:</u> s all unmaske	d nerinheral	interrunts				
		s all peripher		Interrupto				
When I								
		s all low prior						
0 = Dis	able	s all priority p	peripheral int	errupts				
		MR0 Overflov						
		s the TMR0 c s the TMR0 (•				
		TO External Ir		•				
		s the INT0 ex	•					
		s the INT0 ex		•				
RBIE: F	₹B F	Port Change	Interrupt Ena	ble bit				
		s the RB port						
		s the RB por	0	•				
		MR0 Overflow	•	•	rad in activ	oro)		
		egister has o egister did no		iust de clea	red in softwa	are)		
		0 External Ir		hit				
		FO external in			e cleared in	software)		
		F0 external in				,		
		Port Change I						
		one of the R				e cleared i	n software)	
0 = NO	ie of	f the RB7:RB	4 pins nave	changed sta	ite			
Legenc	:							
R = Re	adak	ble bit	W = Writ	table bit	U = Unimp	lemented	bit, read as '	0'
		at POR	'1' = Bit i	ie ent	'0' = Bit is	cleared	x = Bit is u	nknow

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows software polling.

REGISTER 8-2: INTCON2 REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1	
RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	—	RBIP	
bit 7							bit (
1 = All POI	RTB Pull-up I RTB pull-ups 3 pull-ups are	are disabled	individual po	rt latch valu	es			
1 = Interru	External Inter pt on rising ec pt on falling e	lge	Select bit					
INTEDG1: External Interrupt 1 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge								
INTEDG2: External Interrupt 2 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge								
Unimplem	ented: Read	as '0'						
TMR0IP : T 1 = High pr 0 = Low pr		w Interrupt P	riority bit					
Unimplem	ented: Read	as '0'						
RBIP : RB Port Change Interrupt Priority bit 1 = High priority 0 = Low priority								
Legend:								
R = Reada			table bit			oit, read as		
- n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is u	nknown	

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows software polling.

bit 0

REGISTER 8-3:

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF

bit 7

INTCON3 REGISTER

- bit 7 INT2IP: INT2 External Interrupt Priority bit 1 = High priority 0 = Low priority
- bit 6 INT1IP: INT1 External Interrupt Priority bit 1 = High priority 0 = Low priority bit 5
- Unimplemented: Read as '0'
- INT2IE: INT2 External Interrupt Enable bit bit 4 1 = Enables the INT2 external interrupt 0 = Disables the INT2 external interrupt
- bit 3 INT1IE: INT1 External Interrupt Enable bit 1 = Enables the INT1 external interrupt 0 = Disables the INT1 external interrupt
- bit 2 Unimplemented: Read as '0'
- INT2IF: INT2 External Interrupt Flag bit bit 1
 - 1 = The INT2 external interrupt occurred (must be cleared in software)
 - 0 = The INT2 external interrupt did not occur
- bit 0 INT1IF: INT1 External Interrupt Flag bit
 - 1 = The INT1 external interrupt occurred (must be cleared in software)
 - 0 = The INT1 external interrupt did not occur

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows software polling.

8.1.2 PIR REGISTERS

The Peripheral Interrupt Request (PIR) registers contain the individual flag bits for the peripheral interrupts (Register 8-5). There are two Peripheral Interrupt Request (Flag) registers (PIR1, PIR2).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit, GIE (INTCON register).
 - User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt, and after servicing that interrupt.

8.1.3 PIE REGISTERS

The Peripheral Interrupt Enable (PIE) registers contain the individual enable bits for the peripheral interrupts (Register 8-6). There are two two Peripheral Interrupt Enable registers (PIE1, PIE2). When IPEN is clear, the PEIE bit must be set to enable any of these peripheral interrupts.

8.1.4 IPR REGISTERS

The Interrupt Priority (IPR) registers contain the individual priority bits for the peripheral interrupts (Register 8-9). There are two Peripheral Interrupt Priority registers (IPR1, IPR2). The operation of the priority bits requires that the Interrupt Priority Enable bit (IPEN) be set.

8.1.5 RCON REGISTER

The Reset Control (RCON) register contains the bit that is used to enable prioritized interrupts (IPEN).

REGISTER 8-4: RCON REGISTER

R/W-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	U-0
IPEN	r	—	RI	TO	PD	POR	r
bit 7							bit 0

bit 7 **IPEN:** Interrupt Priority Enable bit

- 1 = Enable priority levels on interrupts
- 0 = Disable priority levels on interrupts (16CXXX compatibility mode)
- bit 6 Reserved: Maintain as '0'
- bit 5 Unimplemented: Read as '0'
- bit 4 RI: RESET Instruction Flag bit For details of bit operation, see Register 4-4
- bit 3 **TO:** Watchdog Time-out Flag bit For details of bit operation, see Register 4-4
- bit 2 **PD:** Power-down Detection Flag bit For details of bit operation, see Register 4-4
- bit 1 **POR:** Power-on Reset Status bit
- For details of bit operation, see Register 4-4
- bit 0 Reserved: Maintain as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF		
	bit 7							bit 0		
bit 7	Unimpleme	ented: Read	as '0'							
bit 6	ADIF: A/D (Converter Inte	errupt Flag b	it						
	(must b	conversion c e cleared in s	software)							
	0 = The A/I	D conversion	is not comple	ete						
bit 5	RCIF: USA	RT Receive I	nterrupt Flag	l bit						
	 The USART receive buffer, RCREG, is full (cleared when RCREG is read) The USART receive buffer is empty 									
	0 = The US	ART receive	buffer is em	pty						
bit 4	t 4 TXIF: USART Transmit Interrupt Flag bit									
		ART transmit			у					
	0 = The US	ART transmit	t buffer is full	l						
bit 3	SSPIF: Mas	ster Synchron	ous Serial P	ort Interrupt	t Flag bit					
		nsmission/rec e cleared in s		mplete						
	0 = Waiting	to transmit/re	eceive							
bit 2	CCP1IF: CCP1 Interrupt Flag bit									
	Capture mo	ode:								
	1 = A TMR1 register capture occurred (must be cleared in software)									
	0 = No TMF	R1 register ca	pture occurr	ed						
	Compare mode:									
	 1 = A TMR1 register compare match occurred (must be cleared in software) 									
	0 = No TMF	R1 register co	mpare matc	h occurred						
	<u>PWM mode</u> Unused in t	-								
bit 1	TMR2IF: T	MR2 to PR2	Match Interru	upt Flag bit						
		o PR2 match e cleared in s								
	0 = No TMF	R2 to PR2 ma	atch occurred	t						
bit 0	TMR1IF: T	MR1 Overflov	v Interrupt Fl	ag bit						
	1 = TMR1 r	egister overfl	owed							
	(must b	e cleared in s	software)							
	0 = TMR1 r	egister did no	ot overflow							
	Legend:									
	R = Readab	ole bit	W = Wri	table bit	U = Unimp	emented b	oit, read as	'0'		
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is u	nknown		

REGISTER 8-5: PIR1 REGISTER

© 2001-2013 Microchip Technology Inc.

PIC18C601/801

- n = Value at POR

REGISTER 8-6:	PIR2 REG	ISTER									
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
		—	—	—	BCLIF	LVDIF	TMR3IF	CCP2IF			
	bit 7							bit 0			
	Uninglass	mtad. Daad									
bit 7-4	•	ented: Read		.,							
bit 3		Collision Int		oit							
		ollision occur e cleared in s									
	0 = No bus	collision occ	urred								
bit 2	LVDIF: Low	LVDIF: Low Voltage Detect Interrupt Flag bit									
	 1 = A low voltage condition occurred (must be cleared in software) 										
	0 = The device voltage is above the Low Voltage Detect trip point										
bit 1	TMR3IF: TMR3 Overflow Interrupt Flag bit										
	1 = TMR3 register overflowed (must be cleared in software)										
	0 = TMR3 register did not overflow CCP2IF: CCPx Interrupt Flag bit										
bit 0											
	Capture mo		0								
		1 register cap e cleared in s		d							
		R1 register ca	,	ed							
	Compare m	iode:									
		1 register cor e cleared in s	•	occurred							
	0 = No TMF	R1 register co	mpare matc	h occurred							
	PWM mode	<u>.</u> :									
	Unused in this mode										
	· · ·										
	Legend:	1. 1.9	147 147	- h l - h 't				01			
	R = Readat	Die Dit	W = Wri	table bit	U = Unimpl	lemented l	oit, read as '	U ^r			

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

۲

PIC18C601/801

REGISTER 8-7:	PIE1 REG	ISTER								
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	as '0'							
bit 6	1 = Enable	Converter Intest the A/D interest the A/	errupt	le bit						
bit 5	1 = Enable	RCIE : USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt								
bit 4	TXIE : USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt									
bit 3	SSPIE : Master Synchronous Serial Port Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt									
bit 2	1 = Enable	CP1 Interrup es the CCP1 i es the CCP1	nterrupt							
bit 1	1 = Enable	MR2 to PR2 s the TMR2 t es the TMR2	o PR2 matcl	h interrupt	it					
bit 0	TMR1IE : TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt									
	Legend:									
	R = Reada	ble bit	W = Wr	itable bit	U = Unimp	plemented b	oit, read as	0'		
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is u	nknown		

© 2001-2013 Microchip Technology Inc.

۲

PIC18C601/801

REGISTER 8-8:	PIE2 REGISTER								
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	_	—	BCLIE	LVDIE	TMR3IE	CCP2IE	
	bit 7							bit 0	
bit 7-4	Unimpleme	ented: Read	as '0'						
bit 3	BCLIE: Bus 1 = Enableo 0 = Disable		errupt Enab	le bit					
bit 2	LVDIE: Low 1 = Enableo 0 = Disable		ect Interrupt						
bit 1	1 = Enables	MR3 Overflor the TMR3 of the TMR3	overflow inte	rrupt					
bit 0	1 = Enables	CP2 Interrup the CCP2 i s the CCP2	nterrupt						
	Legend:								
	R = Readab	ole bit	W = Wr	itable bit	U = Unimp	lemented l	oit, read as '	0'	
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is u	nknown	

DS39541B-page 98

۲

PIC18C601/801

REGISTER 8-9:	
---------------	--

IPR1 REGISTER

	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP				
	bit 7							bit 0				
bit 7	Unimplem	nented: Read	las '0'									
bit 6	•	Converter In		tv hit								
bit 0	1 = High p			ty bit								
	0 = Low pr	riority										
bit 5 RCIP: USART Receive Interrupt Priority bit												
	1 = High priority											
	0 = Low pr	riority										
bit 4												
	1 = High p	,										
1.1.0	0 = Low pr		o · · ·									
bit 3	SSPIP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority											
	0 = Low pr	,										
bit 2	CCP1IP: CCP1 Interrupt Priority bit											
2	1 = High priority											
	0 = Low pr	riority										
bit 1	TMR2IP: T	MR2 to PR2	Match Interr	upt Priority	bit							
	1 = High p	,										
	0 = Low pr	riority										
bit 0		MR1 Overflo	w Interrupt P	riority bit								
	1 = High p											
	0 = Low pr	nonty										
	Legend:											
	R = Reada	able bit	W = Wr	itable bit	U = Unimr	plemented b	oit, read as	ʻ0'				
	I I Caue		•• - ••		5 – Crain	siomoniou i		-				

$R = Readable bit \qquad \qquad W = Writable bit$		U = Unimplemented bit, read as '0'				
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

© 2001-2013 Microchip Technology Inc.

REGISTER 8-10:	IPR2 REGISTER								
	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	
		_	_	—	BCLIP	LVDIP	TMR3IP	CCP2IP	
	bit 7							bit 0	
bit 7-4	Unimplem	ented: Read	as '0'						
bit 3	BCLIP: Bus Collision Interrupt Priority bit 1 = High priority 0 = Low priority								
bit 2	LVDIP: Low Voltage Detect Interrupt Priority bit 1 = High priority 0 = Low priority								
bit 1	TMR3IP : TMR3 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority								
bit 0	CCP2IP : CCP2 Interrupt Priority bit 1 = High priority 0 = Low priority								
	Legend:								
	R = Reada	ble bit	W = Wr	itable bit	U = Unimp	lemented l	oit, read as '	0'	
	- n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								

DS39541B-page 100

8.1.6 INT INTERRUPTS

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge triggered: either rising, if the corresponding INTEDGx bit is set in the INTCON2 register, or falling, if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxIF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxIE. Flag bit INTxIF must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wake-up the processor from SLEEP. If the global interrupt enable bit GIE is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits INT1IP (INTCON3 register) and INT2IP (INTCON3 register). There is no priority bit associated with INT0; it is always a high priority interrupt source.

8.1.7 TMR0 INTERRUPT

In 8-bit mode (which is the default), an overflow (0FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF. In 16-bit mode, an overflow (0FFFh \rightarrow 0000h)

in the TMR0H:TMR0L registers will set flag bit TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON register). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit TMR0IP (INTCON2 register). See Section 10.0 for further details on the Timer0 module.

8.1.8 PORTB INTERRUPT-ON-CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON register). The interrupt can be enabled/ disabled by setting/clearing enable bit RBIE (INTCON register). Interrupt priority for PORTB interrupt-onchange is determined by the value contained in the interrupt priority bit RBIP (INTCON2 register).

8.2 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (See Section 4.3), the user may need to save the WREG, STATUS and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 8-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 8-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

MOVWF MOVFF MOVFF	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in Low Access bank ; STATUS_TEMP located anywhere ; BSR located anywhere
; ; USER I ;	SR CODE	
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

39541a.book Page 102 Tuesday, January 29, 2013 2:34 PM

PIC18C601/801

NOTES:

 \bigcirc

۲

DS39541B-page 102

9.0 I/O PORTS

Depending on the device selected, there are up to 9 ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- · LAT register (output latch)

The data latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

9.1 PORTA, TRISA and LATA Registers

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

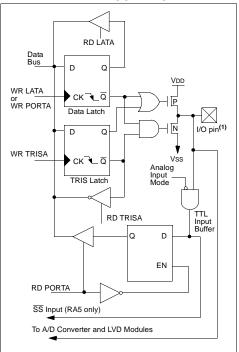
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

Read-modify-write operations on the LATA register, reads and writes the latched output value for PORTA.

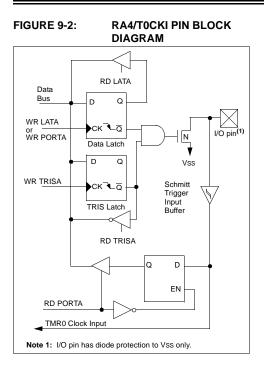
The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1). On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.


Note: On a Power-on Reset, PORTA pins RA3:RA0 and RA5 default to analog inputs.

EXAMPLE 9-1: INITIALIZING PORTA


CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA3:RA0 as inputs
		; RA5:RA4 as outputs
		-

RA3:RA0 AND RA5 PINS BLOCK DIAGRAM

Note 1: I/O pins have diode protection to VDD and VSS.

TABLE 9-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF-
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+
RA4/T0CKI	bit4	ST/OD	Input/output or external clock input for Timer0, output is open drain type
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input or low voltage detect input

Legend: TTL = TTL input, ST = Schmitt Trigger input, OD = Open Drain

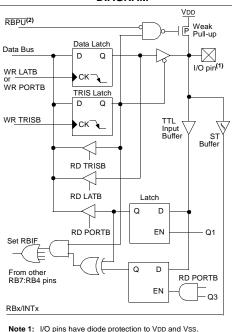
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	uu uuuu
LATA	—	Latch A	Latch A Data Output Register -xxx xxxx -uuu uuuu							-uuu uuuu
TRISA	—	PORTA	PORTA Data Direction Register -111 1111 -111 1						-111 1111	
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	uu uuuu

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by PORTA.

9.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).


Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

EXAMPLE 9-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
CLRF	LATB	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB3:RB0 as inputs
		; RB5:RB4 as outputs
		; RB7:RB6 as inputs

FIGURE 9-3:

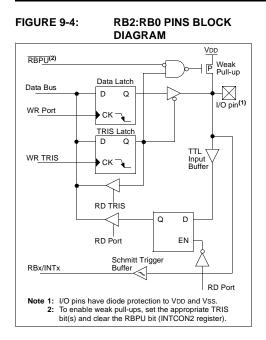
RB7:RB4 PINS BLOCK DIAGRAM

To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2 register).

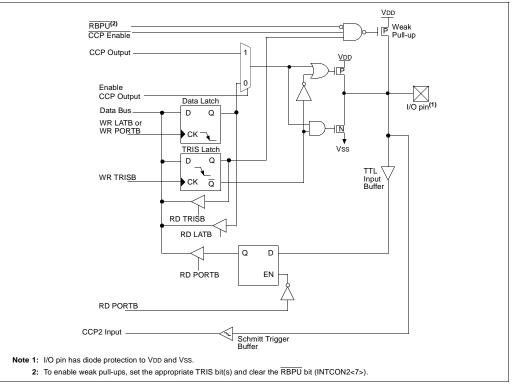
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (INTCON2 register). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Pin RB3 is multiplexed with the CCP input/output. The weak pull-up for RB3 is disabled when the RB3 pin is configured as CCP pin. By disabling the weak pull-up when pin is configured as CCP, allows the remaining weak pull-up devices of PORTB to be used while the CCP is being used.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'd together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON register).


This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- Any read or write of PORTB (except with the MOVFF instruction). This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

© 2001-2013 Microchip Technology Inc.

DS39541B-page 106

Advance Information

© 2001-2013 Microchip Technology Inc.

TABLE 9-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT0	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt 0 input. Internal software programmable weak pull-up.
RB1/INT1	bit1	TTL/ST ⁽¹⁾	Input/output pin or external interrupt 1 input. Internal software programmable weak pull-up.
RB2/INT2	bit2	TTL/ST ⁽¹⁾	Input/output pin or external interrupt 2 input. Internal software programmable weak pull-up.
RB3/CCP2	bit3	TTL/ST(3)	Input/output pin or Capture2 input or Capture2 output or PWM2 output. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This pin is a Schmitt Trigger input when configured as the external interrupt.

2: This pin is a Schmitt Trigger input when used in Serial Programming mode.

3: This pin is a Schmitt Trigger input when used in a Capture input.

TABLE 9-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

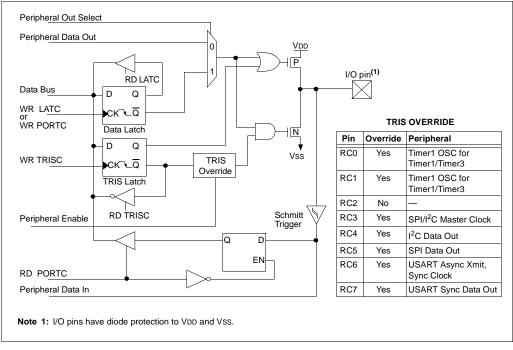
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Data Output Register								xxxx xxxx	uuuu uuuu
TRISB	PORTB Data Direction Register 1111 1							1111 1111	1111 1111	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP		RBIP	1111 1111	1111 1111
INTCON3	INT2IP	INT1IP		INT2IE	INT1IE	—	INT2IF	INT1IF	1100 0000	1100 0000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTD.

9.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATC register, read and write the latched output value for PORTC.


PORTC is multiplexed with several peripheral functions (Table 9-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

EXAMPLE 9-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC3:RC0 as inputs
		; RC5:RC4 as outputs
		; RC7:RC6 as inputs
1		-

FIGURE 9-6: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

TABLE 9-5: PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T13CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1/Timer3 clock input.
RC1/T1OSI	bit1	ST	Input/output port pin, Timer1 oscillator input.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	bit3	ST	Input/output port pin or synchronous serial clock for SPI/I ² C.
RC4/SDI/SDA	bit4	ST	Input/output port pin or SPI Data in (SPI mode) or Data I/O $(I^2C \text{ mode})$.
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port Data output.
RC6/TX/CK	bit6	ST	Input/output port pin, Addressable USART Asynchronous Transmit, or Addressable USART Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin, Addressable USART Asynchronous Receive, or Addressable USART Synchronous Data.

Legend: ST = Schmitt Trigger input

TABLE 9-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
LATC	LATC Data Output Register								XXXX XXXX	uuuu uuuu
TRISC	PORTC Data Direction Register								1111 1111	1111 1111

Legend: x = unknown, u = unchanged

© 2001-2013 Microchip Technology Inc.

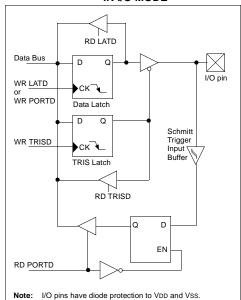
9.4 PORTD, TRISD and LATD Registers

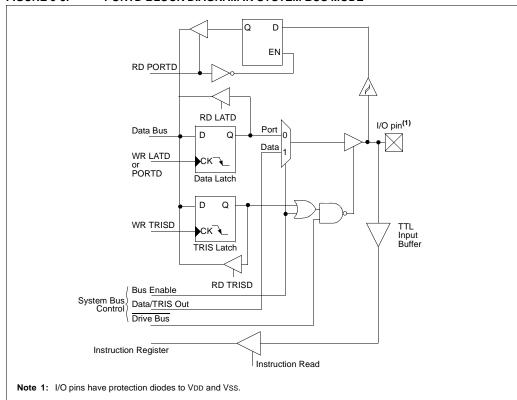
PORTD is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATD register reads and writes the latched output value for PORTD.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD is multiplexed with the system bus and is available only when the system bus is disabled, by setting EBIDS bit in register MEMCON. When operating as the system bus, PORTD is the low order byte of the address/data bus (AD7:AD0), or as the low order address byte (A15:A8) if the address and data buses are de-multiplexed.


Note:	On a Power-on Reset, PORTD defaults to	
	the system bus.	


EXAMPLE 9-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD3:RD0 as inputs
		; RD5:RD4 as outputs
		; RD7:RD6 as inputs
		-

FIGURE 9-7:

PORTD BLOCK DIAGRAM IN I/O MODE

FIGURE 9-8: PORTD BLOCK DIAGRAM IN SYSTEM BUS MODE

© 2001-2013 Microchip Technology Inc.

Name	Bit#	Buffer Type	Function
RD0/AD0/A0 ⁽²⁾	bit0	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 0
RD1/AD1/A1 ⁽²⁾	bit1	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 1
RD2/AD2/A2 ⁽²⁾	bit2	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 2
RD3/AD3/A3 ⁽²⁾	bit3	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 3
RD4/AD4/A4 ⁽³⁾	bit4	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 4
RD5/AD5/A5 ⁽²⁾	bit5	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 5
RD6/AD6/A6 ⁽²⁾	bit6	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 6
RD7/AD7/A7 ⁽²⁾	bit7	ST/TTL ⁽¹⁾	Input/output port pin or system bus bit 7

TABLE 9-7: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus mode.
 2: RDx is used as a multiplexed address/data bus for PIC18C601 and PIC18C801 in 16-bit mode, and as an

address only for PIC18C801 in 8-bit mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD LATD Data Output Register								XXXX XXXX	uuuu uuuu
TRISD	D PORTD Data Direction Register								1111 1111	1111 1111
MEMCON	EBDIS	PGRM	WAIT1	WAIT0		_	WM1	WM0	000000	000000

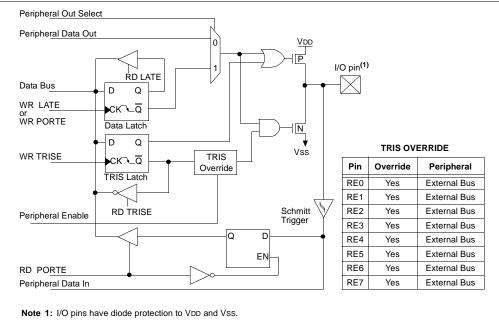
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

9.5 PORTE, TRISE and LATE Registers

PORTE is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATE register reads and writes the latched output value for PORTE.

PORTE is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. PORTE is multiplexed with several peripheral functions (Table 9-9).


PORTE is multiplexed with the system bus and is available only when the system bus is disabled, by setting EBDIS bit in register MEMCON. When operating as the system bus, PORTE is configured as the high order byte of the address/data bus (AD15:AD8), or as the high order address byte (A15:A8), if address and data buses are de-multiplexed.

Note:	On Power-on Reset, PORTE defaults to	
	the system bus.	

EXAMPLE 9-5: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by ; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	03h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE1:RE0 as inputs
		; RE7:RE2 as outputs

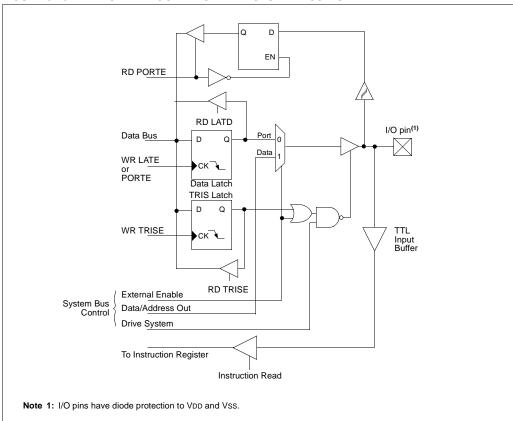


FIGURE 9-10: PORTE BLOCK DIAGRAM IN SYSTEM BUS MODE

TABLE 9-9: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/AD8/A8 ⁽²⁾	bit0	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 8
RE1/AD9/A9 ⁽²⁾	bit1	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 9
RE2/AD10/A10 ⁽²⁾	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 10
RE3/AD11/A11 ⁽²⁾	bit3	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 11
RE4/AD12/A12 ⁽²⁾	bit4	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 12
RE5/AD13/A13 ⁽²⁾	bit5	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 13
RE6/AD14/A14 ⁽²⁾	bit6	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 14
RE7/AD15/A15 ⁽²⁾	bit7	ST/TTL ⁽¹⁾	Input/output port pin or Address/Data bit 15

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus mode.

2: REx is used as a multiplexed address/data bus for PIC18C601 and PIC18C801 in 16-bit mode, and as an address only for PIC18C801 in 8-bit mode.

TABLE 9-10:	SUMMARY OF REGISTERS	ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
TRISE	E PORTE Data Direction Control Register									1111 1111
PORTE	Read PORTE pin/Write PORTE Data Latch								xxxx xxxx	uuuu uuuu
LATE	LATE Read PORTE Data Latch/Write PORTE Data Latch								xxxx xxxx	uuuu uuuu
MEMCON	EBDIS	PGRM	WAIT1	WAIT0		_	WM1	WM0	000000	000000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTE.

9.6 PORTF, LATF, and TRISF Registers

PORTF is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISF. Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATF register reads and writes the latched output value for PORTF.

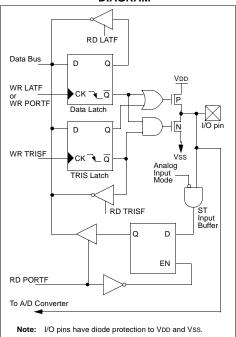
PORTF pins, RF2:RF0, are multiplexed with analog inputs. The operation of these pins are selected by ADCON0 and ADCON1 registers.

PORTF pins, RF3 and RF5, are multiplexed with two of the integrated chip select signals CSIO and CS1. For PIC18C801, pin RF4 is multiplexed with chip select signal CS2, while for PIC18C601, it is multiplexed with system bus signal A16. For PIC18C801 devices, both CSEL2 and CSELIO registers must set to all zero, to enable these pins as I/O pins, while for PIC18C601 devices, only CSELIO register needs to be set to zero. For PIC18C601 devices, pin RF4 can only be configured as I/O when the EBDIS bit is set and execution is taking place in internal Boot RAM.

PORTF pins, RF7:RF6, are multiplexed with the system bus control signal \overline{UB} and \overline{LB} , respectively, when a device with 16-bit bus execution is used. These pins can be configured as I/O pins by setting WM bits in the MEMCON register to any value other than '01'.

				Reset, to A/D in	PORTF puts.	pins
2:	RF7: RF7:	RF3	for RF3 fo	PIC18C8 or PIC180	PORTF 01 and C601, defa	pins

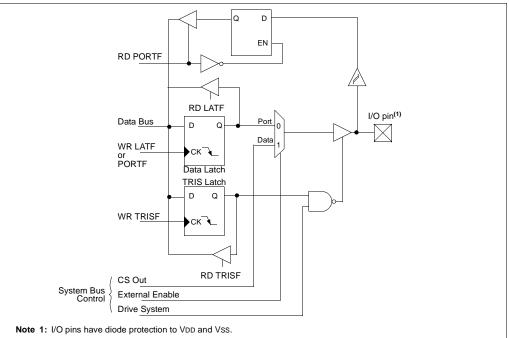
EXAMPLE 9-6:	INITIALIZING PORTF


CLRF	PORTF	; Initialize PORTF by
		; clearing output
		; data latches
CLRF	LATF	; Alternate method
		; to clear output
		; data latches
MOVLW	0Fh	;
MOVWF	ADCON1	; Set PORTF as digital I/O
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISF	; Set RF3:RF0 as inputs
		; RF5:RF4 as outputs
		; RF7:RF6 as inputs
		-

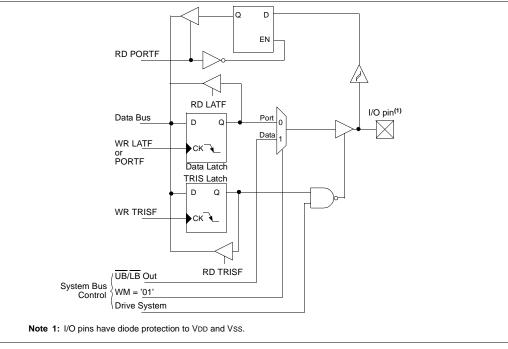
EXAMPLE 9-7: PROGRAMMING CHIP SELECT SIGNALS

• ; Program chip select to activate CS1 ; for all address less than 03FFFFh, while activate CS2 for rests of the addresses ; CSEL2 register is secured register. ; Before it can be modified it, ; combination lock must be opened MOVLW 20h ; Preload WREG with ; correct CSEL2 valu ; Disable interrupts BCF INTCON, GIE CALL UNLOCK : Now unlock it ; Lock is open. Modify CSEL2... MOVWF CSEL2 ; Lock is closed BSF INTCON, GIE ; Re-enable interrupts ; Chip select is programmed. UNLOCK BSF PSPCON, CMLK1 BSF PSPCON, CMLK0 RETURN

RF2:RF0 PINS BLOCK DIAGRAM



DS39541B-page 116


Advance Information

© 2001-2013 Microchip Technology Inc.

FIGURE 9-12: RF5:RF3 PINS BLOCK DIAGRAM

FIGURE 9-13: RF7:RF6 PINS BLOCK DIAGRAM

© 2001-2013 Microchip Technology Inc.

Name	Bit#	Buffer Type	Function
RF0/AN5	bit0	ST	Input/output port pin or analog input
RF1/AN6	bit1	ST	Input/output port pin or analog input
RF2/AN7	bit2	ST	Input/output port pin or analog input
RF3/CSIO	bit3	ST	Input/output port pin or I/O chip select
RF4/A16/CS2 ⁽¹⁾	bit4	ST	Input/output port pin or chip select 2 or address bit 16
RF5/CS1	bit5	ST	Input/output port pin or chip select 1
RF6/LB	bit6	ST	Input/output port pin or low byte select signal for external memory
RF7/UB	bit7	ST	Input/output port pin or high byte select signal for external memory

TABLE 9-11: PORTF FUNCTIONS

Legend: ST = Schmitt Trigger input

Note 1: CS2 is available only on PIC18C801.

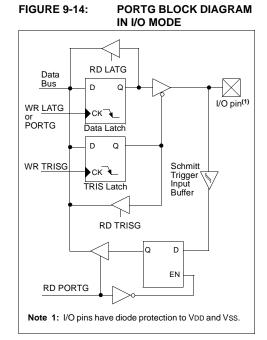
TABLE 9-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
TRISF	PORTF Data Direction Control Register								1111 1111	1111 1111
PORTF	Read PORTF pin/Write PORTF Data Latch xxxx xxxx uuu							uuuu uuuu		
LATF	Read PORTF Data Latch/Write PORTF Data Latch							0000 0000	uuuu uuuu	
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
MEMCON	EBDIS	PGRM	WAIT1	WAIT0	—	—	WM1	WM0	000000	000000

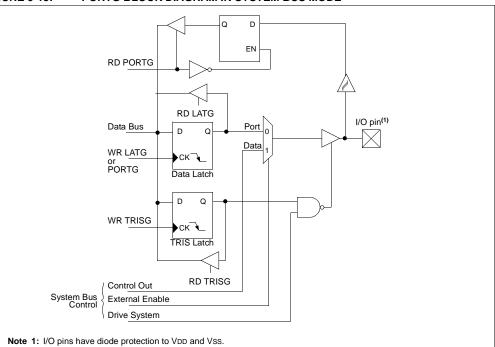
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTF.

9.7 PORTG, LATG, and TRISG Registers

PORTG is a 5-bit wide, bi-directional port. The corresponding data direction register is TRISG. Setting a TRISG bit (= 1) will make the corresponding PORTG pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISG bit (= 0) will make the corresponding PORTG pin an output (i.e., put the contents of the output latch on the selected pin).


Read-modify-write operations on the LATG register read and write the latched output value for PORTG.

PORTG is multiplexed with system bus control signals ALE, OE, WRH, WRL and BA0. The WRH signal is the only signal that is disabled and configured as a port pin (RG3) during external program execution in 8-bit mode. All other pins are by default, system bus control signals. PORTG can be configured as an I/O port by setting EBDIS bit in the MEMCON register and when execution is taking place in internal program RAM.


Note: On Power-on Reset, PORTG defaults to system bus signals.

EXAMPLE 9-8: INITIALIZING PORTG

CLRF	PORTG	; Initialize PORTG by
		; clearing output
		; data latches
CLRF	LATG	; Alternate method
		; to clear output
		; data latches
MOVLW	04h	; Value used to
		; initialize data
		; direction
MOVWF	TRISG	; Set RG1:RG0 as outputs
		; RG2 as input
		; RG4:RG3 as outputs

© 2001-2013 Microchip Technology Inc.

FIGURE 9-15: PORTG BLOCK DIAGRAM IN SYSTEM BUS MODE

TABLE 9-13: PORTG FUNCTIONS

Name	Bit#	Buffer Type	Function
RG0/ALE	bit0	ST	Input/output port pin or Address Latch Enable signal for external memory
RG1/OE	bit1	ST	Input/output port pin or Output Enable signal for external memory
RG2/WRL	bit2	ST	Input/output port pin or Write Low byte signal for external memory
RG3/WRH	bit3	ST	Input/output port pin or Write High byte signal for external memory
RG4/BA0	bit4	ST	Input/output port pin or Byte Address 0 signal for external memory

Legend: ST = Schmitt Trigger input

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
PORTG D	PORTG Data Direction Control Register1 11111 1111								
Read POF	Read PORTG pin/Write PORTG Data Latchx xxxxu uuuu								
Read PORTG Data Latch/Write PORTG Data Latch x xxxx u uuuu									
EBDIS	BDIS PGRM WAIT1 WAIT0 — — WM1 WM0 0000 00 0000 00								
	PORTG D Read POF Read POF	PORTG Data Direct Read PORTG pin/W Read PORTG Data	PORTG Data Direction Control Read PORTG pin/Write PORTG Read PORTG Data Latch/Write	PORTG Data Direction Control Register Read PORTG pin/Write PORTG Data Latc Read PORTG Data Latch/Write PORTG D	PORTG Data Direction Control Register Read PORTG pin/Write PORTG Data Latch Read PORTG Data Latch/Write PORTG Data Latch	PORTG Data Direction Control Register Read PORTG pin/Write PORTG Data Latch Read PORTG Data Latch/Write PORTG Data Latch	PORTG Data Direction Control Register Read PORTG pin/Write PORTG Data Latch Read PORTG Data Latch/Write PORTG Data Latch	PORTG Data Direction Control Register Read PORTG pin/Write PORTG Data Latch Read PORTG Data Latch/Write PORTG Data Latch	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR PORTG Data Direction Control Register 1 1 1 1111 Read PORTG pin/Write PORTG Data Latch/Write

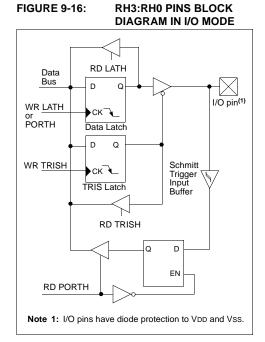
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTG.

9.8 PORTH, LATH, and TRISH Registers

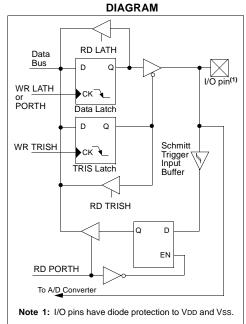
Note: PORTH is available only on PIC18C801 devices.

PORTH is an 8-bit wide, bi-directional I/O port. The corresponding data direction register is TRISH. Setting a TRISH bit (= 1) will make the corresponding PORTH pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISH bit (= 0) will make the corresponding PORTH pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATH register read and write the latched output value for PORTH.


Pins RH7:RH4 are multiplexed with analog inputs AN18:AN11, while pins RH3:RH0 are multiplexed with system address bus A19:A16. By default, pins RH7:RH4 will setup as A/D inputs and pins RH3:RH0 will setup as system address bus. Register ADCON1 configures RH7:RH4 as I/O or A/D inputs. Register MEMCON configures RH3:RH0 as I/O or system bus pins.

Note 1:	On F	Power-on	Reset,	PORTH	pins
I	RH7:R	H4 default	to A/D	inputs and	read
á	as '0'.				
2.	On F	ower-on	Reset	PORTH	nins


RH3:RH0 default to system bus signals.

EXAMPLE 9-9: INITIALIZING PORTH

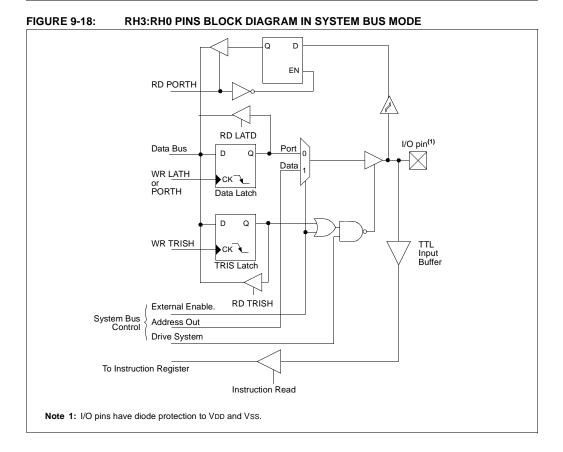

CLRF	PORTH	; Initialize PORTH by
		; clearing output
		; data latches
CLRF	LATH	; Alternate method
		; to clear output
		; data latches
MOVLW	0Fh	;
MOVWF	ADCON1	;
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISH	; Set RH3:RH0 as inputs
		; RH5:RH4 as outputs
		; RH7:RH6 as inputs

FIGURE 9-17: RH7:RH4 PINS BLOCK

© 2001-2013 Microchip Technology Inc.

TABLE 9-15: PORTH FUNCTIONS

Name	Bit#	Buffer Type	Function
RH0/A16 ⁽¹⁾	bit0	ST	Input/output port pin or Address bit 16 for external memory interface
RH1/A17 ⁽¹⁾	bit1	ST	Input/output port pin or Address bit 17 for external memory interface
RH2/A18 ⁽¹⁾	bit2	ST	Input/output port pin or Address bit 18 for external memory interface
RH3/A19 ⁽¹⁾	bit3	ST	Input/output port pin or Address bit 19 for external memory interface
RH4/AN8 ⁽¹⁾	bit4	ST	Input/output port pin or analog input channel 8
RH5/AN9 ⁽¹⁾	bit5	ST	Input/output port pin or analog input channel 9
RH6/AN10 ⁽¹⁾	bit6	ST	Input/output port pin or analog input channel 10
RH7/AN11 ⁽¹⁾	bit7	ST	Input/output port pin or analog input channel 11

Legend: ST = Schmitt Trigger input **Note 1:** PORTH is available only on PIC18C801 devices.

TABLE 9-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH

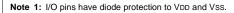
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
TRISH	PORTH Data Direction Control Register									1111 1111
PORTH	Read PC)RTH pin/	Write POF	RTH Data	Latch				XXXX XXXX	uuuu uuuu
LATH	Read PC	ORTH Dat	a Latch/W	rite POR	FH Data L	atch			XXXX XXXX	uuuu uuuu
ADCON1	- VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0								00 0000	00 0000
MEMCON	EBDIS	PGRM	WAIT1	WAIT0	—	—	WM1	WM0	000000	000000
Logondy			ام م م م م		a					

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are not used by PORTH.

9.9 PORTJ, LATJ, and TRISJ Registers

Note: PORTJ is available only on PIC18C801 devices.

PORTJ is an 8-bit wide, bi-directional I/O port. The corresponding data direction register is TRISJ. Setting a TRISJ bit (= 1) will make the corresponding PORTJ pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISJ bit (= 0) will make the corresponding PORTJ pin an output (i.e., put the contents of the output latch on the selected pin).


Read-modify-write operations on the LATJ register read and write the latched output value for PORTJ.

PORTJ is multiplexed with de-multiplexed system data bus D7:D0, when device is configured in 8-bit execution mode. Register MEMCON configures PORTJ as I/O or system bus pins.

Note: On Power-on Reset, PORTJ defaults to system bus signals.

CLRF	PORTJ	; Initialize PORTJ by
		; clearing output
		; data latches
CLRF	LATJ	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISJ	; Set RJ3:RJ0 as inputs
		; RJ5:RJ4 as outputs
		; RJ7:RJ6 as inputs

PORTJ BLOCK DIAGRAM **FIGURE 9-19:** IN I/O MODE RD LATJ Data Bus D 0 I/O pin⁽¹⁾ WR LATJ скЪ or PORTJ Data Latch D Q WR TRISJ Schmitt ск 🔪 Trigger Input Buffer 11 TRIS Latch RD TRISJ Q D ΕN RD PORTJ

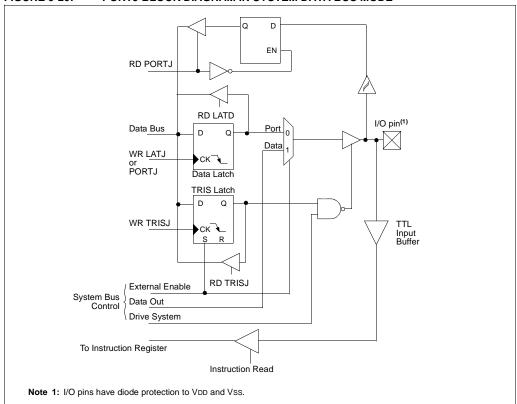


FIGURE 9-20: PORTJ BLOCK DIAGRAM IN SYSTEM DATA BUS MODE

© 2001-2013 Microchip Technology Inc.

Name	Bit#	Buffer Type	Function
RJ0/D0 ⁽¹⁾	bit0	ST/TTL	Input/output port pin or Data bit 0 for external memory interface
RJ1/D1 ⁽¹⁾	bit1	ST/TTL	Input/output port pin or Data bit 1 for external memory interface
RJ2/D2 ⁽¹⁾	bit2	ST/TTL	Input/output port pin or Data bit 2 for external memory interface
RJ3/D3 ⁽¹⁾	bit3	ST/TTL	Input/output port pin or Data bit 3 for external memory interface
RJ4/D4 ⁽¹⁾	bit4	ST/TTL	Input/output port pin or Data bit 4 for external memory interface
RJ5/D5 ⁽¹⁾	bit5	ST/TTL	Input/output port pin or Data bit 5 for external memory interface
RJ6/D6 ⁽¹⁾	bit6	ST/TTL	Input/output port pin or Data bit 6 for external memory interface
RJ7/D7 ⁽¹⁾	bit7	ST/TTL	Input/output port pin or Data bit 7 for external memory interface

TABLE 9-17: PORTJ FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: PORTJ is available only on PIC18C801 devices.

TABLE 9-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
TRISJ	PORTJ	Data Dire		1111 1111	1111 1111					
PORTJ	Read PC	ORTJ pin	Write PC	RTJ Data	a Latch				XXXX XXXX	uuuu uuuu
LATJ	Read PC	ORTJ Dat	a Latch/V	Vrite POF	RTJ Data	Latch			XXXX XXXX	uuuu uuuu
MEMCON	ON EBDIS PGRM WAIT1 WAIT0 WM1 WM							WM0	000000	000000
Legend: v -	unknowr	<u> </u>	hanged	Shaded c	ells are r	not used hy				

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTJ.

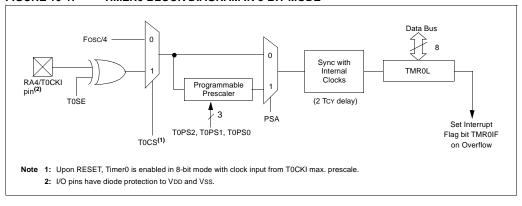
10.0 TIMER0 MODULE

The Timer0 module has the following features:

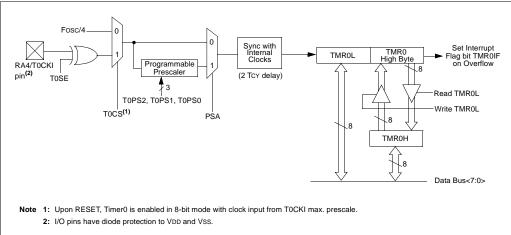
- Software selectable as an 8-bit or 16-bit timer/ counter
- Readable and writable
- Dedicated 8-bit software programmable prescaler
- Clock source selectable to be external or internal
- Interrupt on overflow from FFh to 00h in 8-bit mode and FFFFh to 0000h in 16-bit mode
- Edge select for external clock

REGISTER 10-1: TOCON REGISTER

Register 10-1 shows the Timer0 Control register (T0CON).


Figure 10-1 shows a simplified block diagram of the Timer0 module in 8-bit mode and Figure 10-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

The T0CON register is a readable and writable register that controls all the aspects of Timer0, including the prescale selection.


Note: Timer0 is enabled on POR.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0				
	bit 7							bit 0				
bit 7	TMR0ON: T 1 = Enables 0 = Stops Ti		Control bit									
bit 6	1 = Timer0 i	er0 8-bit/16-b s configured s configured	as an 8-bit t	imer/counter								
bit 5	1 = Transitio	r0 Clock Sou on on T0CKI j instruction cy	oin									
bit 4	1 = Increme	TOSE : Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin										
bit 3	1 = TImer0	0 Prescaler A prescaler is N prescaler is a	IOT assigne	d. Timer0 clo								
bit 2-0	 0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output. TOPS2:TOPS0: Timer0 Prescaler Select bits 111 = 1:256 prescale value 100 = 1:128 prescale value 101 = 1:64 prescale value 100 = 1:32 prescale value 011 = 1:16 prescale value 010 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 											
	Legend:											
	R = Readab	ole bit	W = Writa	able bit	U = Unimpl	emented b	it, read as '	0'				
	- n = Value a	at POR	'1' = Bit is	s set	'0' = Bit is c	leared	x = Bit is u	nknown				

10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the TOCS bit. In Counter mode, Timer0 will increment either on every rising, or falling edge, of pin RA4/TOCKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (TOSE). Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF TMR0, MOVWF TMR0, BSF TMR0, x.... etc.) will clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0, will clear the prescaler count but will not change the prescaler assignment.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution).

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IF bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

10.4 16-Bit Mode Timer Reads and Writes

Timer0 can be set in 16-bit mode by clearing T0CON T08BIT. Registers TMR0H and TMR0L are used to access 16-bit timer value.

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (refer to Figure 10-1). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16-bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of the buffered value of TMR0H, when a write occurs to TMR0L. This allows all 16-bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
TMR0L	Timer0 Mod	xxxx xxxx	uuuu uuuu							
TMR0H	Timer0 Mod	ule's High By	te Registe	r					0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
T0CON	TMR0ON	N T08BIT TOCS TOSE PSA TOPS2 TOPS1 TOPS0								1111 1111
TRISA	—	PORTA Data	11 1111	11 1111						

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

11.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter
- (Two 8-bit registers: TMR1H and TMR1L)
- · Readable and writable (both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- · RESET from CCP module special event trigger

R/W-0

RD16

U-0

R/W-0

T1CKPS1

R/W-0

T1CKPS0

REGISTER 11-1: T1CON REGISTER

Register 11-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module as well as contains the Timer1 oscillator enable bit (T1OSCEN). Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON register).

Figure 11-1 is a simplified block diagram of the Timer1 module.

R/W-0

T1SYNC

R/W-0

TMR1CS

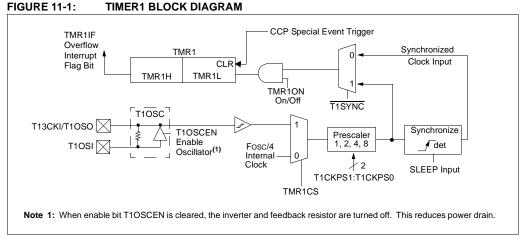
R/W-0

TMR10N

Note: Timer1 is disabled on POR.

R/W-0

T1OSCEN

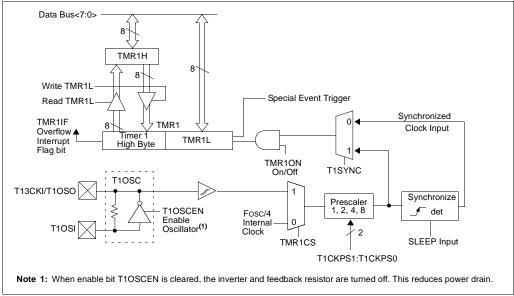

	bit 7							bit 0			
bit 7	1 = Enable	s register		of TImer1 in o	one 16-bit ope wo 8-bit opera						
bit 6	Unimplem	ented: Re	ad as '0'								
bit 5-4	T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value										
bit 3	1 = Timer1 0 = Timer1	Oscillator Oscillator	is shut-off		or are turned	off to elimin	ate power d	rain.			
bit 2	The oscillator inverter and feedback resistor are turned off to eliminate power drain. T1SYNC: Timer1 External Clock Input Synchronization Select bit When TMR1CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR1CS = 0: This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.										
bit 1		al clock fro	•		CKI (on the ris	ing edge)					
bit 0	TMR1ON: 1 = Enable 0 = Stops	s Timer1	n bit								
	Legend:										
	R = Reada	ble bit	W =	Writable bit	U = Unim	plemented	bit, read as	'0'			
	- n = Value	at POR	'1' =	Bit is set	'0' = Bit is	s cleared	x = Bit is u	nknown			

11.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counterAs an asynchronous counter
- The operating mode is determined by the clock select bit, TMR1CS (T1CON register).
 - Note: When Timer1 is configured in an Asynchronous mode, care must be taken to make sure that there is no incoming pulse while Timer1 is being turned off. If there is an incoming pulse while Timer1 is being turned off, Timer1 value may become unpredictable.

If an application requires that Timer1 be turned off and if it is possible that Timer1 may receive an incoming pulse while being turned off, synchronize the external clock first, by clearing the $\overline{T1SYNC}$ bit of register T1CON. Please note that this may cause Timer1 to miss up to one count.



When TMR1CS is clear, Timer1 increments every instruction cycle. When TMR1CS is set, Timer1 increments on every rising edge of the external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Table 14.0).

11.2 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON register). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 11-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

TABLE 11-1: CAPACITOR SELECTION FOR THE ALTERNATE OSCILLATOR

Osc Type	Freq	C1	C2						
LP	32 kHz	TBD ⁽¹⁾	TBD(1)						
Crystal to be Tested:									
32.768 kHz Epson C-001R32.768K-A ± 20 PEN									
poi 2: Hig of 3: Sin Prive prive	crochip sugge int in validating the capacitant the oscillator rt-up time constructions, t sonator/crystal ate values of e pacitor values y.	g the oscillato for increases but also increases nator/crystal h he user should I manufacture external comp	t circuit. the stability ases the has its own d consult the r for appro- ponents.						

11.3 Timer1 Interrupt

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR registers). This interrupt can be enabled/disabled by setting/ clearing TMR1 interrupt enable bit TMR1IE (PIE registers).

11.4 Resetting Timer1 using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note: The special event triggers from the CCP1 module will not set interrupt flag bit TMR1IF (PIR registers).

Timer1 must be configured for either Timer, or Synchronized Counter mode, to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair, effectively becomes the period register for Timer1.

11.5 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 11-2). When the RD16 control bit (T1CON register) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 high byte buffer. This provides the user with the ability to accurately read all 16 bits of Timer1, without having to determine whether a read of the high byte followed by a read of the low byte is valid, due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H buffer register. Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16-bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 high byte buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

© 2001-2013 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
TMR1L	Holding r	egister for	the Least Si	gnificant Byte	of the 16-bit	TMR1 regi	ister		XXXX XXXX	uuuu uuuu
TMR1H	Holding r	egister for		XXXX XXXX	uuuu uuuu					
T1CON	RD16	—	T1CKPS1	TMR10N	0-00 0000	u-uu uuuu				
Legend:	x = unkno	wn, u = un	nchanged, -	= unimpleme	nted, read as	s '0'. Shade	d cells are i	not used by	the Timer1 mo	dule.

TABLE 11-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

12.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Register 12-1 shows the Timer2 Control register. Timer2 can be shut-off by clearing control bit TMR2ON (T2CON register), to minimize power consumption. Figure 12-1 is a simplified block diagram of the Timer2 module. The prescaler and postscaler selection of Timer2 are controlled by this register.

12.1 **Timer2 Operation**

Timer2 can be used as the PWM time-base for the PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device RESET. The input clock (Fosc/4) has a prescale option of 1:1, or 1:16, selected by control bits 1:4. T2CKPS1:T2CKPS0 (T2CON register). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, PIR registers).

The prescaler and postscaler counters are cleared when any of the following occurs:

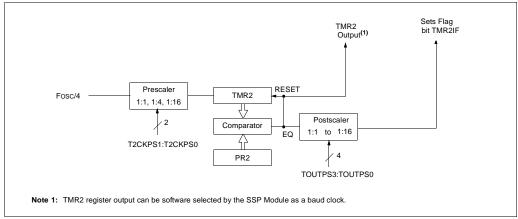
- · A write to the TMR2 register
- · A write to the T2CON register
- Any device RESET (Power-on Reset, MCLR Reset, or Watchdog Timer Reset)

TMR2 is not cleared when T2CON is written.

Note: Timer2 is disabled on POR.

REGISTER 12-1: T2CON REGISTER

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0
bit 7	Unimple	mented: Rea	ad as '0'					
bit 6-3	TOUTPS	3:TOUTPS0	: Timer2 Ou	tput Postsca	le Select bits			
		:1 Postscale						
		:2 Postscale						
	•							
	•							
	1111 = 1	:16 Postscal	е					
bit 2	TMR2ON	I: Timer2 On	bit					
	1 = Time							
	0 = Time				_			
bit 1-0		1:T2CKPS0:	Timer2 Clo	ck Prescale	Select bits			
		scaler is 1 scaler is 4						
		scaler is 4						
	Legend:							
	R = Read	dable bit	W = 1	Writable bit	U = Unin	nplemented	bit, read as	'0'
	- n = Valu	ue at POR	'1' =	Bit is set	'0' = Bit i	s cleared	x = Bit is u	Inknown


12.2 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

FIGURE 12-1: TIMER2 BLOCK DIAGRAM

12.3 Output of TMR2

The output of TMR2 (before the postscaler) is a clock input to the Synchronous Serial Port module, which optionally uses it to generate the shift clock.

TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1		ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
TMR2	Timer2 M	odule's Regi	ister						0000 0000	0000 0000
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
PR2	Timer2 P	eriod Registe		1111 1111	1111 1111					
المعتمية وال			المعموما		tod rood oo		l collo oro no	ملقي بما المرم من ال	a Timor? mad	

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

13.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter
- (Two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- RESET from CCP module trigger

Figure 13-1 is a simplified block diagram of the Timer3 module.

Register 13-1 shows the Timer3 Control register. This register controls the operating mode of the Timer3 module and sets the CCP clock source.

Register 11-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 oscillator enable bit (T1OSCEN), which can be a clock source for Timer3.

Note: Timer3 is disabled on POR.

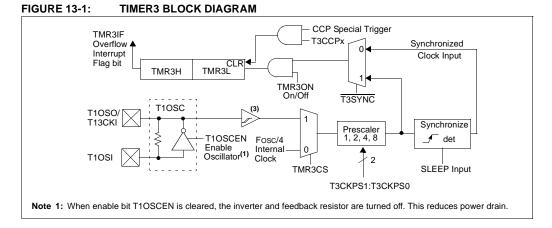
REGISTER 13-1: T3CON REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	
	bit 7							bit 0	
bit 7	1 = Enable	s register R		Timer3 in on	•				
h it C O	0 = Enables register Read/Write of Timer3 in two 8-bit operations								
bit 6,3	T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits 1x = Timer3 is the clock source for compare/capture CCP modules 01 = Timer3 is the clock source for compare/capture of CCP2, Timer1 is the clock source for compare/capture of CCP1 00 = Timer1 is the clock source for compare/capture CCP modules								
bit 5-4	T3CKPS1:	T3CKPS0:	Timer3 Input	Clock Presc	ale Select bi	its			
	10 = 1:4 P 01 = 1:2 P	rescale valu rescale valu rescale valu rescale valu	e e						
bit 2	T3SYNC: Timer3 External Clock Input Synchronization Control bit (Not usable if the system clock comes from Timer1/Timer3) When TMR3CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR3CS = 0: This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.								
bit 1	TMR3CS: Timer3 Clock Source Select bit 1 = External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first falling edge) 0 = Internal clock (Fosc/4)								
bit 0	TMR3ON: 1 = Enable 0 = Stops		bit						
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented l	oit, read as	0'	
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	cleared	x = Bit is u	nknown	

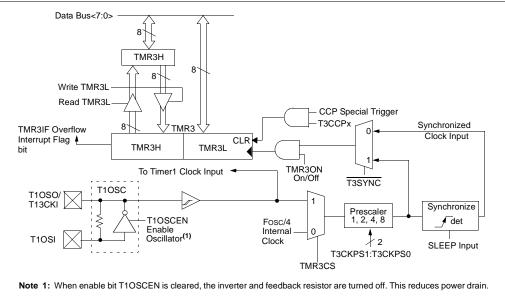
© 2001-2013 Microchip Technology Inc.

13.1 Timer3 Operation

Timer3 can operate in one of these modes:


- As a timer
- · As a synchronous counter
- · As an asynchronous counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON register).


When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer3 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 13.0).

FIGURE 13-2: TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE

DS39541B-page 138

Advance Information

© 2001-2013 Microchip Technology Inc.

13.2 Timer1 Oscillator

The Timer1 oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN bit (T1CON Register). The oscillator is a low power oscillator rated up to 200 kHz. Refer to "Timer1 Module", Section 11.0, for Timer1 oscillator details.

13.3 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR3IF (PIE registers). This interrupt can be enabled/disabled by setting/clearing TMR3 interrupt enable bit TMR3IE (PIE registers).

13.4 Resetting Timer3 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer3.

Note:	The special event triggers from the CCP					
	module will not set interrupt flag bit					
	TMR3IF (PIR registers).					

Timer3 must be configured for either Timer, or Synchronized Counter mode, to take advantage of this feature. If Timer3 is running in Asynchronous Counter mode, this RESET operation may not work. In the event that a write to Timer3 coincides with a special event trigger from CCP1, the write will take precedence. In this mode of operation, the CCPR1H:CCPR1L registers pair becomes the period register for Timer3. Refer to Section 14.0, "Capture/Compare/PWM (CCP) Modules", for CCP details.

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR2	-	_	-	-	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	-0 0000
PIE2	_	_	-	-	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	-0 0000
IPR2	-	_	_	_	BCLIP	LVDIP	TMR3IP	CCP2IP	0000	-0 0000
TMR3L	Holding	register fo	r the Least S	Significant B	yte of the 16-	bit TMR3 re	gister		xxxx xxxx	uuuu uuuu
TMR3H	Holding register for the Most Significant Byte of the 16-bit TMR3 register xxxx xxxx uuuu uuuu							uuuu uuuu		
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	u-uu uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

39541a.book Page 140 Tuesday, January 29, 2013 2:34 PM

PIC18C601/801

NOTES:

 \bigcirc

۲

DS39541B-page 140

Advance Information

 $\ensuremath{\textcircled{\sc c}}$ 2001-2013 Microchip Technology Inc.

14.0 CAPTURE/COMPARE/PWM (CCP) MODULES

Each CCP (Capture/Compare/PWM) module contains a 16-bit register that can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM Duty Cycle register. Table 14-1 shows the timer resources of the CCP module modes. The operation of CCP1 is identical to that of CCP2, with the exception of the special event trigger. Therefore, operation of a CCP module in the following sections is described, with respect to CCP1.

Table 14-2 shows the interaction of the CCP modules.

Register 14-1 shows the CCPx Control registers (CCPxCON). For the CCP1 module, the register is called CCP1CON and for the CCP2 module, the register is called CCP2CON.

REGISTER 14-1: CCP1CON REGISTER CCP2CON REGISTER

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP1CON	—	-	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
	bit 7							bit 0
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP2CON	—	-	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0
	bit 7							bit 0
bit 7-6	bit 7-6 Unimplemented: Read as '0'							
bit 5-4	4 DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0							
	Capture m	ode:						
	Unused							
	Compare r	node:						
	Unused							

PWM mode:

These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits (DCx9:DCx2) of the duty cycle are found in CCPRxL.

bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits

- 0000 = Capture/Compare/PWM off (resets CCPx module)
- 0001 = Reserved
- 0010 = Compare mode, toggle output on match (CCPxIF bit is set)
- 0011 = Reserved
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode,

Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set) 1001 = Compare mode,

Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set) 1010 = Compare mode,

- Generate software interrupt on compare match
- (CCPIF bit is set, CCP pin is unaffected) 1011 = Compare mode,
 - Trigger special event (CCPIF bit is set, reset TMR1 or TMR3)
- 11xx = PWM mode

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2001-2013 Microchip Technology Inc.

14.1 CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

14.2 CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 14-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource		
Capture	Timer1 or Timer3		
Compare	Timer1 or Timer3		
PWM	Timer2		

14.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers, when an event occurs on pin RC2/CCP1. An event is defined as:

- · every falling edge
- every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR registers) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

14.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 is configured as an output, a write to the port can cause a capture condition.

14.3.2 TIMER1/TIMER3 MODE SELECTION

The timers used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer used with each CCP module is selected in the T3CON register.

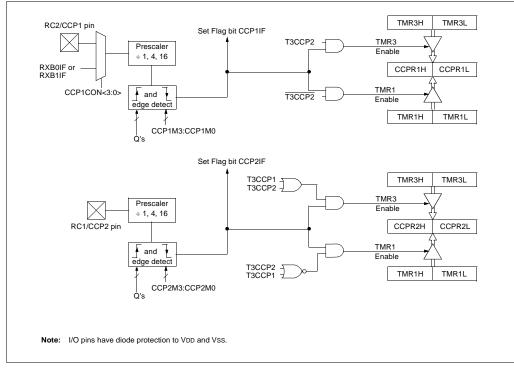
TABLE 14-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1 or TMR3, depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1 or TMR3, depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

14.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE registers) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in operating mode.

14.3.4 CCP PRESCALER


There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 14-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 14-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON, F	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

FIGURE 14-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

© 2001-2013 Microchip Technology Inc.

14.4 Compare Mode

In Compare mode, the 16-bit CCPR1 (CCPR2) register value is constantly compared against either the TMR1 register pair value, or the TMR3 register pair value. When a match occurs, the RC2/CCP1 (RC1/CCP2) pin can have one of the following actions:

- Driven high
- Driven low
- · Toggle output (high to low or low to high)
- · Remains unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the same time, interrupt flag bit CCP1IF (CCP2IF) is set.

14.4.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRISC bit.

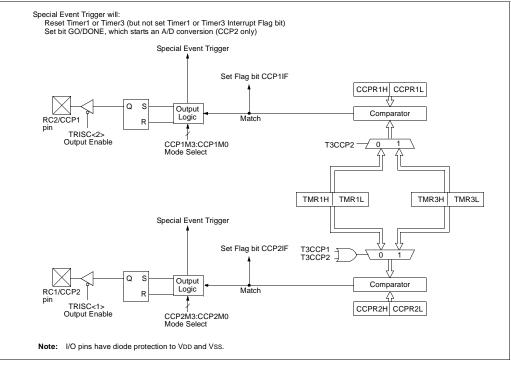
Note: Clearing the CCP1CON register will force the RC2/CCP1 compare output latch to the default low level. This is not the data latch.

14.4.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

14.4.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).


14.4.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCPx resets either the TMR1, or TMR3 register pair. Additionally, the CCP2 Special Event Trigger will start an A/D conversion, if the A/D module is enabled.

FIGURE 14-2: COMPARE MODE OPERATION BLOCK DIAGRAM

DS39541B-page 144

Advance Information

© 2001-2013 Microchip Technology Inc.

Note: The special event trigger from the CCP2 module will not set the Timer1 or Timer3 interrupt flag bits.

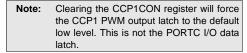
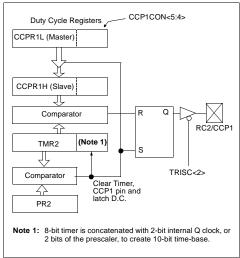
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
TRISC	PORTC Da	ata Directio	on Register						1111 1111	1111 1111
TMR1L	Holding re	gister for th	ne Least Sig	nificant Byte	of the 16-bi	t TMR1 Reg	gister		xxxx xxxx	uuuu uuuu
TMR1H	Holding re	gister for th	ne Most Sigr	nificant Byte	of the 16-bit	TMR1 Reg	ister		xxxx xxxx	uuuu uuuu
T1CON	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	u-uu uuuu
CCPR1L	Capture/C	ompare/PV	VM Register	1 (LSB)					xxxx xxxx	uuuu uuuu
CCPR1H	Capture/C	ompare/PV	VM Register	1 (MSB)					xxxx xxxx	uuuu uuuu
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCPR2L	Capture/C	ompare/PV	VM Register	2 (LSB)					xxxx xxxx	uuuu uuuu
CCPR2H	Capture/C	ompare/PV	VM Register	2 (MSB)					xxxx xxxx	uuuu uuuu
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
PIR2	—	—	—	—	BCLIF	LVDIF	TMR3IF	CCP2IF	0000	0000
PIE2	—	—	—	—	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	0000
IPR2	—	—	_	_	BCLIP	LVDIP	TMR3IP	CCP2IP	0000	0000
TMR3L	Н	lolding regi	ster for the l	Least Signifi	cant Byte of	the 16-bit T	MR3 regist	er	xxxx xxxx	uuuu uuuu
TMR3H	F	lolding reg	ister for the	Most Signifi	cant Byte of	the 16-bit T	MR3 registe	ər	xxxx xxxx	uuuu uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu

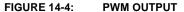
TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

14.5 PWM Mode

In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.


Figure 14-3 shows a simplified block diagram of the CCP module in PWM mode.

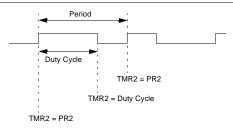
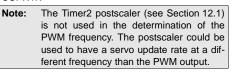

For a step-by-step procedure on how to setup the CCP module for PWM operation, see Section 14.5.3.

FIGURE 14-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 14-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).


14.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated by the formula:

$PWM period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 prescale value)$

where PWM frequency is defined as 1 / [PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

14.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

Advance Information

© 2001-2013 Microchip Technology Inc.

14.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 14-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 25 MHz

PWM Frequency	1.53 kHz	6.10 kHz	24.41 kHz	97.66kHz	195.31 kHz	260.42 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu PO BC	R,	all o	e on other SETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
PIE1		ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
IPR1		ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000	0000	-000	0000
TRISC	PORTC Data Direction Register							1111	1111	1111	1111	
TMR2	Timer2 Module's Register							0000	0000	0000	0000	
PR2	Timer2 Module's Period Register							1111	1111	1111	1111	
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
CCPR1L	Capture/C	ompare/PW	M Register1	(LSB)					xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PW	M Register1	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
CCPR2L	Capture/C	ompare/PW	M Register2	(LSB)					xxxx	xxxx	uuuu	uuuu
CCPR2H	Capture/C	ompare/PW	M Register2	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000
PIR2	_	_	_	_	BCLIF	LVDIF	TMR3IF	CCP2IF		0000		0000
PIE2	_	_	_	-	BCLIE	LVDIE	TMR3IE	CCP2IE		0000		0000
IPR2	_	_	_	_	BCLIP	LVDIP	TMR3IP	CCP2IP		0000		0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

© 2001-2013 Microchip Technology Inc.

39541a.book Page 148 Tuesday, January 29, 2013 2:34 PM

PIC18C601/801

NOTES:

 \bigcirc

۲

DS39541B-page 148

Advance Information

 $\ensuremath{\textcircled{\sc c}}$ 2001-2013 Microchip Technology Inc.

15.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

15.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface[™] (SPI)
- Inter-Integrated Circuit[™] (I²C)
 - Full Master mode
 - Slave mode (with general address call)

The ${\rm I}^2{\rm C}$ interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- · Slave mode

© 2001-2013 Microchip Technology Inc.

15.2 Control Registers

The MSSP module has three associated registers. These include a status register and two control registers.

REGISTER 15-1: SSPSTAT REGISTER

Register 15-1 shows the MSSP Status Register (SSPSTAT), Register 15-2 shows the MSSP Control Register 1 (SSPCON1), and Register 15-3 shows the MSSP Control Register 2 (SSPCON2).

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bi
SMP: San SPI Maste	r mode:	t and of data					
0 = Input o <u>SPI Slave</u> SMP must In I ² C Mas 1= Slew ra	lata sampled a lata sampled a <u>mode:</u> be cleared wh ster or Slave mo ate control disal ate control enab	t middle of da en SPI is use <u>ode:</u> bled for stand	ta output tim d in Slave m ard speed m	ode ode (100 kH	z and 1 MH	z)	
<u>CKP = 0:</u> 1 = Data tu 0 = Data tu <u>CKP = 1</u> : 1 = Data tu	Clock Edge Se ansmitted on r ansmitted on fa ansmitted on fa ansmitted on r	ising edge of alling edge of alling edge of	SCK SCK				
D/A : Data 1 = Indicat	Address bit (I ² tes that the last tes that the last	C mode only)	d or transmit	ed was data ed was addr	ess		
1 = Indica	bit only. This bit is tes that a STOF bit was not det	P bit has beer	n the MSSP detected la	module is di st (this bit is '	sabled, SSF 0' on RESE	PEN is clear T)	ed.)
1 = Indicat	bit only. This bit is tes that a STAF Γ bit was not de	RT bit has bee					ed.)
This bit ho the address In I ² C Slav 1 = Read 0 = Write In I ² C Mass 1 = Transr 0 = Transr		information for next START	ollowing the bit, STOP bit	, or not ACK	bit.		
1 = Indicat	te Address (10- tes that the use ss does not nee	r needs to up	date the add	ress in the S	SPADD reg	ister	
Receive (S 1 = Receive 0 = Receive <u>Transmit (</u> 1 = Data to	Full Status bit SPI and I ² C mo ve complete, SS ve not complete I ² C mode only) ransmit in progransmit comple	SPBUF is full e, SSPBUF is <u>:</u> ress (does no	t include th <u>e</u>				
Legend:							
R = Reada	able bit	W = Writ	table bit	U = Unimp	lemented bi	t, read as '0	,

DS39541B-page 150

Advance Information

© 2001-2013 Microchip Technology Inc.

REGISTER 15-2: SSPCON1 REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 bit 7 bit 0 bit 7 WCOL: Write Collision Detect bit Master mode: 1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started 0 = No collision <u>Slave mode:</u> 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision SSPOV: Receive Overflow Indicator bit bit 6 In SPI mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be cleared in software.) 0 = No overflowIn I²C mode: 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.) 0 = No overflowSSPEN: Synchronous Serial Port Enable bit bit 5 In both modes, when enabled, these pins must be properly configured as input or output. In SPI mode: 1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins In I²C mode: 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins bit 4 CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I²C Slave mode: SCK release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I²C Master mode: Unused in this mode bit 3 - 0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4 0001 = SPI Master mode, clock = Fosc/16 0010 = SPI Master mode, clock = Fosc/64 0011 = SPI Master mode, clock = TMR2 output/2 0100 = SPI Slave mode, clock = SCK pin. SS pin control enabled. 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin. $0110 = I^2C$ Slave mode, 7-bit address $0111 = I^2C$ Slave mode, 10-bit address 1000 = I²C Master mode, clock = Fosc / (4 * (SSPADD+1)) 1001 = Reserved 1010 = Reserved 1011 = I^2C firmware controlled Master mode (Slave idle) 1100 = Reserved 1101 = Reserved $1110 = I^2C$ Slave mode, 7-bit address with START and STOP bit interrupts enabled 1111 = I²C Slave mode, 10-bit address with START and STOP bit interrupts enabled Leaend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

© 2001-2013 Microchip Technology Inc.

 \bigcirc

۲

PIC18C601/801

REGISTER 15-3:	SSPCON	2 REGISTER	ł								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
	bit 7							bit 0			
bit 7	1 = Enable	GCEN: General Call Enable bit (In I ² C Slave mode only) 1 = Enable interrupt when a general call address (0000h) is received in the SSPSR 0 = General call address disabled									
bit 6	<u>In Master</u> 1 = Ackno	ACKSTAT: Acknowledge Status bit (In I ² C Master mode only) In Master Transmit mode: 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave									
bit 5	<u>In Master</u> Value tran 1 = Not Ac	ACKDT: Acknowledge Data bit (In I ² C Master mode only) In Master Receive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge 0 = Acknowledge									
bit 4	<u>In Master</u> 1 = Initiate Autom	 ACKEN: Acknowledge Sequence Enable bit (In I²C Master mode only) In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence idle 									
bit 3		eceive Enable es Receive mo ve idle		laster mode o	only)						
bit 2	SCK relea 1 = Initiate	P Condition E se control STOP conditi condition idle				ally cleare	d by hardwa	are.			
bit 1	1 = Initiate by har	 RSEN: Repeated START Condition Enabled bit (In I²C Master mode only) 1 = Initiate Repeated START condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated START condition idle 									
bit 0	1 = Initiate	SEN: START Condition Enabled bit (In I ² C Master mode only) 1 = Initiate START condition on SDA and SCL pins. Automatically cleared by hardware. 0 = START condition idle									
	Note:	For bits ACKI mode, this bit writes to the S	may not be	set (no spool							
	Logondi]			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

MSSP BLOCK DIAGRAM

15.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received, simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL/LVOIN

Additionally, a fourth pin may be used when in any Slave mode of operation:

• Slave Select (SS) - RA5/SS/AN4

15.3.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits SSPCON1<5:0> and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock rate (Master mode only)
- Slave Select mode (Slave mode only)

Figure 15-1 shows the block diagram of the MSSP module, when in SPI mode.

(SPI MODE) Internal Data Bus ¢ Read Write SSPBUF reg imesSSPSR req Shift Clock SDI bit0 SDO SS Control Enable $\leq \frac{1}{ss}$ Edge Select 2 Clock Select SSPM3:SSPM0 SMP:CKE 4 (TMR2 Output) /2 Edge imesSelect Prescaler Tosc 4, 16, 64 SCK Data to TX/RX in SSPSR TRIS bit

FIGURE 15-1:

Note: I/O pins have diode protection to VDD and Vss.

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT register), and the interrupt flag bit, SSPIF (PIR registers), are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON1 register), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The buffer full (BF) bit (SSPSTAT register) indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 15-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable, and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP status register (SSPSTAT register) indicates the various status conditions.

15.3.2 ENABLING SPI I/O

To enable the serial port, SSP enable bit, SSPEN (SSPCON1 register), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON registers, and then set the SSPEN bit. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, corresponding pins must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- RA5 must be configured as digital I/O using
- ADCON1 register
- SS must have TRISA<5> bit set

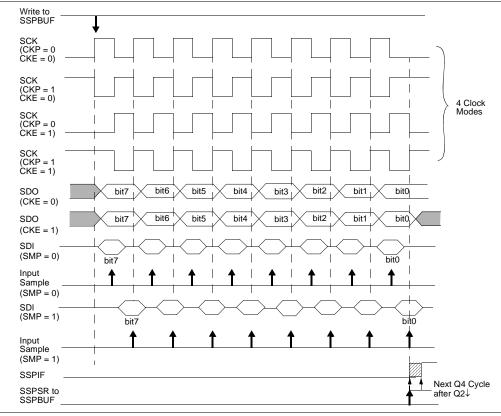
Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

EXAMPLE 15-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS SSPSTAT, BF BRA LOOP	;Has data been received (transmit complete)? ;No
	MOVF SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF RXDATA	;Save in user RAM, if data is meaningful
	MOVF TXDATA, W	;W reg = contents of TXDATA
	MOVWF SSPBUF	;New data to xmit

15.3.3 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1 register). This, then, would give waveforms for SPI communication as shown in Figure 15-2, Figure 15-4, and Figure 15-5, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 25 MHz) of 6.25 Mbps.

Figure 15-2 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 15-2: SPI MODE WAVEFORM (MASTER MODE)

© 2001-2013 Microchip Technology Inc.

15.3.4 SLAVE MODE

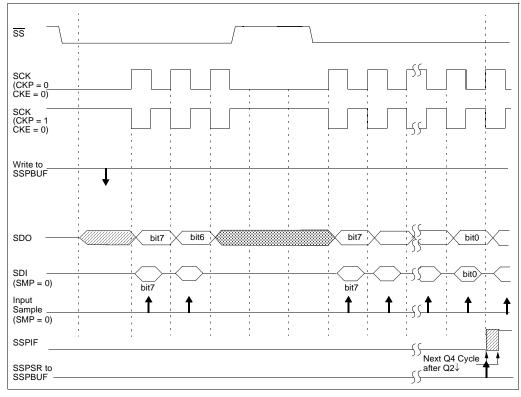
In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times, as specified in the electrical specifications.

While in SLEEP mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from SLEEP.

15.3.5 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high,

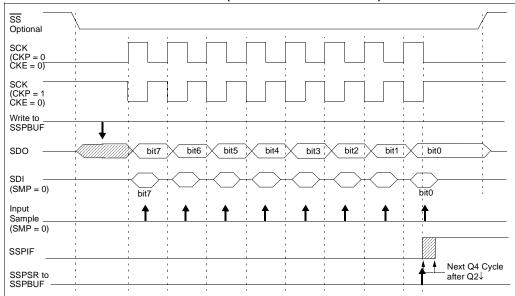

the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with SS pin control enabled, (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

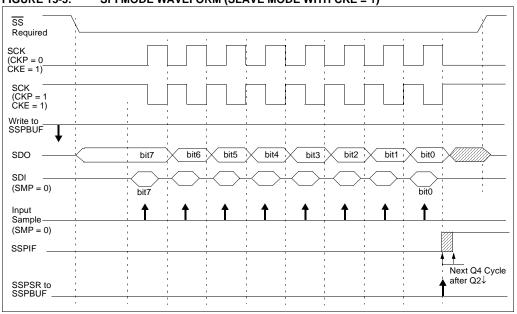
When the SPI module resets, the bit counter is forced to 0. This can be done by either forcing the \overline{SS} pin to a high level, or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function), since it cannot create a bus conflict.

FIGURE 15-3: SLAVE SYNCHRONIZATION WAVEFORM


DS39541B-page 156

Advance Information


© 2001-2013 Microchip Technology Inc.

.

PIC18C601/801

FIGURE 15-4: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

FIGURE 15-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

© 2001-2013 Microchip Technology Inc.

15.3.6 SLEEP OPERATION

In Master mode, all module clocks are halted, and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode, and data to be shifted into the SPI transmit/receive shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and, if enabled, will wake the device from SLEEP.

15.3.7 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

15.3.8 BUS MODE COMPATIBILITY

Table 15-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 15-1: SPI BUS MODES

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

There is also a SMP bit that controls when the data will be sampled.

TABLE 15-2: REGISTERS ASSOCIATED WITH SPI OPERATION

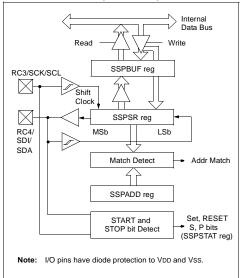
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
TRISC	PORTC Da	ata Direct	tion Regist	er					1111 1111	1111 1111
SSPBUF	Synchrono	us Serial	Port Rece	ive Buffer	r/Transmit	Register			xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	—	PORTA Data Direction Register						11 1111	11 1111	
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'.

Shaded cells are not used by the MSSP in SPI mode.

15.4 MSSP I²C Operation

The MSSP module in I^2C mode, fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (Multi-Master mode). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.


Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The MSSP module functions are enabled by setting MSSP Enable bit SSPEN (SSPCON1 register).

The MSSP module has these six registers for ${\rm I}^2{\rm C}$ operation:

- MSSP Control Register1 (SSPCON1)
- MSSP Control Register2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

FIGURE 15-6: MSSP BLOCK DIAGRAM (I²C MODE)

The SSPCON1 register allows control of the I²C operation. The SSPM3:SSPM0 mode selection bits (SSPCON1 register) allow one of the following I²C modes to be selected:

- I²C Master mode, clock = OSC/(4*(SSPADD +1))
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled
- I²C firmware controlled master operation, slave is idle

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

15.4.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

If either or both of the following conditions are true, the MSSP module will not give this ACK pulse:

- a) The buffer full bit BF (SSPCON1 register) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON1 register) was set before the transfer was received.

In this event, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR registers) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, is shown in timing parameter #100 and parameter #101.

© 2001-2013 Microchip Technology Inc.

15.4.1.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit BF is set.
- c) An ACK pulse is generated.
- MSSP interrupt flag bit SSPIF (PIR registers) is set on the falling edge of the ninth SCL pulse (interrupt is generated, if enabled).

In 10-bit Address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSb) of the first address byte, specify if this is a 10-bit address. The R/W bit (SSPSTAT register) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSb's of the address.

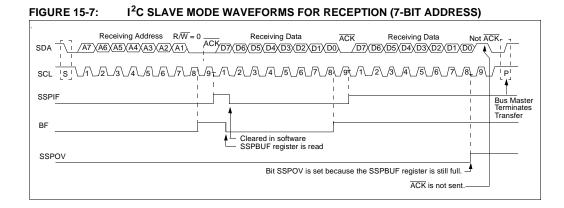
The sequence of events for 10-bit addressing is as follows, with steps 7-9 for slave-transmitter:

- Receive first (high) byte of address (the SSPIF, BF and UA bits (SSPSTAT register) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- Receive second (low) byte of address (bits SSPIF, BF, and UA are set).
- Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- Receive first (high) byte of address (bits SSPIF and BF are set).
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

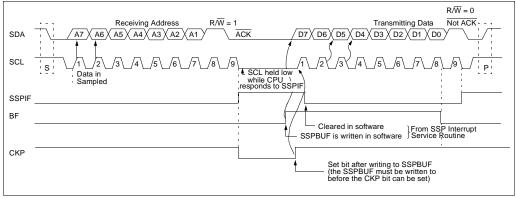
15.4.1.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT register) is set or bit SSPOV (SSPCON1 register) is set.


An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR registers) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

15.4.1.3 Transmission

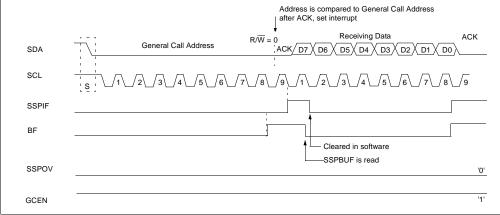

When the R/ \overline{W} bit of the incoming address byte is set and an address match occurs, the R/ \overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON1 register). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 15-8).

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Pin RC3/SCK/SCL should be enabled by setting bit CKP.

15.4.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.


The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized (enabled) when the General Call Enable (GCEN) bit is set (SSPCON2 register). Following a START bit detect, eight bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware. If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF bit is set (eighth bit), and on the falling edge of the ninth bit (\overline{ACK} bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT register). If the general call address is sampled when the GCEN bit is set and while the slave is configured in 10-bit address mode, then the second half of the address is not necessary. The UA bit will not be set, and the slave will begin receiving data after the Acknowledge (Figure 15-9).

DS39541B-page 162

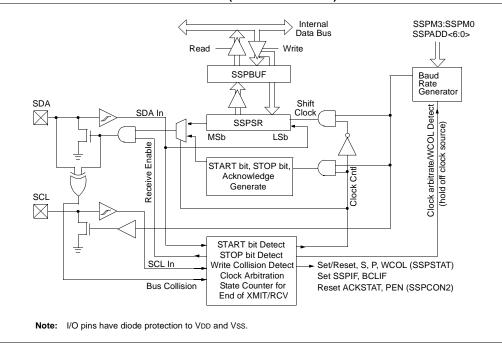
15.4.3 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the l^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received
- · Acknowledge Transmit
- · Repeated START condition


15.4.4 I²C MASTER MODE SUPPORT

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. Once Master mode is enabled, the user has the following six options:

- 1. Assert a START condition on SDA and SCL.
- 2. Assert a Repeated START condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Generate a STOP condition on SDA and SCL.
- 5. Configure the I²C port to receive data.
- 6. Generate an Acknowledge condition at the end of a received byte of data.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a START condition and immediately write the SSPBUF register to imitate transmission, before the START condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

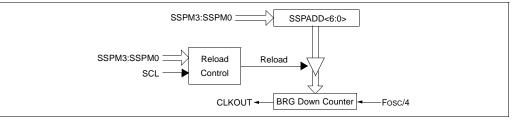
FIGURE 15-10: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

15.4.4.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the I^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

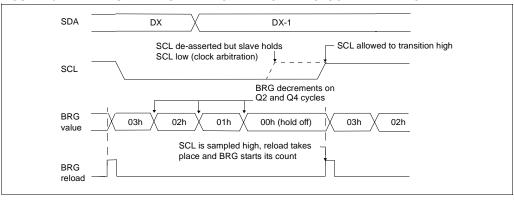

The baud rate generator used for the SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz, or 1 MHz I²C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSPBUF. Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state. A typical transmit sequence would go as follows:

- a) The user generates a START condition by setting the START enable (SEN) bit (SSPCON2 register).
- SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- c) The user loads the SSPBUF with the address to transmit.
- d) Address is shifted out the SDA pin until all eight bits are transmitted.
- e) The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit (SSPCON2 register).
- f) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- g) The user loads the SSPBUF with eight bits of data.
- h) Data is shifted out the SDA pin until all eight bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit (SSPCON2 register).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user generates a STOP condition by setting the STOP enable bit PEN (SSPCON2 register).
- I) Interrupt is generated once the STOP condition is complete.

15.4.5 BAUD RATE GENERATOR

In I²C Master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 15-11). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically. If clock arbitration is taking place, for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 15-12).

FIGURE 15-11: BAUD RATE GENERATOR BLOCK DIAGRAM

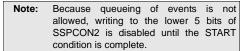


DS39541B-page 164

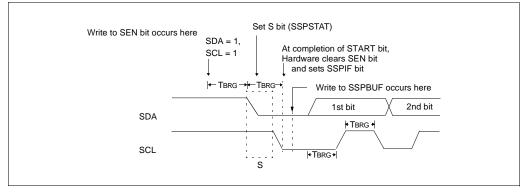
Advance Information

© 2001-2013 Microchip Technology Inc.

FIGURE 15-12: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION


15.4.6 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START Condition Enable (SEN) bit (SSPCON2 register). If the SDA and SCL pins are sampled high, the baud rate generator is re-loaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high, is the START condition, and causes the S bit (SSPSTAT register) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2 register) will be automatically cleared by hardware, the baud rate generator is suspended leaving the SDA line held low and the START condition is complete.


Note:	If at the beginning of the START condition, the SDA and SCL pins are already sam- pled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag BCLIF is set, the START condition is aborted, and the I ² C module is reset into its IDLE state.
	IDLE SIDIE.

15.4.6.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-13: FIRST START BIT TIMING

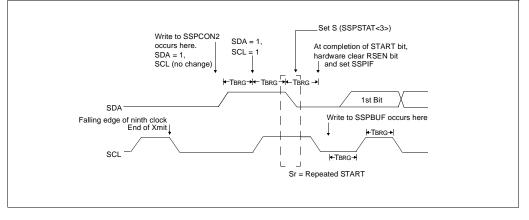
© 2001-2013 Microchip Technology Inc.

15.4.7 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2 register) is programmed high and the I²C logic module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is re-loaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2 register) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT register) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.

- 2: A bus collision during the Repeated START condition occurs, if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

15.4.7.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note:	Because queueing of events is not								
	allowed, writing of the lower 5 bits of								
	SSPCON2 is disabled until the Repeated								
	START condition is complete.								

FIGURE 15-14: REPEATED START CONDITION WAVEFORM

15.4.8 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or the other half of a 10-bit address, is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full bit, BF, and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF bit is cleared and the master releases SDA, allowing the slave device being addressed to respond with an ACK bit during the ninth bit time, if an address match occurs, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 15-15)

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL, until all seven address bits and the R/W bit, are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2 register). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF bit is cleared and the baud rate generator is turned off, until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

15.4.8.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT register) is set when the CPU writes to SSPBUF, and is cleared when all eight bits are shifted out.

PIC18C601/801

15.4.8.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

15.4.8.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2 register) is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$), and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

15.4.9 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2 register).

Note: The MSSP module must be in an IDLE state before the RCEN bit is set, or the RCEN bit will be disregarded.

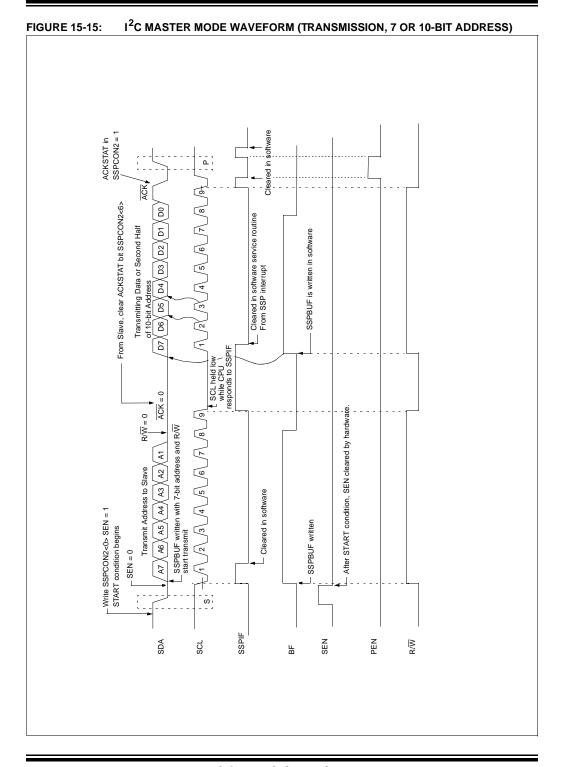
The baud rate generator begins counting and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the RCEN bit is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF bit is set, the SSPIF flag bit is set and the baud rate generator is suspended from counting, holding SCL low. The MSSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge Sequence Enable bit ACKEN (SSPCON2 register).

15.4.9.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

15.4.9.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPSR and the BF bit is already set from a previous reception.

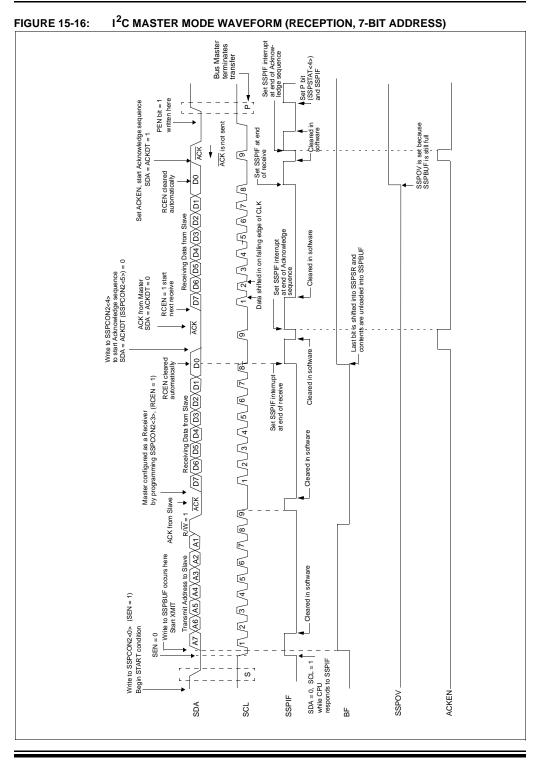

15.4.9.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

© 2001-2013 Microchip Technology Inc.

۲

PIC18C601/801


DS39541B-page 168

Advance Information

© 2001-2013 Microchip Technology Inc.

۲

PIC18C601/801

© 2001-2013 Microchip Technology Inc.

۲

Advance Information

DS39541B-page 169

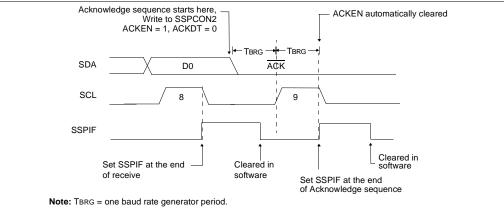
0

15.4.10 ACKNOWLEDGE SEQUENCE TIMING

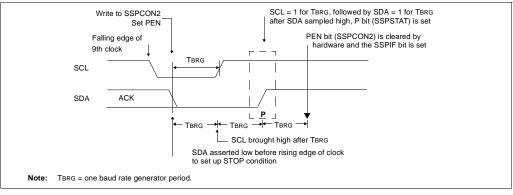
An Acknowledge sequence is enabled by setting the Acknowledge Sequence enable bit, ACKEN (SSPCON2 register). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge Data bit (ACKDT) is presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into IDLE mode (Figure 15-17).

15.4.10.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


15.4.11 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2 register). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT register) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-18).


15.4.11.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-17: ACKNOWLEDGE SEQUENCE WAVEFORM

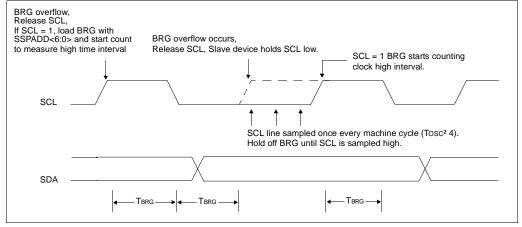
FIGURE 15-18: STOP CONDITION RECEIVE OR TRANSMIT MODE

Advance Information

© 2001-2013 Microchip Technology Inc.

15.4.12 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 15-19).


15.4.13 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the MSSP interrupt is enabled).

15.4.14 EFFECT OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

15.4.15 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the 1^{2} C bus may be taken when the P bit (SSPSTAT register) is set, or the bus is idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored for arbitration, to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

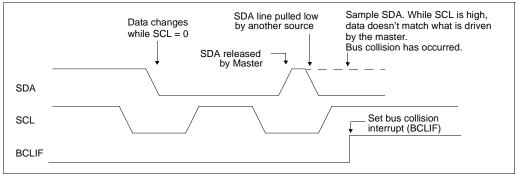
Arbitration can be lost in the following states:

- · Address transfer
- Data transfer
- A START condition
- A Repeated START condition
- · An Acknowledge condition

15.4.16 MULTI -MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag (BCLIF) and reset the I^2C port to its IDLE state. (Figure 15-20).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF bit is cleared, the SDA and SCL lines are de-asserted, and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine, and if the I^2 C bus is free, the user can resume communication by asserting a START condition.


If a START, Repeated START, STOP, or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the I²C bus is free, the user can resume communication by asserting a START condition.

The master will continue to monitor the SDA and SCL pins. If a STOP condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of START and STOP conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is idle and the S and P bits are cleared.

FIGURE 15-20: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

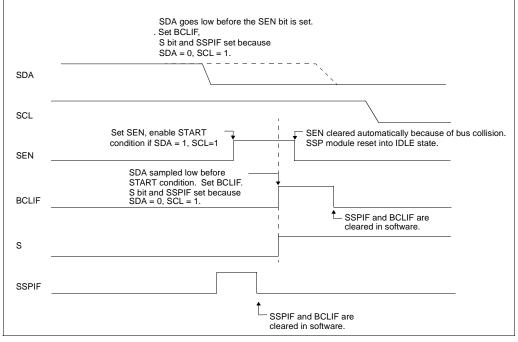
15.4.16.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

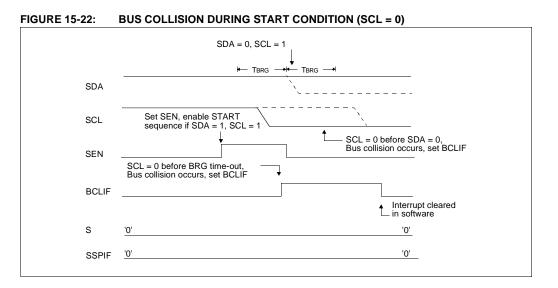
- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 15-21).
- b) SCL is sampled low before SDA is asserted low (Figure 15-22).

During a START condition, both the SDA and the SCL pins are monitored.

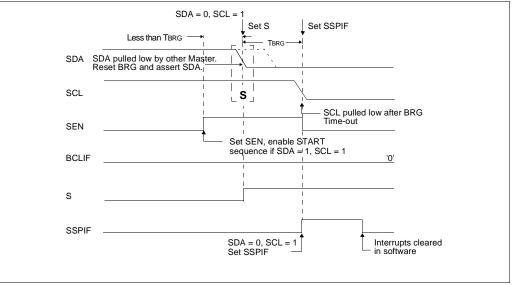
If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:


- the START condition is aborted;
- · the BCLIF flag is set, and
- the MSSP module is reset to its IDLE state (Figure 15-21).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.


If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 15-23). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0, and during this time, if the SCL pin is sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition, is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision, because the two masters must be allowed to arbitrate the first address following the START condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated START or STOP conditions.



© 2001-2013 Microchip Technology Inc.

FIGURE 15-23: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

DS39541B-page 174

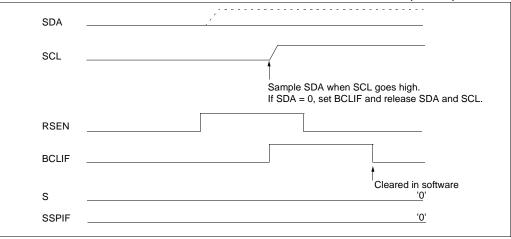
© 2001-2013 Microchip Technology Inc.

15.4.16.2 Bus Collision During a Repeated START Condition

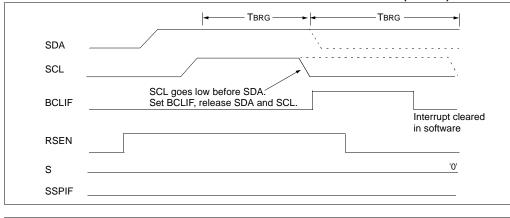
During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 15-24). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

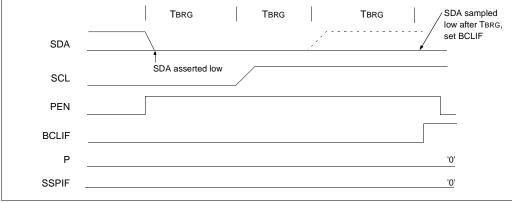

If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition (Figure 15-25).

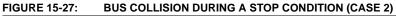
If, at the end of the BRG time-out both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

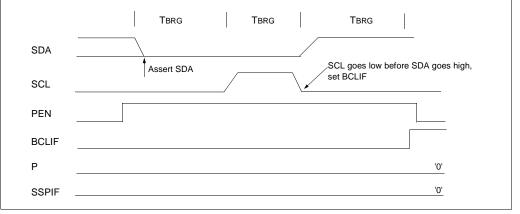
FIGURE 15-24: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 15-25: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

© 2001-2013 Microchip Technology Inc.


Advance Information


DS39541B-page 175


Bus collision occurs during a STOP condition if:

- After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 15-26). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 15-27).

FIGURE 15-26: BUS COLLISION DURING A STOP CONDITION (CASE 1)

^{15.4.16.3} Bus Collision During a STOP Condition

16.0 ADDRESSABLE UNIVERSAL **SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)**

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

REGISTER 16-1: TXSTA REGISTER

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

The SPEN (RCSTA register) and the TRISC<7> bits have to be set, and the TRISC<6> bit must be cleared, in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

Register 16-1 shows the Transmit Status and Control Register (TXSTA) and Register 16-2 shows the Receive Status and Control Register (RCSTA).

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	
	bit 7					r		bit 0	
bit 7	CSRC: Clo Asynchrono Don't care	ck Source Se ous mode:	elect bit						
		<u>us mode:</u> mode (Clock node (Clock f			n BRG)				
bit 6	1 = Selects	Fransmit Enal 9-bit transm 8-bit transm	ission						
bit 5	TXEN : Transmit Enable bit 1 = Transmit enabled 0 = Transmit disabled SREN/CREN overrides TXEN in SYNC mode.								
bit 4	1 = Synchr	ART Mode Se onous mode ironous mode							
bit 3	Unimplem	ented: Read	as '0'						
bit 2	BRGH: Hig Asynchrono 1 = High sp 0 = Low sp	beed	Select bit						
	Synchrono Unused in t								
bit 1	TRMT : Trar 1 = TSR er 0 = TSR fu		egister Statu	s bit					
bit 0	TX9D: 9th	bit of Transm	it Data. Can	be Address/	Data bit or a	parity bit.			
	Legend:								

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

۲

PIC18C601/801

REGISTER 16-2:	RCSTA RI	EGISTER										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
	bit 7				T			bit 0				
bit 7	1 = Serial p	ial Port Enab oort enabled oort disabled	le bit (Configures F	RX/DT and T	TX/CK pins a	s serial po	rt pins)					
bit 6	1 = Selects	RX9 : 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception										
bit 5	Asynchrono Don't care Synchrono	us mode - Ma	aster:									
	0 = Disable This bit is c	s single rece s single rece leared after i us mode - Sla	eive reception is c	omplete.								
		Unused in this mode										
bit 4	CREN: Continuous Receive Enable bit <u>Asynchronous mode:</u> 1 = Enables continuous receive 0 = Disables continuous receive											
			receive until receive	enable bit C	REN is clea	red (CREN	l overrides S	SREN)				
bit 3	Asynchrond 1 = Enable is set	s address de	et Enable bit <u>bit (RX9 = 1):</u> tection, enab	le interrupt								
bit 2	FERR: Fran	ning Error bi g error (Can										
bit 1	1 = Overrui	OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error										
bit 0	RX9D: 9th	RX9D: 9th bit of Received Data. Can be Address/Data bit or a parity bit.										
	Legend:											
	R = Reada	ble bit	W = Wri	table bit	U = Unimp	lemented l	bit, read as	0'				
	- n = Value	at POR	'1' = Bit	is set	'0' = Bit is (cleared	x = Bit is u	nknown				

16.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA register) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 16-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 16-1. From this, the error in baud rate can be determined.

Example 16-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

16.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

Desired Baud Rate	=	Fosc / (64 (X + 1))	
Solving for X:			
X X X	= = =	((Fosc / Desired Baud Rate) / 64) - 1 ((16000000 / 9600) / 64) - 1 [25.042] = 25	
Calculated Baud Rate	= =	16000000 / (64 (25 + 1)) 9615	
Error	= = =	(Calculated Baud Rate - Desired Baud Rate) Desired Baud Rate (9615 - 9600) / 9600 0.16%	

TABLE 16-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA
La sur de M		

Legend: X = value in SPBRG (0 to 255)

TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	SPBRG Baud Rate Generator Register									0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

© 2001-2013 Microchip Technology Inc.

TABLE 16-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD	F	osc =25 M	Hz	20 MHz					
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)			
0.3	NA	-	-	NA	-	-			
1.2	NA -		-	NA	-	-			
2.4	NA	-	-	NA	-	-			
9.6	NA	-	-	NA	-	-			
19.2	NA	-	-	NA	-	-			
76.8	77.16	+0.47	80	76.92	+0.16	64			
96	96.15	+0.16	64	96.15	+0.16	51			
300	297.62	-0.79	20	294.12	-1.96	16			
500	480.77	-3.85	12	500	0	9			
HIGH	6250	-	0	5000	-	0			
LOW	24.41	-	255	19.53	-	255			

BAUD	Fosc = 16 MHz			10 MHz			7.15909 MHz			5.0688 MHz		
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.62	+0.23	185	9.60	0	131
19.2	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92	19.20	0	65
76.8	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22	74.54	-2.94	16
96	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12
300	307.70	+2.56	12	312.50	+4.17	7	298.35	-0.57	5	NA	-	-
500	500	0	7	500	0	4	NA	-	-	NA	-	-
HIGH	4000	-	0	2500	-	0	1789.80	-	0	1267.20	-	0
LOW	15.63	-	255	9.77	-	255	6.99	-	255	4.95	-	255

BAUD	Fosc = 4 MHz			3.579545 MHz			1 MHz			32.768 kHz		
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-		NA	-		NA	-		0.30	+1.14	
1.2	NA	-	-	NA	-	-	1.20	+0.16	207	1.17	-2.48	6
2.4	NA	-	-	NA	-	-	2.40	+0.16	103	NA	-	-
9.6	9.62	+0.16	103	9.62	+0.23	92	9.62	+0.16	25	NA	-	-
19.2	19.23	+0.16	51	19.04	-0.83	46	19.23	+0.16	12	NA	-	-
76.8	76.92	+0.16	12	74.57	-2.90	11	NA	-	-	NA	-	-
96	1000	+4.17	9	99.43	+3.57	8	NA	-	-	NA	-	-
300	NA	-	-	298.30	-0.57	2	NA	-	-	NA	-	-
500	500	0	1	NA	-	-	NA	-	-	NA	-	-
HIGH	1000	-	0	894.89	-	0	250	-	0	8.20	-	0
LOW	3.91	-	255	3.50	-	255	0.98	-	255	0.03	-	255

TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	F	osc = 25 M	IHz		20 MHz	
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-		NA	-	
1.2	NA	-	-	NA	-	-
2.4	2.40	-0.15	162	2.40	+0.16	129
9.6	9.53	-0.76	40	9.47	-1.36	32
19.2	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	4	78.13	+1.73	3
96	97.66	+1.73	3	NA	-	-
300	NA	-	-	312.50	+4.17	0
500	NA	-	-	NA	-	-
HIGH	390.63	-	0	312.50	-	0
LOW	1.53	-	255	1.22	-	255

BAUD	F	osc = 16 N	IHz		10 MHz			7.15909 M⊦	Iz		5.0688 MH	Iz
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-		NA	-		NA	-		NA	-	
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	NA	-	-	78.13	+1.73	1	NA	-	-	79.20	+3.13	0
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255

BAUD	I	Fosc = 4 M	Hz	:	3.579545 MI	Hz		1 MHz			32.768 kH	z
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	0.30	-0.16		0.30	+0.23		0.30	+0.16		NA	-	
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	NA	-	-	NA	-	-
9.6	NA	-	-	9.32	-2.90	5	NA	-	-	NA	-	-
19.2	NA	-	-	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	NA	-	-	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	62.50	-	0	55.93	-	0	15.63	-	0	0.51	-	0
LOW	0.24	-	255	0.22	-	255	0.06	-	255	0.002	-	255

© 2001-2013 Microchip Technology Inc.

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	F	osc = 25 N	IHz		20 MHz	
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-		NA	-	
1.2	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-
9.6	9.59	-0.15	162	9.62	+0.16	129
19.2	19.30	+0.47	80	19.23	+0.16	64
76.8	78.13	+1.73	19	78.13	+1.73	15
96	97.66	+1.73	15	96.15	+0.16	12
300	312.50	+4.17	4	312.50	+4.17	3
500	520.83	+4.17	2	NA	-	-
HIGH	1562.50	-	0	1250	-	0
LOW	6.10	-	255	4.88	-	255

BAUD	F	osc = 16 N	lHz		10 MHz			7.15909 MI	Hz		5.0688 MH	łz
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-		NA	-		NA	-		NA	-	
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	2.41	+0.23	185	2.40	0	131
9.6	9.62	+0.16	103	9.62	+0.16	64	9.52	-0.83	46	9.60	0	32
19.2	19.23	+0.16	51	18.94	-1.36	32	19.45	+1.32	22	18.64	-2.94	16
76.8	76.92	+0.16	12	78.13	+1.73	7	74.57	-2.90	5	79.20	+3.13	3
96	100	+4.17	9	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	312.50	+4.17	1	NA	-	-	NA	-	-
500	500	0	1	NA	-	-	NA	-	-	NA	-	-
HIGH	1000	-	0	625	-	0	447.44	-	0	316.80	-	0
LOW	3.91	-	255	2.44	-	255	1.75	-	255	1.24	-	255

BAUD	I	Fosc = 4 M	Hz	3	8.579545 M	Hz		1 MHz			32.768 kH	Iz
RATE (Kbps)	KBAUD	% ERROR	SPBRG value (decimal)									
0.3	NA	-	-	NA	-	-	0.30	+0.16	207	0.29	-2.48	6
1.2	1.20	+0.16	207	1.20	+0.23	185	1.20	+0.16	51	NA	-	-
2.4	2.40	+0.16	103	2.41	+0.23	92	2.40	+0.16	25	NA	-	-
9.6	9.62	+0.16	25	9.73	+1.32	22	NA	-	-	NA	-	-
19.2	19.23	+0.16	12	18.64	-2.90	11	NA	-	-	NA	-	-
76.8	NA	-	-	74.57	-2.90	2	NA	-	-	NA	-	-
96	NA	-	-									
300	NA	-	-									
500	NA	-	-									
HIGH	250	-	0	55.93	-	0	62.50	-	0	2.05	-	0
LOW	0.98	-	255	0.22	-	255	0.24	-	255	0.008	-	255

16.2 USART Asynchronous Mode

In this mode, data is transmitted in non-return-to-zero (NRZ) format. Data consists of one START bit, eight or nine data bits and one STOP bit. Data is transmitted in serial fashion with LSb first. An on-chip 8-bit baud rate generator can be programmed to generate the desired baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on the BRGH bit (TXSTA register). USART does not automatically calculate the parity bit for the given data byte. If parity is to be transmitted, USART must be programmed to transmit nine bits and software must set/ clear ninth data bit as parity bit. Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing the SYNC bit (TXSTA register).

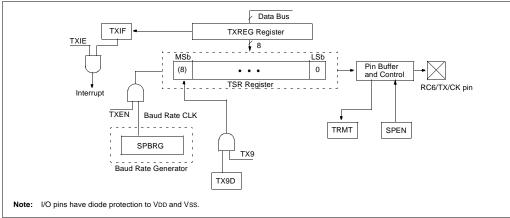
The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

16.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the Transmit (serial) Shift Register (TSR). The TSR register obtains its data from the Read/Write Transmit Buffer register (TXREG). The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available).

Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit TXIF (PIR registers) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE registers). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit TRMT (TXSTA register) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.


Note 1: The TSR register is not mapped in data memory, so it is not available to the user.
2: Flag bit TXIF is set when enable bit TXEN

Steps to follow when setting up an Asynchronous Transmission:

is set.

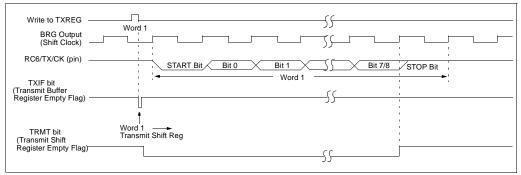
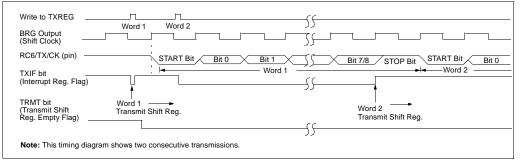

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 16.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Load data to the TXREG register (starts transmission).

FIGURE 16-1: USART TRANSMIT BLOCK DIAGRAM


© 2001-2013 Microchip Technology Inc.

ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 16-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART Tra	ansmit Regis	ster						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Generator F	Register						0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

16.2.2 USART ASYNCHRONOUS RECEIVER

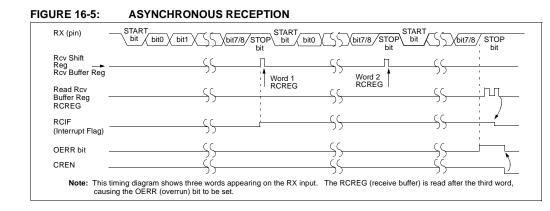
The receiver block diagram is shown in Figure 16-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter, operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at FOSC. This mode would typically be used in RS-232 systems.

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 16.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

USART RECEIVE BLOCK DIAGRAM

FIGURE 16-4:


16.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. Steps to follow when setting up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is required, set the BRGH bit.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- The RCIF bit will be set when reception is complete. The interrupt will be acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

x64 Baud Rate CLK FERR OERR CREN SPBRG ÷ 64 or ÷ 16 RSR Register LSb MSt Baud Rate Generator 7 0 STOP (8) . . . 1 START RC7/RX/DT Pin Buffer Data Recovery RX9 and Control RCREG Register RX9D SPEN FIFO 8 RCIF Interrupt Data Bus RCIE Note: I/O pins have diode protection to VDD and VSS.

© 2001-2013 Microchip Technology Inc.

TABLE 16-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	-	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
RCREG	USART Red	ceive Registe	r						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Generator Re	gister						0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

DS39541B-page 186

16.3 USART Synchronous Master Mode

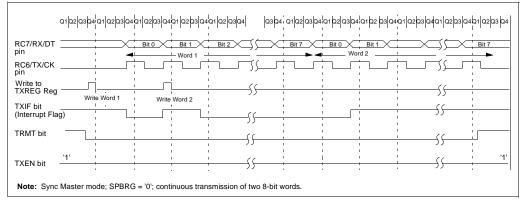
In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA register). In addition, enable bit SPEN (RCSTA register) is set, in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA register).

16.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

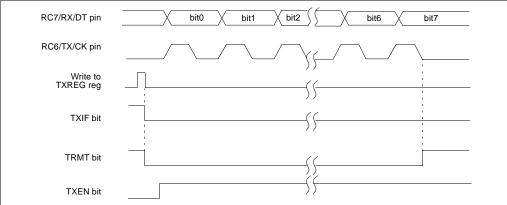
The USART transmitter block diagram is shown in Figure 16-1. The heart of the transmitter is the Transmit (serial) Shift register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer register (TXREG). The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcr), the TXREG is empty and interrupt

bit TXIF (PIR registers) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE registers). Flag bit TXIF will be set, regardless of the state of enable bit TXIE, and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA register) shows the status of the TSR register. TRMT is a read only bit, which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

Steps to follow when setting up a Synchronous Master Transmission:


- 1. Initialize the SPBRG register for the appropriate baud rate (Section 16.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	x00- 0000
TXREG	USART Tra	nsmit Registe	ər						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Generator Re	egister						0000 0000	0000 0000


TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

FIGURE 16-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

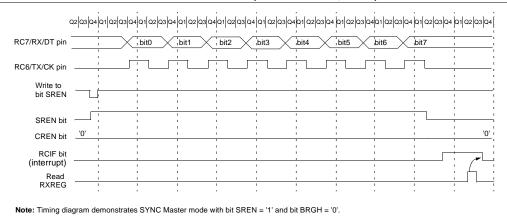
DS39541B-page 188

16.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous Master mode is selected, reception is enabled by setting either enable bit SREN (RCSTA register), or enable bit CREN (RCSTA register). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

When setting up a Synchronous Master reception, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 16.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.


- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
RCREG	USART Re	ceive Registe	er						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Generator Re	egister						0000 0000	0000 0000

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Reception.

FIGURE 16-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

16.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA register).

16.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the ${\tt SLEEP}$ instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will be set.
- If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Start transmission by loading data to the TXREG register.

16.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt senabled, the program will branch to the interrupt vector.

When setting up a Synchronous Slave Reception, follow these steps:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	x00- 0000	x00- 0000
TXREG	USART Tra	ansmit Regist	er						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Generator R	egister						0000 0000	0000 0000
Legend: x	= unknown,	- = unimplen	nented, rea	ad as '0'. S	Shaded ce	ls are not u	ised for Syi	nchronous	Slave Transmis	sion.

TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

DS39541B-page 190

Advance Information

© 2001-2013 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	x00- 0000
RCREG	USART Re	ceive Registe	er						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	ADDEN	BRGH	TRMT	TX9D	0000 0010	0000 0010
SPBRG	Baud Rate	Generator Re	egister						0000 0000	0000 0000

TABLE 16-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Reception.

© 2001-2013 Microchip Technology Inc.

39541a.book Page 192 Tuesday, January 29, 2013 2:34 PM

PIC18C601/801

NOTES:

 \bigcirc

۲

DS39541B-page 192

Advance Information

 $\ensuremath{\textcircled{\sc c}}$ 2001-2013 Microchip Technology Inc.

17.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has 8 inputs for the PIC18C601 devices and 12 for the PIC18C801 devices. This module has the ADCON0, ADCON1, and ADCON2 registers.

The A/D allows conversion of an analog input signal to a corresponding 10-bit digital number.

The A/D module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 17-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 17-2, configures the functions of the port pins. The ADCON2, shown in Register 16-3, configures the A/D clock source and justification.

REGISTER 17-1: ADCON0 REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

bit 7-6	Unimplemented: Read as	'0'		
bit 5-2	CHS3:CHS0: Analog Chan	nel Select bits		
	0000 = channel 00, (AN0)			
	0001 = channel 01, (AN1)			
	0010 = channel 02, (AN2)			
	0011 = channel 03, (AN3)			
	0100 = channel 04, (AN4)			
	0101 = channel 05, (AN5)			
	0110 = channel 06, (AN6)			
	0111 = channel 07, (AN7)	n.		
	1000 = channel 08, (AN8) ⁽¹			
	1001 = channel 09, (AN9) ⁽¹ 1010 = channel 10, (AN10)	(1)		
	1010 = channel 10, (AN10) 1011 = channel 11, (AN11)	(1)		
	11011 = Charmer H, (ANH)			
	1101 = Reserved			
	1110 = Reserved			
	1111 = Reserved			
	These channels are not ava	ailable on the PIC18C	601 devices.	
bit 1	GO/DONE: A/D Conversion	n Status bit		
	When ADON = 1:			
	 A/D conversion in progr automatically cleared by 	Ũ		•
	0 = A/D conversion not in p	rogress		
bit 0	ADON: A/D On bit			
	1 = A/D converter module is	s operating		
	0 = A/D converter module is	s shut-off and consum	nes no operating curre	nt
	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
	- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2001-2013 Microchip Technology Inc.

REGISTER 17-2: ADCON1 REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-
0 0	Avdd	Avss
01	External VREF+	Avss
10	Avdd	External VREF-
11	External VREF+	External VREF-

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
0000	Α	Α	А	А	А	А	Α	Α	Α	Α	Α	А
0001	Α	А	А	А	А	А	А	Α	Α	Α	Α	А
0010	Α	Α	А	А	А	А	А	Α	Α	Α	Α	А
0011	Α	А	А	А	А	А	А	Α	Α	Α	Α	А
0100	D	А	А	А	А	А	А	Α	Α	Α	Α	А
0101	D	D	А	А	А	А	А	Α	Α	Α	Α	А
0110	D	D	D	А	А	А	А	Α	Α	Α	А	А
0111	D	D	D	D	А	А	А	Α	Α	Α	Α	А
1000	D	D	D	D	D	А	А	Α	Α	Α	Α	А
1001	D	D	D	D	D	D	А	Α	Α	Α	Α	А
1010	D	D	D	D	D	D	D	Α	Α	Α	Α	А
1011	D	D	D	D	D	D	D	D	Α	Α	А	А
1100	D	D	D	D	D	D	D	D	D	Α	Α	А
1101	D	D	D	D	D	D	D	D	D	D	А	А
1110	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input D = Digita I I/O

Shaded cells = Additional A/D channels available on PIC18C801 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC18C601/801

REGISTER 17-3: ADCON2 REGISTER

	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	ADFM	_	—	—	_	ADCS2	ADCS1	ADCS0
	bit 7							bit 0
bit 7			rmat Select b	oit				
	1 = Right ju							
	0 = Left jus	stified						
bit 6-3	Unimplem	ented: Rea	d as '0'					
bit 2-0	ADCS2:AD	DCS0: A/D (Conversion (Clock Select	bits			
	000 = Fos	c/2						
	001 = FOS	C/8						
	010 = FOS	c/32						
	011 = FRC	(clock deriv	ed from an i	internal RC of	oscillator = 1	I MHz max)		
	100 = FOS	c/4						
	101 = FOS	c/16						
	110 = FOS	c/64						
	111 = FRC	(clock deriv	ed from an i	internal RC of	oscillator = 1	I MHz max)		
	Legend:							
	R = Readal	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	0'

'1' = Bit is set

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS), or the voltage level on the RA3/AN3/VREF+ pin and RA2/AN2/VREF-.

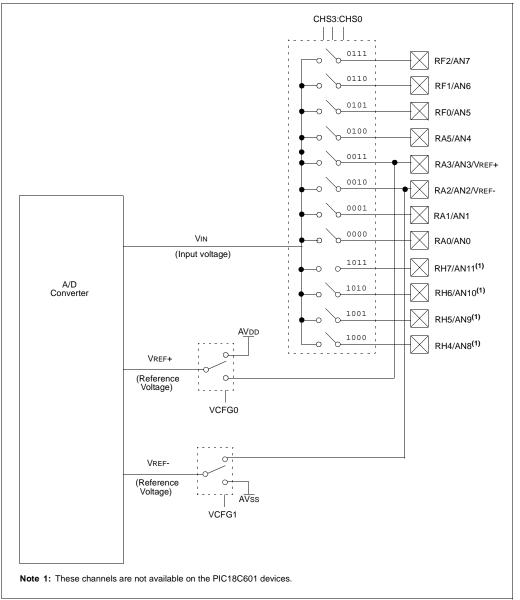
- n = Value at POR

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference), or as a digital I/O.


x = Bit is unknown

'0' = Bit is cleared

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 17-1.

© 2001-2013 Microchip Technology Inc.

DS39541B-page 196

The value in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 17.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed to do an A/D conversion:

1. Configure the A/D module:

- Configure analog pins, voltage reference and digital I/O (ADCON1)
- Select A/D input channel (ADCON0)
- Select A/D conversion clock (ADCON2)
- Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared, OR
 - Waiting for the A/D interrupt
- Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

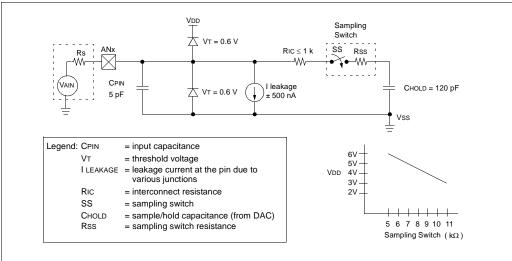


FIGURE 17-2: ANALOG INPUT MODEL

17.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 17-2. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is $2.5 k\Omega$. After the analog input channel is before the conversion can be started.

Note:	When the conversion is started, the hold-
	ing capacitor is disconnected from the input pin.

EQUATION 17-1: ACQUISITION TIME

To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 17-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	120 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 7 \ k\Omega$
Temperature	=	50°C (system max.)
VHOLD	=	0V @ time = 0

TACQ	=	Amplifier Settling Time +	
		Holding Capacitor Charging Time +	
		Temperature Coefficient	
	=	TAMP + TC + TCOFF	

EQUATION 17-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{Tc/CHOLD}(\text{RIC} + \text{Rss} + \text{Rs}))})$
or		
TC	=	$-(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)$

EXAMPLE 17-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
Temper	ature co	befficient is only required for temperatures $> 25^{\circ}$ C.
TACQ	=	$2 \ \mu s + Tc + [(Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$
ТС	=	-CHOLD (RIC + RSS + RS) $\ln(1/2047)$ -120 pF (1 k Ω + 7 k Ω + 2.5 k Ω) $\ln(0.0004885)$ -120 pF (10.5 k Ω) $\ln(0.0004885)$ -1.26 μ s (-7.6241) 9.61 μ s
TACQ	=	2 μs + 9.61 μs + [(50°C - 25°C)(0.05 μs/°C)] 11.61 μs + 1.25 μs 12.86 μs

17.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TaD. The A/D conversion requires 12 TaD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TaD:

- 2Tosc
- 4Tosc
- 8Tosc
- 16Tosc
- 32Tosc
- 64Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 17-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

17.3 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

Note 1: When reading the port register, all pins	Note									
configured as analog input channels will										
read as cleared (a low level). Pins config-										
ured as digital inputs will convert an ana-										
log input. Analog levels on a digitally										
configured input will not affect the conver-										
sion accuracy.										

 Analog levels on any pin defined as a digital input may cause the input buffer to consume current out of the device's specification limits.

TABLE 17-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	ource (TAD)	Maximum Device Frequency				
Operation	ADCS2:ADCS0	PIC18C601/801	PIC18LC601/801 ⁽⁵⁾			
2Tosc	000	1.25 MHz	666 kHz			
4Tosc	100	2.50 MHz	1.33 MHz			
8Tosc	001	5.00 MHz	2.67 MHz			
16Tosc	101	10.0 MHz	5.33 MHz			
32Tosc	010	20.0 MHz	10.67 MHz			
64Tosc	110	_	_			
RC	x11	_	_			

Note 1: The RC source has a typical TAD time of $4 \ \mu s$.

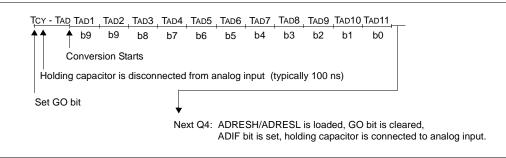
2: These values violate the minimum required TAD time.

- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D accuracy may be out of specification.

5: This column is for the LC devices only.

17.4 A/D Conversions

Figure 17-3 shows the operation of the A/D converter after the GO bit has been set. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started.


Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

17.5 Use of the CCP2 Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011, and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

FIGURE 17-3: A/D CONVERSION TAD CYCLES

DS39541B-page 200

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	-	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
PIE1	-	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
IPR1	-	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-000 0000	-000 0000
PIR2	-	—	—	—	BCLIF	LVDIF	TMR3IF	CCP2IF	-0 0000	-0 0000
PIE2	-	—	—	—	BCLIE	LVDIE	TMR3IE	CCP2IE	0000	0000
IPR2	_	_	_	_	BCLIP	LVDIP	TMR3IP	CCP2IP	0000	0000
ADRESH	A/D Result	Register		xxxx xxxx	uuuu uuuu					
ADRESL	A/D Result	Register							xxxx xxxx	uuuu uuuu
ADCON0	_	_	CHS3	CHS3	CHS1	CHS0	GO/DONE	ADON	0000 00-0	0000 00-0
ADCON1	-	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	000	000
ADCON2	ADFM	_	_	—	-	ADCS2	ADCS1	ADCS0	0000	0000
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA	_	PORTA Data	a Direction	Register					11 1111	11 1111
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	x000 0000	u000 0000
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx xxxx	uuuu uuuu
TRISF	PORTF Dat	a Direction C	ontrol Reg	ister					1111 1111	1111 1111
PORTH ⁽¹⁾	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	0000 xxxx	0000 xxxx
LATH ⁽¹⁾	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	xxxx xxxx	uuuu uuuu
TRISH ⁽¹⁾	PORTH Dat	a Direction C	ontrol Reg	ister					1111 1111	1111 1111

TABLE 17-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, -= unimplemented, read as '0'. Shaded cells are not used for A/D conversion. Note 1: Only available on PIC18C801 devices. 9541a.book Page 202 Tuesday, January 29, 2013 2:34 PM

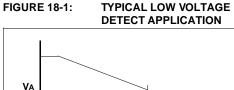
PIC18C601/801

NOTES:

 \bigcirc

۲

DS39541B-page 202


18.0 LOW VOLTAGE DETECT

In many applications, the ability to determine if the device voltage (VDD) is below a specified voltage level is a desirable feature. A window of operation for the application can be created, where the application software can do "housekeeping tasks", before the device voltage exits the valid operating range. This can be done using the Low Voltage Detect module.

This module is software programmable circuitry, where a device voltage trip point can be specified (internal reference voltage or external voltage input). When the voltage of the device becomes lower than the specified point, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to that interrupt source.

The Low Voltage Detect circuitry is completely under software control. This allows the circuitry to be "turned off" by the software, which minimizes the current consumption for the device.

Figure 18-1 shows a possible application voltage curve (typically for batteries). Over time, the device voltage decreases. When the device voltage equals voltage VA, the LVD logic generates an interrupt. This occurs at time TA. The application software then has the time, until the device voltage is no longer in valid operating range, to shut-down the system. Voltage point VB is the minimum valid operating voltage specification. This occurs at time TB. TB - TA is the total time for shut-down.

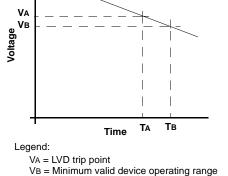
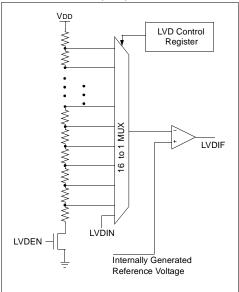



Figure 18-2 shows the block diagram for the LVD module. A comparator uses an internally generated reference voltage as the set point. When the selected tap output of the device voltage crosses the set point (is lower than), the LVDIF bit (PIR registers) is set.

Each node in the resister divider represents a "trip point" voltage. The "trip point" voltage is the minimum supply voltage level at which the device can operate, before the LVD module asserts an interrupt. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array (or external LVDIN input pin) is equal to the voltage generated by the internal voltage reference module. The comparator then generates an interrupt signal setting the LVDIF bit. This voltage is software programmable to any one of 16 values (see Figure 18-2). The trip point is selected by programming the LVDL3:LVDL0 bits (LVDCON<3:0>).

FIGURE 18-2: LOW VOLTAGE DETECT (LVD) BLOCK DIAGRAM

© 2001-2013 Microchip Technology Inc.

18.1 **Control Register**

The Low Voltage Detect Control register (Register 18-1) controls the operation of the Low Voltage Detect circuitry.

REGISTER 18-1: LVDCON REGISTER

U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
—		IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5	IRVST: Internal Reference Vo

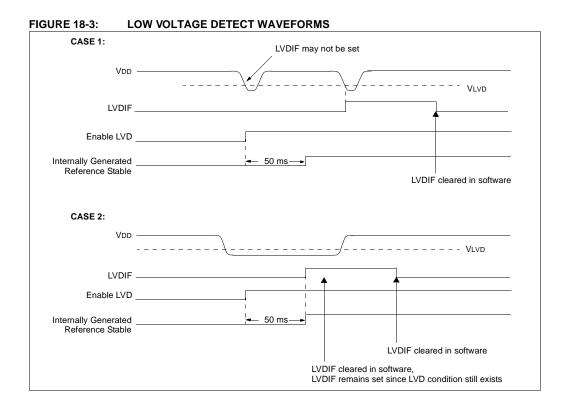
IRVST: Internal Reference Voltage Stable Flag bit

- 1 = Indicates that the Low Voltage Detect logic will generate the interrupt flag at the specified voltage range
- 0 = Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the LVD interrupt should not be enabled
- bit 4 LVDEN: Low Voltage Detect Power Enable bit 1 = Enables LVD, powers up LVD circuit
 - 0 = Disables LVD, powers down LVD circuit
- bit 3-0 LVDL3:LVDL0: Low Voltage Detection Limit bits
 - 1111 = External analog input is used (input comes from the LVDIN pin)
 - 1110 = 4.5V
 - 1101 = 4.2V
 - 1100 = 4.0V Reserved on PIC18C601/801
 - 1011 = 3.8V Reserved on PIC18C601/801
 - 1010 = 3.6V Reserved on PIC18C601/801
 - 1001 = 3.5V Reserved on PIC18C601/801
 - 1000 = 3.3V Reserved on PIC18C601/801
 - 0111 = 3.0V Reserved on PIC18C601/801
 - 0110 = 2.8V Reserved on PIC18C601/801
 - 0101 = 2.7V Reserved on PIC18C601/801
 - 0100 = 2.5V Reserved on PIC18C601/801
 - 0011 = 2.4V Reserved on PIC18C601/801
 - 0010 = 2.2V Reserved on PIC18C601/801
 - 0001 = 2.0V Reserved on PIC18C601/801
 - $\tt 0000$ = Reserved on PIC18C601/801 and PIC18LC801/601

LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage of the device are not tested.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

18.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease current consumption, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to setup the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register), which selects the desired LVD trip point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- Clear the LVD interrupt flag, which may have falsely become set, until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 18-3 shows typical waveforms that the LVD module may be used to detect.

18.2.1 REFERENCE VOLTAGE SET POINT

The Internal Reference Voltage of the LVD module may be used by other internal circuitry (the programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires time to become stable before a low voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter #36. The low voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 18-3.

18.2.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter #D022B.

18.3 External Analog Voltage Input

The LVD module has an additional feature that allows the user to supply the trip point voltage to the module from an external source (the LVDIN pin). The LVDIN pin is used as the trip point when the LVDL3:LVDL0 bits equal '1111'. This state connects the LVDIN pin voltage to the comparator. The other comparator input is connected to an internal reference voltage source.

18.4 Operation During SLEEP

When enabled, the LVD circuitry continues to operate during SLEEP. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from SLEEP. Device execution will continue from the interrupt vector address, if interrupts have been globally enabled.

18.5 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the LVD module to be turned off.

19.0 SPECIAL FEATURES OF THE CPU

There are several features intended to maximize system reliability, minimize cost through elimination of external components and provide power saving operating modes:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- ID Locations

PIC18C601/801 devices have a Watchdog Timer, which can be permanently enabled/disabled via the configuration bits, or it can be software controlled. By default, the Watchdog Timer is disabled to allow software control. It runs off its own RC oscillator for cost reduction. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Powerup Timer (PWRT), which provides a fixed delay on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. By default, HS oscillator mode is selected. There are two main modes of operations for external memory interface: 8-bit and 16-bit (default). A set of configuration bits are used to select various options.

19.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 30000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (30000h - 3FFFFh), which can only be accessed using table reads and table writes.

TABLE 19-1: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H		—	—		—	—	FOSC1	FOSC0	11
300002h	CONFIG2L		BW	—		—	—		PWRTEN	-11
300003h	CONFIG2H	_	—	—	—	WDTPS2	WDTPS1	WDTPS0	WDTEN	1110
300006h	CONFIG4L	r	—	—		—	—		STVREN	11
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	0000 0000
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0000
1.000.000								-		stain (d)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, maintain '1'. Shaded cells are unimplemented, read as '0'.

© 2001-2013 Microchip Technology Inc.

REGISTER 19-1: CONFIGURATION REGISTER 1 HIGH (CONFIG1H: BYTE ADDRESS 0300001h)

	U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1					
		—	—	—	—	—	FOSC1	FOSC0					
	bit 7							bit 0					
bit 7-2	Unimplemented: Read as '0'												
bit 2-0	FOSC1:FOSC0: Oscillator Selection bits												
	11 = RC os												
	10 = HS os												
	01 = EC os 00 = LP os												
	Legend:												
	Legend.												
	r = Reserve	ed											

R = Readable bitP = Programmable bitU = Unimplemented bit, read as '0'- n = Value when device is unprogrammedu = Unchanged from programmed state

REGISTER 19-2: CONFIGURATION REGISTER 2 LOW (CONFIG2L: BYTE ADDRESS 300002h)

- n = Value when device is unprogrammed

	U-0	R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1						
	—	BW	—	_	—	_	—	PWRTEN						
	bit 7							bit 0						
t 7	Unimplemented: Read as '0' BW: External Bus Data Width bit													
t 6	BW: External Bus Data Width bit													
	1 = 16-bit external bus mode 0 = 8-bit external bus mode													
t 5-1	Unimplem	ented: Read	l as '0'											
t 0	PWRTEN:	Power-up Ti	mer Enable b	bit										
	1 = PWRT	disabled												
	0 = PWRT	enabled												
	Legend:													
	r = Reserve	ed												
	R = Reada	ble bit	P = Progra	mmable bit	U = Unimp	lemented	bit, read as	'0'						

DS39541B-page 208

bit bit

bit bit

u = Unchanged from programmed state

REGISTER 19-3:	CONFIGURATION REGISTER 2 HIGH (CONFIG2H: BYTE ADDRESS 300003H)												
	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1					
	—	_	—	—	WDTPS2	WDTPS1	WDTPS0	WDTEN					
	bit 7							bit 0					
bit 7-4	Unimplem	ented: Read	d as '0'										
bit 3-1	WDTPS2:	NDTPS0: W	atchdog Tim	er Postscale	e Select bits	6							
	000 =1:12	3											
	001 =1:64												
	010 =1:32 011 =1:16 100 =1:8												
	100 = 1:8 101 = 1:4												
	110 =1:2												
	111 =1:1												
bit 0	WDTEN: V	Vatchdog Tir	ner Enable b	oit									
	1 = WDT e	nabled											
	0 = WDT d	isabled (con	trol is placed	d on the SW	DTEN bit)								
	Legend:												
	r = Reserv	ed											
	R = Reada	ble bit	P = Progra	mmable bit	U = Unim	plemented	bit, read as	'0'					
	- n = Value when device is unprogrammed u = Unchanged from programmed state												
REGISTER 19-4	CONFIGUE	RATION RE	GISTER 4		NFIG4I · F		RESS 300	006H)					

REGISTER 19-4: CONFIGURATION REGISTER 4 LOW (CONFIG4L: BYTE ADDRESS 300006H)

	R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1					
	r	—	—	—	—		—	STVREN					
	bit 7							bit 0					
bit 7	Reserved: Maintain as '1'												
bit 6-1	Unimplemented: Read as '0'												
bit 0	STVREN: Stack Full/Underflow RESET Enable bit												
		ull/Underflow		-									
	0 = Stack F	Full/Underflow	/ will not ca	USE RESEI									
	Legend:												
	r = Reserve	ed											
	R = Reada	ble bit	P = Progra	mmable bit	U = Unim	plemented	l bit, read as	'0'					
	- n = Value	when device	is unprogra	ammed	u = Unch	anged fron	n programme	ed state					

19.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO pins of the device has been stopped; for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the RCON register will be cleared upon a WDT time-out.

By default, the Watchdog Timer is disabled by configuration to allow software control over Watchdog Timer operation. If the WDT is enabled by configuration, software execution may not disable this function. When the Watchdog Timer is disabled by configuration, the SWDTEN bit in the WDTCON register enables/ disables the operation of the WDT. The WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT postscaler may be assigned by using configuration bits WDPS<3:1> in CONFIG2H register. If the Watchdog Timer is disabled by configuration, values for the WDT postscaler may be assigned using the SWDPS bits in the WDTCON register.

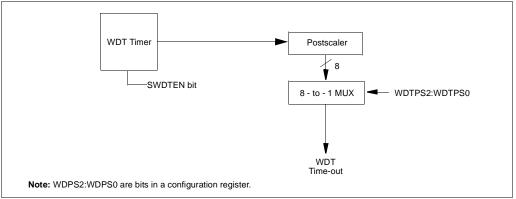
- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
 - When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

19.2.1 CONTROL REGISTER

Register 19-5 shows the WDTCON register. This is a readable and writable register. It contains control bits to control the Watchdog Timer from user software. If the Watchdog Timer is enabled by configuration, this register setting is ignored.

REGISTER 19-5: WDTCON REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	SWDPS2	SWDPS1	SWDPS0	SWDTEN
bit 7							bit 0


bit 7-4	Unimplemented: Read as '0'
bit 3-1	SWDPS2:SWDPS0: Software Watchdog Timer Postscale Select bits
	111 = 1:128
	110 = 1:64
	101 = 1:32
	100 = 1:16
	011 = 1:8
	010 = 1:4
	001 = 1:2
	000 = 1:1
bit 0	SWDTEN: Software Controlled Watchdog Timer Enable bit
	1 = Watchdog Timer is on
	0 = Watchdog Timer is turned off if it is not disabled

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

19.2.2 WDT POSTSCALER

The WDT has a postscaler that can extend the WDT Reset period. The postscaler may be programmed by the user software or is selected by configuration bits WDTPS<2:0> in the CONFIG2H register. If the device has the Watchdog Timer enabled by configuration bits, the device will use predefined set postscaler value. If the device has the Watchdog Timer disabled by configuration bits, user software can set desired postscaler value. When the device has the Watchdog Timer enabled by configuration bits, by default, Watchdog postscaler of 1:128 is selected.

FIGURE 19-1: Watchdog Timer Block Diagram

TABLE 19-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2H	—	—		—	WDTPS2	WDTPS1	WDTPS0	WDTEN
RCON	IPEN	r		RI	TO	PD	POR	r
WDTCON	—	—	_	—	SWDPS2	SWDPS1	SWDPS0	SWDTEN

Legend: Shaded cells are not used by the Watchdog Timer.

19.3 Power-down Mode (SLEEP)

Power-down mode is entered by executing a SLEEP instruction.

Upon entering into Power-down mode, the following actions are performed:

- 1. Watchdog Timer is cleared and kept running.
- 2. PD bit in RCON register is cleared.
- 3. TO bit in RCON register is set.
- 4. Oscillator driver is turned off.
- 5. I/O ports maintain the status they had before the SLEEP instruction was executed.

To achieve lowest current consumption, follow these steps before switching to Power-down mode:

- Place all I/O pins at either VDD or VSS and ensure no external circuitry is drawing current from I/O pin.
- 2. Power-down A/D and external clocks.
- 3. Pull all hi-impedance inputs to high or low, externally.
- 4. Place T0CKI at Vss or VDD.
- Current consumption by PORTB on-chip pullups should be taken into account and disabled, if necessary.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

19.3.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or a peripheral interrupt.

The following peripheral interrupts can wake the device from SLEEP:

- 4. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 5. TMR3 interrupt. Timer3 must be operating as an asynchronous counter.
- 6. CCP Capture mode interrupt.
- 7. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 8. MSSP (START/STOP) bit detect interrupt.
- MSSP transmit or receive in Slave mode (SPI/I²C).
- 10. USART RX or TX (Synchronous Slave mode).
- 11. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts, since during SLEEP, no on-chip clocks are present.

External $\overline{\text{MCLR}}$ Reset will cause a device RESET. All other events are considered a continuation of program execution and will cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the RCON register can be used to determine the cause of the device RESET. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared, if a WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 2) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the sLEEP instruction after the subset of the other instruction after the subset. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

19.3.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If an interrupt condition (interrupt flag bit and interrupt enable bits are set) occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt condition occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

DS39541B-page 212

WAKE-UP FROM SLEEP THROUGH INTERRUPT^(1,2) FIGURE 19-2:

	1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1			Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 / \ CLKOUT ⁽⁴⁾ \			$\frac{1}{1}$	TOST ⁽²⁾			,	
INT pin		-	1	1 1 1	-	1 1 1	1 1 1 1	I
INTIF bit	i		<u> </u>	1		Interrupt Latency	3)	
GIEH bit	1 1		Processor in	1		· ·		1
			SLEEP				i i	
INSTRUCTION F	LOW		1 1	1		1	1 1 1	1
PC X	PC X	PC+2	X PC	+4	PC+4	X PC+4	X 0008h)	(000Ah
Instruction ∫ Fetched	st(PC) = SLEEP	Inst(PC + 2)			Inst(PC + 4)	1 1 1	Inst(0008h)	Inst(000Ah)
Instruction] Executed	Inst(PC - 1)	SLEEP	1 1		Inst(PC + 2)	Dummy cycle	Dummy cycle	Inst(0008h)
Note 1: HS or L	P oscillator mod	le assumed.						

GIE set is assumed. In this case, after wake- up, the processor jumps to the interrupt routine. If GIE is cleared, execution will continue in-line.
 Tost = 1024Tosc (drawing not to scale). This delay will not occur for RC and EC osc modes.
 CLKOUT is not available in these oscillator modes, but shown here for timing reference.

39541a.book Page 214 Tuesday, January 29, 2013 2:34 PM

PIC18C601/801

NOTES:

 \bigcirc

 $\overline{\mathbf{\Phi}}$

DS39541B-page 214

20.0 INSTRUCTION SET SUMMARY

The PIC18C601/801 instruction set adds many enhancements to the previous PIC^{\circledast} MCU instruction sets, while maintaining an easy migration path from them.

With few exceptions, instructions are a single program memory word (16-bits). Each single word instruction is divided into an OPCODE, which specifies the instruction type, and one or more operands which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- · Byte-oriented operations
- · Bit-oriented operations
- Literal operations
- · Control operations

The PIC18C601/801 instruction set summary in Table 20-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 20-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (represented by 'f')
- 2. The destination of the result (represented by 'd')
- 3. The accessed memory (represented by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (represented by 'f')
- The bit in the file register (represented by 'b')
- 3. The accessed memory (represented by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (represented by 'k')
- The desired FSR register to load the literal value into (represented by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- · A program memory address (represented by 'n')
- The mode of the Call or Return instructions (represented by 's')
- The mode of the Table Read and Table Write instructions (represented by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double word instructions. These four instructions were made double word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are 1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. The double word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two word branch instructions (if true) would take 3 μ s.

Figure 20-1 shows the general formats that the instructions can have. All examples use the format `nnh' to represent a hexadecimal number, where `h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 20-2, lists the instructions recognized by the Microchip assembler (MPASMTM).

Section 20.1 provides a description of each instruction.

TABLE 20-1: OPCODE FIELD DESCRIPTIONS

Field	Description			
a	RAM access bit			
	a = 0: RAM location in Access RAM (BSR register is ignored)			
100700	a = 1: RAM bank is specified by BSR register			
ACCESS	ACCESS = 0: RAM access bit symbol			
BANKED	BANKED = 1: RAM access bit symbol			
bbb	Bit address within an 8-bit file register (0 to 7)			
BSR	Bank Select Register. Used to select the current RAM bank.			
d	Destination select bit; d = 0: store result in WREG,			
	d = 1: store result in file register f.			
dest	Destination either the WREG register or the specified register file location			
f	8-bit Register file address (00h to FFh)			
fs	12-bit Register file address (000h to FFFh). This is the source address.			
fd	12-bit Register file address (000h to FFFh). This is the destination address.			
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)			
label	Label name			
mm	The mode of the TBLPTR register for the Table Read and Table Write instructions			
	Only used with Table Read and Table Write instructions:			
*	No change to register (such as TBLPTR with Table reads and writes)			
*+	Post-Increment register (such as TBLPTR with Table reads and writes)			
*-	Post-Decrement register (such as TBLPTR with Table reads and writes)			
+*	Pre-Increment register (such as TBLPTR with Table reads and writes)			
n	The relative address (2's complement number) for relative branch instructions, or the direct			
	address for Call/Branch and Return instructions			
PRODH	Product of Multiply high byte (Register at address FF4h)			
PRODL	Product of Multiply low byte (Register at address FF3h)			
s	Fast Call / Return mode select bit.			
	s = 0: do not update into/from shadow registers			
	s = 1: certain registers loaded into/from shadow registers (Fast mode)			
u	Unused or Unchanged (Register at address FE8h)			
W	W = 0: Destination select bit symbol			
WREG	Working register (accumulator) (Register at address FE8h)			
x	Don't care (0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.			
TBLPTR	21-bit Table Pointer (points to a Program Memory location) (Register at address FF6h)			
TABLAT	8-bit Table Latch (Register at address FF5h)			
TOS	Top-of-Stack			
PC	Program Counter			
PCL	Program Counter Low Byte (Register at address FF9h)			
PCH	Program Counter High Byte			
PCLATH	Program Counter High Byte Latch (Register at address FFAh)			
PCLATU	Program Counter Upper Byte Latch (Register at address FFBh)			
GIE	Global Interrupt Enable bit			
WDT	Watchdog Timer			
то	Time-out bit			
PD	Power-down bit			
C, DC, Z, OV, N	ALU status bits Carry, Digit Carry, Zero, Overflow, Negative			
	Optional			
()	Contents			
\rightarrow	Assigned to			
< >	Register bit field			
E	In the set of			
italics	User defined term (font is courier)			

DS39541B-page 216

Advance Information

© 2001-2013 Microchip Technology Inc.

 \bigcirc

۲

PIC18C601/801

Byte-oriented file register operations	Example Instruction
15 10 9 8 7 0	
OPCODE d a f (FILE #)	ADDWF MYREG, W
d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select Bank	
f = 8-bit file register address	
Byte to Byte move operations (2-word) 15 12 11 0	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
15 12 11 0	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations 15 12 11 9 8 7 0	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit
b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select Bank f = 8-bit file register address	
Literal operations	
15 8 7 0	
OPCODE k (literal)	MOVLW 7Fh
k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations	
<u>15 8 7 0</u>	
15 8 7 0 OPCODE n<7:0> (literal)	GOTO Label
OPCODE n<7:0> (literal) 15 12 11 0	GOTO Label
OPCODE n<7:0> (literal)	GOTO Label
OPCODE n<7:0> (literal) 15 12 11 0	GOTO Label
OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 15 8 7 0	
OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 1	GOTO Label
OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 1 15 12 11 0	
OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 1	
$\begin{tabular}{ c c c c c } \hline OPCODE & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline n = 20-bit immediate value \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & S & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline S = Fast bit \\ \hline \end{tabular}$	
OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 1 15 12 11 0 15 12 11 0 15 12 11 0 1111 n<19:8> (literal) 1	
$\begin{tabular}{ c c c c c c } \hline OPCODE & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline n = 20-bit immediate value \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & S & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline S = Fast bit \\ \hline 15 & 11 & 10 & 0 \\ \hline \end{tabular}$	CALL MYFUNC BRA MYFUNC
$\begin{tabular}{ c c c c c } \hline OPCODE & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline n = 20-bit immediate value \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & S & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline S = Fast bit \\ \hline 15 & 11 & 10 & 0 \\ \hline OPCODE & n<10:0> (literal) \\ \hline \end{tabular}$	CALL MYFUNC
OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) n n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 15 12 11 0 15 12 11 0 1111 n<19:8> (literal) S = Fast bit 15 11 10 0	CALL MYFUNC BRA MYFUNC
$\begin{tabular}{ c c c c c } \hline OPCODE & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline n = 20-bit immediate value \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & S & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline S = Fast bit \\ \hline 15 & 11 & 10 & 0 \\ \hline OPCODE & n<10:0> (literal) \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & n<7:0> (literal) \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & n<7:0> (literal) \\ \hline \end{tabular}$	CALL MYFUNC BRA MYFUNC
$\begin{tabular}{ c c c c c } \hline OPCODE & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline n = 20-bit immediate value \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & S & n<7:0> (literal) \\ \hline 15 & 12 & 11 & 0 \\ \hline 1111 & n<19:8> (literal) \\ \hline S = Fast bit \\ \hline 15 & 11 & 10 & 0 \\ \hline OPCODE & n<10:0> (literal) \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & n<7:0> (literal) \\ \hline 15 & 8 & 7 & 0 \\ \hline OPCODE & n<7:0> (literal) \\ \hline 15 & 6 & 4 & 0 \\ \hline \end{tabular}$	CALL MYFUNC BRA MYFUNC BC MYFUNC

 $\ensuremath{\textcircled{}^{\circ}}$ 2001-2013 Microchip Technology Inc.

Advance Information

PIC18C601/801

TABLE 20-2: PIC18C601/801 INSTRUCTION SET

Mnem	ionic,	Description	Cualas	16-I	Bit Instr	uction W	/ord	Status	Natas	
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes	
BYTE-OR	ENTED FI	LE REGISTER OPERATIONS	•					•	•	
ADDWF	f [,d [,a]]	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 6	
ADDWFC	f [.d [.a]]	Add WREG and Carry bit to f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 6	
ANDWF	f [,d [,a]]	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2,6	
CLRF	f [,a]	Clear f	1	0110	101a	ffff	ffff	Z	2, 6	
COMF	f [,d [,a]]	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2, 6	
CPFSEQ	f [,a]	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4, 6	
CPFSGT	f [,a]	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4, 6	
CPFSLT	f [,a]	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2, 6	
DECF	f [,d [,a]]	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4, 6	
DECFSZ	f [,d [,a]]	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4, 6	
DCFSNZ	f [,d [,a]]	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2, 6	
INCF	f [,d [,a]]	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4, 6	
INCFSZ	f [,d [,a]]	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4,6	
INFSNZ	f [,d [,a]]	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2, 6	
IORWF	f [,d [,a]]	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2, 6	
MOVF	f [,d [,a]]	Move f	1	0101	00da	ffff	ffff	Z, N	1, 6	
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	-	
	0. 4	f _d (destination)2nd word		1111	ffff	ffff	ffff			
MOVWF	f [,a]	Move WREG to f	1	0110	111a	ffff	ffff	None	6	
MULWF	f [,a]	Multiply WREG with f	1	0000	001a	ffff	ffff	None	6	
NEGF	f [,a]	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2, 6	
RLCF	f [,d [,a]]	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	6	
RLNCF	f [,d [,a]]	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2, 6	
RRCF	f [,d [,a]]	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	6	
RRNCF	f [,d [,a]]	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	6	
SETF	f [,a]	Set f	1	0110	100a	ffff	ffff	None	6	
SUBFWB	f [,d [,a]]	Subtract f from WREG with borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 6	
SUBWF	f [,d [,a]]	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	6	
SUBWFB		Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 6	
0001110	, [,a [,a]]	borrow		0101	road			0, 00, 2, 01, 11	1, 2, 0	
SWAPF	f [,d [,a]]	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4, 6	
TSTFSZ	f [,a]	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2, 6	
XORWF	f [,d [,a]]	Exclusive OR WREG with f	1	0001		ffff	ffff		6	
-		REGISTER OPERATIONS	1 -	5001	1044			_,	1-	
BCF	f, b [,a]	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2, 6	
BSF	f, b [,a]	Bit Set f	1	1001	bbba	ffff	ffff	None	1, 2, 6	
BTFSC	f, b [,a]	Bit Test f, Skip if Clear	1 (2 or 3)	1011		ffff	ffff	None	3, 4, 6	
BTFSS	f, b [,a]	Bit Test f, Skip if Set	1 (2 or 3)	1011	bbba bbba	ffff	ffff	None	3, 4, 6	
BTG		Bit Toggle f	1 (2 01 3)		bbba bbba	ffff	ffff		3, 4, 0 1, 2, 6	
-		DRT register is modified as a func								

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

6: Microchip's MPASM[™] Assembler automatically defaults destination bit 'd' to '1', while access bit 'a' defaults to '1' or '0', according to address of register being used.

PIC18C601/801

TABLE 20-2: PIC18C601/801 INSTRUCTION SET (CONTINUED)

Mnemonic,		Deserintion	Quala	16-Bit Instruction Word				Status	
Oper	,	Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPERA	LIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	_	No Operation (Note 4)	1	1111	XXXX	XXXX	XXXX	None	
POP	_	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn		None	
RESET		Software device RESET	1	0000	0000	1111		All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	PEIE/GIEL None	
RETURN	s	Return from Subroutine	2	0000	0000	0001		None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

 If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

6: Microchip's MPASM[™] Assembler automatically defaults destination bit 'd' to '1', while access bit 'a' defaults to '1' or '0', according to address of register being used.

TABLE 20-2: PIC18C601/801 INSTRUCTION SET (CONTINUED)

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status	Notes
		Description	Cycles	MSb			LSb	Affected	notes
LITERAL	OPERAT	ONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Load FSR (f) with a 12-bit	2	1110	1110	00ff	kkkk	None	
		literal (k)		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA ME	MORY ↔	PROGRAM MEMORY OPERATIO	NS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2 (5)	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

6: Microchip's MPASM[™] Assembler automatically defaults destination bit 'd' to '1', while access bit 'a' defaults to '1' or '0', according to address of register being used.

٢

PIC18C601/801

20.1 Instruction Set

ADDLW	ADD litera	al to WRE	G				
Syntax:	[label] A	DDLW	k				
Operands:	$0 \le k \le 25$	5					
Operation:	(WREG) +	(WREG) + k \rightarrow WREG					
Status Affected:	N,OV, C, [DC, Z					
Encoding:	0000	0000 1111 kkkk					
Description:	The conter the 8-bit lit placed in V	teral 'k' ar					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read literal 'k'	Process Data		/rite to VREG			
Example:	ADDLW 1	5h					
Before Instru WREG N OV C DC Z After Instruct WREG N OV C DC Z	= 10h = ? = ? = ? = ? = ? = ?						

the result i	$f(f) \rightarrow d$ DC, Z 01da G to reg	fffi Jister 'f	
$d \in [0,1]$ $a \in [0,1]$ $(WREG) +$ N,OV, C, I $\boxed{0010}$ Add WRE the result is	- (f) → d DC, Z ^{01da} G to reg	fffi Jister 'f	
N,OV, C, I 0010 Add WRE the result i	DC, Z ^{01da} G to reg	fffi Jister 'f	
0010 Add WRE the result i	01da G to reg	jister 'f	
Add WRE the result i	G to reg	jister 'f	
the result i			". If 'd' is 0,
	It is store . If 'a' i be selec	ed bac s 0, th ted. If	'a' is 1, the
1			
1			
Q2	Q3	8	Q4
Read register 'f'			Write to destination
ADDWF	REG,	W	
ction = 17h = 0C2h = ? = ? = ? = ? = ?			
on = 0D9h = 0C2h = 1 = 0 = 0 = 0			
	Bank will b Bank will b value. 1 1 1 Read register 'f' ADDWF tion = 17h = 0C2h = ? = ? = ? = ? = ? = 0D9h = 0C2h = 0 = 0	Bank will be select value. 1 1 Q2 Q2 Read register 'f' ADDWF REG, tion = 17h = 0C2h = ? = ? = ? = ? = ? = ? = ? = 0D9h = 0C2h = 0C2h = 0D9h = 0C2h = 0 = 0 = 0 = 0	Bank will be selected. If Bank will be selected as p value. 1 1 Q2 Q3 Read Process register 'f' Data ADDWF REG, W tion = 17h = 0C2h = ? = ? = ? = ? = ? = ? = ? = 0D9h = 0C2h = 1 = 0 = 0 = 0

© 2001-2013 Microchip Technology Inc.

 \bigcirc

۲

PIC18C601/801

ADDWFC	ADDWFC ADD WREG and Carry bit to f							
Syntax:	[<i>label</i>] A[DDWFC	f [,d [,a]]				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5						
Operation:	(WREG) +	+ (f) + (C)	\rightarrow dest					
Status Affected:	N,OV, C, I	DC, Z						
Encoding:	0010	00da	ffff	ffff				
Description:	memory lo result is pl the result location 'f' will be sel	Add WREG, the Carry Flag and data memory location 'f'. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed in data memory location 'f'. If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the Bank will be selected as per the BSR value.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proces Data	-	ite to ination				
Example:	ADDWFC	REG,	W					
Before Instru	uction							
C REG WREG N OV DC Z	= 1 = 02h = 4Dh = ? = ? = ?							
After Instruc	tion							
C REG WREG N OV DC Z	= 0 = 02h = 50h = 0 = 0 = 0 = 0							

AND	DLW	AND lit	er	al with V	WRE	G	
Synt	ax:	[label]	A	NDLW	k		
Ope	rands:	$0 \leq k \leq$	25	5			
Ope	ration:	(WREG	i).	AND. k	\rightarrow WI	REC	3
Statu	us Affected:	N,Z					
Enco	oding:	0000 1011 kkkk k					kkkk
Des	scription: The contents of WREG are AND'e with the 8-bit literal 'k'. The result placed in WREG.						
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2		Q3	3		Q4
	Decode	Read liter 'k'	al	Proce Data			/rite to VREG
<u>Exar</u>	<u>mple</u> :	ANDLW		5Fh			
	Before Instru WREG N Z	uction = 0A3ł = ? = ?	ı				

03h 0 0

After Instruction WREG = N = Z =

 \bigcirc

۲

PIC18C601/801

AND WRE	G with	f	
[label] A	NDWF	f [,d [,a	l]]
$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
(WREG) ./	AND. (f)	\rightarrow dest	
N,Z			
0001	01da	ffff	ffff
with register stored in V is stored ba If 'a' is 0, t selected.	er 'f'. If 'd VREG. If ack in reg he Acce If 'a' is 1	l' is 0, the 'd' is 1, t gister 'f' (ss Bank , the bar	e result is he result default). will be nk will be
1			
1			
Q2	Q3		Q4
Read register 'f'			/rite to stination
ANDWF	REG, V	1	
= 17h = 0C2h = ? = ? on = 02h			
	[label] Al $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ (WREG) J N,Z 0001 The conter with registricity stored in V is stored by If 'a' is 0, t selected. selected. selected at 1 1 Q2 Read register 'f' ANDWF ction = 17h = 0C2h = ? on = 02h	[label] ANDWF $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ (WREG) .AND. (f) N,Z 0001 01da The contents of Wi with register 'f'. If 'd stored in WREG. If is stored back in register 'f'. If 'd stored in WREG. If is stored back in register 'f'. If 'd stored as per the 1 1 Q2 Q3 Read Process register 'f' Data ANDWF REG, W ction = 17h = 0C2h = ? on = 02h	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(WREG) .AND. (f) \rightarrow dest$ N,Z $\boxed{0001 01da ffff}$ The contents of WREG are with register 'f'. If 'd' is 0, the stored in WREG. If 'd' is 1, t is stored back in register 'f' (If 'a' is 0, the Access Bank selected. If 'a' is 1, the bar selected as per the BSR va 1 $\frac{Q2 Q3}{Read}$ $\frac{Process W}{register 'f' Data dest}$ ANDWF REG, W Ction = 17h = 0C2h = ? = ? on = 02h

		Branch if	Carry		
Syn	tax:	[label] B	SC n		
Ope	rands:	-128 ≤ n ≤	127		
Ope	ration:	if carry bit (PC) + 2	∶is '1' 2 + 2n →	PC	
Stat	us Affected:	None			
Enc	oding:	1110	0010	nnn	n nnnn
Des	cription:	gram will The 2's co added to t have incre instructior	branch. ompleme he PC. emented n, the ne . This in:	ent nu Since to fet w add structi	mber '2n' i the PC wi ch the PC wi ch the nex lress will b ion is then
Wor	ds:	1	nondon	011.	
Cyc	les:	1(2)			
Q C If Ju	ycle Activity: mp: Q1	Q2	Q3	1	Q4
	Decode	Read literal	Proce		Write to PC
	Decode	'n'	Data		
	No	No	No		No
14.51	operation	operation	operat	ion	operation
IT IN	o Jump: Q1	Q2	Q3		Q4
	Decode	Read literal	Proce		No
		'n'	Data	a i	operation
_					
⊨ха	mple:	HERE	BC	5	
	Before Instru PC		ldress (H	ERE)	

۲

PIC18C601/801

BCF	Bit Clear	Bit Clear f		BN		Branch if Negative		
Syntax:	[label] B	CF f, b [,a	a]	Synt	ax:	[<i>label</i>] BN n		
Operands:	0 ≤ f ≤ 255	5		Ope	rands:	-128 ≤ n ≤ 127		
	$0 \le b \le 7$ $a \in [0,1]$			Ope	ration:	if negative (PC) + 2 +		
Operation:	$0 \rightarrow f < b >$			Statu	us Affected:	None		
Status Affected:	None			Enco	oding:	1110	0110 n:	
Encoding:	ncoding: 1001 bbba ffff ffff		ff ffff	Desc	cription:	If the Nega	ative bit is '1	
Description:	Bit 'b' in re	gister 'f' is cl	eared. If 'a' is	2000		gram will b		
	overriding	the BSR va vill be select	l be selected, lue. If 'a' = 1, ed as per the			added to t have incre instruction	mplement i he PC. Sin emented to i, the new a	
Words:	1						This instru instruction.	
Cycles:	1			10/00			instruction.	
Q Cycle Activity:				Word		1		
Q1	Q2	Q3	Q4	Cycl	es:	1(2)		
Decode	Read register 'f'	Process Data	Write register 'f'	Q Cy If Ju	cle Activity:			
					Q1	Q2	Q3	
Example: Before Instru		LAG_REG,	7		Decode	Read literal 'n'	Process Data	
	EG = 0C7h				No	No	No	
After Instruc					operation	operation	operation	
	EG = 47h			If N	o Jump:			
					Q1	Q2	Q3	
					Decode	Read literal	Process	

_			•						
Synt	ax:	[<i>label</i>] B	SN n						
Ope	rands:	-128 ≤ n ≤	$-128 \le n \le 127$						
Ope	ration:	0	if negative bit is '1' (PC) + 2 + 2n \rightarrow PC						
Statu	us Affected:	None	None						
Enco	oding:	1110	0110	nnnn	nnnn				
Desc	cription:	•	If the Negative bit is '1', then the pro- gram will branch.						
added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.									
Word	ds:	1							
Cycl	es:	1(2)							
Q Cy If Ju	vcle Activity: mp:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read literal 'n'	Proce Data		Vrite to PC				
	No	No	No		No				
	operation	operation	operat	ion	operation				
If No	o Jump:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'n'	Proce Data		No operation				
<u>Exar</u>	nple:	HERE	BN	Jump					
	Before Instru	uction							

PC	=	address (HERE)
After Instruction		
If Negative	=	1;
PC	=	address (Jump)
If Negative	=	0;
PC	=	address (HERE+2)

۲

PIC18C601/801

BNC	;	Branch if	Not Carry	
Synt	tax:	[<i>label</i>] B	NC n	
Ope	rands:	-128 ≤ n ≤	127	
Ope	ration:	if carry bit (PC) + 2 +		
State	us Affected:	None		
Enco	oding:	1110	0011 nn	nn nnnn
Des	cription:	If the Carr	y bit is '0', th	en the
		program w	/ill branch.	
				umber '2n' is
				e the PC will etch the next
				dress will be
		PC+2+2n.	This instruc	tion is then a
		two-cycle	instruction.	
Wor	ds:	1		
Cycl	es:	1(2)		
QC	ycle Activity:			
lf Ju	mp:			
	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No
	operation	operation	operation	operation
lf N	o Jump:			
	Q1	Q2	Q3	Q4
	Decode	Read literal	Process	No
		'n'	Data	operation
<u>Exa</u>	mple:	HERE	BNC Jump	
	Before Instru			
	PC		dress (HERE)	
	After Instruc			
	If Carry PC	= 0; = ade	dress (Jump)	
	If Carry	= 1;		
	PC	= ade	dress (HERE+	2)

BNN	I	Branch if	Not Neg	gative				
Synt	ax:	[<i>label</i>]B	NN n					
Ope	rands:	-128 ≤ n ≤	127					
Ope	ration:	•	if negative bit is '0' (PC) + 2 + 2n \rightarrow PC					
Statu	us Affected:	None						
Enco	oding:	1110	0111	nnnn	nnnn			
Des	cription:	If the Neg program v			en the			
The 2's complement number '2n' is added to the PC. Since the PC wil have incremented to fetch the nex instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.								
Wor	ds:	1						
Cycl	es:	1(2)						
Q C If Ju	ycle Activity: mp:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proces Data		ite to PC			
	No	No	No		No			
	operation	operation	operati	on op	peration			
lf N	o Jump:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proces Data		No peration			

Example: HERE BNN Jump

Before Instructio PC	n =	address	(HERE)
After Instruction			
If Negative	=	0;	
PC	=	address	(Jump)
If Negative	=	1;	
PC	=	address	(HERE+2)

 $\ensuremath{\textcircled{}^{\circ}}$ 2001-2013 Microchip Technology Inc.

O

۲

PIC18C601/801

BNC	ov	Branch if	Not Overflo	w	В	NZ	Branch if	Not Zero	
Synt	ax:	[label] B	NOV n		S	yntax:	[label] B	NZ n	
Ope	rands:	-128 ≤ n ≤	127		0	perands:	-128 ≤ n ≤	127	
Ope	ration:	if overflow bit is '0' $(PC) + 2 + 2n \rightarrow PC$		0	peration:		if zero bit is '0' (PC) + 2 + 2n \rightarrow PC		
State	us Affected:	None			S	atus Affected:	None		
Enco	oding:	1110	0101 nn:	nn nnnn	E	ncoding:	1110	0001 nn	nn nnnn
Des	cription:	If the Over program w	flow bit is '0 /ill branch.	', then the	D	escription:	If the Zero will branch		the program
		added to the have incre instruction PC+2+2n.	he PC. Sinc mented to fe , the new ad	umber '2n' is e the PC will etch the next dress will be tion is then a			added to t have incre instruction PC+2+2n.	he PC. Since mented to fe , the new ad	umber '2n' is e the PC will etch the next dress will be tion is then a
Wor	ds:	1			W	ords:	1		
Cycl	es:	1(2)			С	ycles:	1(2)		
Q Cy If Ju	ycle Activity: mp:					Cycle Activity: Jump:			
	Q1	Q2	Q3	Q4	_	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No		No	No	No	No
If N	operation o Jump:	operation	operation	operation]	operation No Jump:	operation	operation	operation
	Q1	Q2	Q3	Q4	•	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	No operation]	Decode	Read literal 'n'	Process Data	No operation
<u>Exa</u>	mple:	HERE	BNOV Jump		E	xample:	HERE	BNZ Jump	
	Before Instru					Before Instr			
	PC After Instruc If Overflo PC If Overflo PC	tion pw = 0; = ado pw = 1;	dress (HERE) dress (Jump) dress (HERE+	2)		PC After Instruc If Zero PC If Zero PC	ction = 0; = ad = 1;	dress (HERE) dress (Jump) dress (HERE+	

۲

PIC18C601/801

BRA	Uncondit	ional Branc	h	BSI	F	Bit Set f			
Syntax:	[<i>label</i>] B	RA n		Syn	itax:	[label] B	SF f, b	[,a]	
Operands:	-1024 ≤ n	≤ 1023		Ope	erands:	$0 \le f \le 255$	5		
Operation:	(PC) + 2 +	$-2n \rightarrow PC$				0 ≤ b ≤ 7 a ∈ [0,1]			
Status Affected	: None			One	eration:	a ∈ [0,1] 1 → f 			
Encoding:	1101	0nnn nn	nn nnnn	•	tus Affected	None			
Description:			nt number '2n'	Enc	oding:	1000	bbba	ffff	ffff
Words:	instruction PC+2+2n.	to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is a two- cycle instruction.		Des	scription:	Bit 'b' in re Access Ba riding the Bank will b value (def	ank will be BSR value e selected	e selec e. If 'a	ted, over i' is 1, the
Cycles:	2			Wo	rds:	1			
Q Cycle Activit	_			Cyc	les:	1			
Q1	,. Q2	Q3	Q4	QC	ycle Activity:				
Decode	Read literal	Process	Write to PC		Q1	Q2	Q3		Q4
No operation	'n' No operation	Data No operation	No		Decode	Read register 'f'	Process Data		Write egister 'f'
oporation	operation	oporation	oporation	Exa	imple:	BSF F	LAG_REG	7	
Example: Before Ins	HERE	BRA Jump			Before Instr FLAG_F		_ h		
PC	= ad	dress (HERE)			After Instruc FLAG F		h		
After Instru PC		dress (Jump)							

© 2001-2013 Microchip Technology Inc.

۲

PIC18C601/801

BTF	sc	Bit Test Fil	e, Skip	if Clear				
Synt	ax:	[label] BT	FSC f,	b [,a]				
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	$0 \le b \le 7$					
Oper	ation:	skip if (f 	•) = 0					
Statu	is Affected:	None	None					
Enco	oding:	1011	1011 bbba ffff ffff					
Desc	pription:	instruction i If bit 'b' is 0 fetched dur	If bit 'b' in register 'f' is 0, then the next instruction is skipped. If bit 'b' is 0, then the next instruction fetched during the current instruction execution is discarded, and a NOP is					
		cycle instru Bank will be BSR value. selected as	ction. If ' e selecte If 'a' is 1	a' is 0, the ed, overri I, the Bar	e Access ding the nk will be			
Word	ds:	1						
Cycl	es:	1(2) Note: 3 cyc by a		ip and fol nstructio				
QCy	cle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proces Data		No eration			
lf ski	D:	register i	Dala	υp				
	Q1	Q2	Q3		Q4			
	No	No	No		No			
	operation	operation	operati		eration			
lf ski		ed by 2-word i		on:				
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operati	on on	No eration			
	No	No	No		No			
	operation	operation	operati	on op	eration			
<u>Exar</u>	nple:	HERE BI FALSE : TRUE :	FSC F	LAG, 1				
	Before Instru	ction						
	PC	= add	ress (HEI	RE)				
	After Instruct							
	If FLAG< PC	,	ress (TRU	י <u>ש</u> ד.				
	If FLAG<		1030 (1R)	JE)				
	PC	= add	ress (FAI	LSE)				

BTFSS	Bit Test Fi	le, Skip if Se	t				
Syntax:	[label] B	[FSS_f, b [,a]					
Operands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]						
Operation:	skip if (f <b:< td=""><td>>) = 1</td><td></td></b:<>	>) = 1					
Status Affected							
Encoding:	1010	bbba ff:	ff ffff				
Description:	If bit 'b' in re instruction	If bit 'b' in register 'f' is 1 then the next instruction is skipped.					
	If bit 'b' is 1, then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.						
Words:	1						
Cycles:		cles if skip ar 2-word instru					
Q Cycle Activity	:						
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	No operation				
If skip:							
Q1	Q2	Q3	Q4				
No	No	No	No				
operation If skip and follow	operation	operation	operation				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
No operation	No operation	No operation	No operation				
Example:	HERE B' FALSE : TRUE :	TFSS FLAG,	1				
Before Inst PC		Iress (HERE)					
After Instru If FLAG P(If FLAG P(G<1> = 0; C = ado G<1> = 1;	Iress (FALSE) Iress (TRUE)					

DS39541B-page 228

PIC18C601/801

BTG	Bit Toggl							
Syntax:	[<i>label</i>] B	STG f, b [,	a]					
Operands:	$0 \le f \le 25$	5						
	0 ≤ b < 7							
		a ∈ [0,1]						
Operation:	$(f < b >) \rightarrow f$	f 						
Status Affected:	None							
Encoding:	0111	bbba	ffff	ffff				
	will be sel	ected ove	erridina th					
	value. If '	a' is 1, the	Bankw	ill be				
Words:	value. If '	a' is 1, the	Bankw	ill be				
	value. If a selected a	a' is 1, the	Bankw	ill be				
Cycles:	value. If ' selected a 1	a' is 1, the	Bankw	ill be				
Words: Cycles: Q Cycle Activity: Q1	value. If ' selected a 1	a' is 1, the	e Bank wi BSR valı	ill be				
Cycles: Q Cycle Activity:	value. If ' selected a 1 1 Q2 Read	a' is 1, the as per the Q3 Process	Bank wi BSR valu	ill be ue. Q4 Irite				
Cycles: Q Cycle Activity: Q1	value. If 3 selected a 1 1 Q2	a' is 1, the as per the Q3	Bank wi BSR valu	ill be ue. Q4				
Cycles: Q Cycle Activity: Q1	value. If ' selected a 1 1 Q2 Read register 'f'	a' is 1, the as per the Q3 Process	Bank wi BSR valu (w regis	ill be ue. Q4 Irite				
Cycles: Q Cycle Activity: Q1 Decode	value. If 's selected a 1 1 Q2 Read register 'f' BTG I action:	a' is 1, the as per the Q3 Process Data	Bank wi BSR valu (w regis	ill be ue. Q4 Irite				

BOV		Branch if	Overflo	w			
Syntax:		[<i>label</i>] B	OV n				
Operands:		-128 ≤ n ≤	127				
Operation:			if overflow bit is '1' (PC) + 2 + 2n \rightarrow PC				
Status Affect	ted:	None					
Encoding:		1110	0100	nnr	ın	nnnn	
Description:		11100100nnnnnnnnIf the Overflow bit is '1', then the program will branch.The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be 					
Words: Cycles: Q Cycle Acti	ivitv:	instruction PC+2+2n. two-cycle 1	, the ne This in	w ado struct	dres	s will be	
Cycles: Q Cycle Acti If Jump:		instruction PC+2+2n. two-cycle 1 1(2)	, the ne This in instructi	w add struct	dres	is will be	
Cycles: Q Cycle Acti		instruction PC+2+2n. two-cycle 1	, the ne This in	w add struct	dres	s will be is then a	
Cycles: Q Cycle Acti If Jump:		instruction PC+2+2n. two-cycle 1 1(2)	, the ne This in instructi	w add struct ion.	dres	is will be	
Cycles: Q Cycle Acti If Jump: Q1		instruction PC+2+2n. two-cycle 1 1(2) Q2 Read literal	, the ne This in instructi Q3 Proce	w add struct ion.	dres	s will be is then a	
Cycles: Q Cycle Acti If Jump: Q1 Decoc No operati	de	instruction PC+2+2n. two-cycle 1 1(2) Q2 Read literal 'n'	, the ne This in instructi Q3 Proce Date	w add struct ion.	Wri	Q4 te to PC	
Cycles: Q Cycle Acti If Jump: Q1 Decoc No	de	instruction PC+2+2n. two-cycle 1 1(2) Q2 Read literal 'n' No	Q3 Proce Data No	w add struct ion.	Wri	Q4 te to PC No	
Cycles: Q Cycle Acti If Jump: Q1 Decoc No operati	de	instruction PC+2+2n. two-cycle 1 1(2) Q2 Read literal 'n' No	Q3 Proce Data No	w add struct ion. 3 ss a	Wri	Q4 te to PC No	

Example: HERE BOV Jump

Before Instructio PC	n =	address (HERE)
After Instruction		
If Overflow	=	1;
PC	=	address (Jump)
If Overflow	=	0;
PC	=	address (HERE+2)

© 2001-2013 Microchip Technology Inc.

O

۲

PIC18C601/801

BZ	Branch if	Zero		CALL	Subrouti	ne Call	
Syntax:	[label] B	Zn		Syntax:	[label]	CALL k [,s]	
Operands:	-128 ≤ n ≤	127		Operands:	$0 \le k \le 10$	48575	
Operation:	if Zero bit	is '1'			s ∈ [0,1]		
·	$(PC) + 2 + 2n \to PC$			Operation:	(PC) + 4		
Status Affected:	None				$k \rightarrow PC < 2$	20:1>,	
Encoding:	1110	0000 nn	nn nnnn		if s = 1 (WREG)	N/S	
Description:	If the Zero	bit is '1'. ther	the program			\rightarrow STATUS	S,
	will branch		-1-5-		$(BSR) \rightarrow$	BSRS	
			umber '2n' is	Status Affec	ted: None		
				Encoding:			
						110s k ₇ k	
		,	tion is then a		·	15	0
	two-cycle	instruction.		Description:			•
Words:	1						
Cycles:	1(2)				. ,	•	EG, STATUS
Q Cycle Activity:						0	also pushed
If Jump:							
Q1	Q2	Q3	Q4				
Decode	Read literal	Process	Write to PC		,		bit value 'k' is
Ne			Nia		()	to PC<20:1>	
	-	-			two-cycle	instruction.	
If No Jump:				Words:	2		
Q1	Q2	Q3	Q4	Cycles:	2		
Decode	Read literal	Process	No	Q Cycle Act	vity:		
	'n'	Data	operation	Q1	Q2	Q3	Q4
Evennler	UEDE	DØ Tump		Deco		Push PC to	Read literal
		ва ошцр			'k'<7:0>,	stack	
		drass (UEDE)		No	No	No	
				operat		operation	operation
If Zero							
PC	,	dress (Jump)		Example:	HERE	CALL THE	RE, FAST
If Zero	= 0;	droce (UEDE)	2)		nstruction		
FC	= au	UIESS (HERE+	-2)	PC	= Addres	S (HERE)	
					struction		
)
				WS	= WREG		/
Cycles: Q Cycle Activity: If Jump: Q1 Decode No operation If No Jump: Q1 Decode Example: Before Instruct If Zero PC	have incre instruction PC+2+2n. two-cycle 1 1(2) Read literal 'n' No operation Q2 Read literal 'n' HERE uction = ad ction = 1; = ad = 0;	Q3 Process Data No operation Q3 Process Data BZ Jump dress (HERE)	Q4 Write to PC No operation Q4 No operation	1st word (k- 2nd word(k- Description: Words: Cycles: Q Cycle Act Q1 Decod No operat Example: Before PC After In: PC TO	1111 Subroutin memory r. (PC+ 4) is stack. If's stack. If's and BSR into their ters, WS, If 's' = 0, (default). loaded int two-cycle 2 2 2 2 2 2 2 2 2 2 4 Read literal 'k'<7:0>, 0 No operation HERE nstruction = Address S = Address S = Address S = Merce	k19kkk kk ke call of entirange. First, respondents, registers are respective shown or update or the the 20-lo PC<20:1>, instruction. Q3 Push PC to stack No operation CALL CALL there s (HERE) s (THERE) s (THERE)	kk kkkk e 2M byte eturn address o the return EG, STATU also pushe hadow regis nd BSRS. ccurs bit value 'k' i . CALL is a Q4 Read litera 'k'<19:8>, Write to PC No operation

DS39541B-page 230

BSRS = STATUSS =

BSR STATUS

۲

PIC18C601/801

CLRF	Clear f			CLR	WDT	Clear Wat	tchdog Tim	er	
Syntax:	[<i>label</i>] CLR	RF f[,a]		Synt	ax:	[label] (CLRWDT		
Operands:	$0 \leq f \leq 255$			Ope	rands:	None			
	a ∈ [0,1]			Ope	ration:	$000h \rightarrow V$			
Operation:	$\begin{array}{c} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$					$000h \rightarrow V$ 1 $\rightarrow TO$,	/DT postsca	aler,	
Status Affected:	T → 2 Z					$1 \rightarrow \frac{10}{PD}$			
Encodina:	_	101a ff	ff ffff	State	us Affected:	TO, PD			
Description:			the specified	Enco	oding:	0000	0000 00	000	0100
	will be sele value. If 'a			Des	cription:	Watchdog	nstruction re Timer. It al of the WD D are set.	so rese	ets the
Words:	1			Wor	ds:	1			
Cycles:	1			Cycl	es:	1			
Q Cycle Activity:				QC	ycle Activity:				
Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4
Decode	Read register 'f'	Process Data	Write register 'f'		Decode	No operation	Process Data		No eration
Example:	CLRF	FLAG_REG	3	Exa	mple:	CLRWDT			
Before Instru FLAG_RI Z After Instruct	EG = 5Ah = ?	1			Before Instru WDT cou WDT pos TO	inter = stscaler = =	? ? ?		
FLAG_RI Z	EG = 00h = 0	1			PD After Instruc WDT cou WDT pos TO PD	inter =	? 00h 0 1		

۲

PIC18C601/801

COMF Complement f					
Syn	tax:	[label] C	COMF f	[,d [,a]]	
Оре	erands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Оре	eration:	$(\overline{f}) \rightarrow de$	est		
Stat	us Affected:	N,Z			
Enc	oding:	0001	11da	ffff	ffff
Des	cription:	The conte plemented stored in V is stored b (default). Bank will b the BSR v will be selevalue.	I. If 'd' is 0 VREG. If ' back in reg If 'a' is 0, be selecte alue. If 'a	the read is 1 the read is 1 the read is 1 the second the second s	sult is he result cess riding he Bank
Wor	ds:	1			
Сус	les:	1			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read register 'f'	Process Data		/rite to stination
<u>Exa</u>	mple: Before Instru REG N Z After Instruc REG WREG N Z	iction = 13h = ? = ?	EG		

CPFSEQ	Compare skip if f =	f with WRI WREG	EG,				
Syntax:	[label] C	PFSEQ	f [,a]				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	(f) – (WRE skip if (f) = (unsigned		n)				
Status Affected:	None	None					
Encoding:	0110	001a f	fff ffff				
Description:	memory lc of WREG unsigned s If 'f' = WRI instruction is execute two-cycle Access Ba riding the	by perform subtraction. EG, then th is discarde d instead m instruction. ank will be s BSR value.	the contents ing an e fetched ed and a NOP naking this a If 'a' is 0, the selected, over- If 'a' is 1, the				
	value.	e selected a	as per the BSR				
Words:	1						
Cycles: Q Cycle Activity:		/cles if skip a 2-word in:	and followed struction.				
Q1	Q2	Q3	Q4				
Decode	Read	Process	No				
If alving	register 'f'	Data	operation				
If skip: Q1	Q2	Q3	Q4				
No	No	No	No				
operation							
operation	operation	operation	operation				
If skip and followe			operation				
			operation				
If skip and followe Q1 No	ed by 2-word Q2 No	instruction Q3 No	operation : Q4 No				
If skip and follows Q1 No operation	ed by 2-word Q2 No operation	instruction Q3 No operation	operation : Q4 No operation				
If skip and follows Q1 No operation No	ed by 2-word Q2 No operation No	instruction Q3 No operation No	Q4 No operation No				
If skip and followe Q1 No operation	ed by 2-word Q2 No operation	instruction Q3 No operation	operation Q4 No operation No operation				
If skip and follows Q1 No operation No operation Example: Before Instru	ed by 2-word Q2 No operation No operation HERE NEQUAL EQUAL EQUAL	instruction Q3 No operation No operation	operation Q4 No operation No operation				
If skip and follows Q1 No operation No operation Example: Before Instru PC Addre	ed by 2-word Q2 No operation No operation HERE NEQUAL EQUAL EQUAL Inction ESS = HE	instruction Q3 No operation No operation CPFSEQ RF :	operation Q4 No operation No operation				
If skip and follows Q1 No operation No operation Example: Before Instru PC Addre WREG	ed by 2-word Q2 No operation No operation HERE NEQUAL EQUAL EQUAL ICTION = 12	instruction Q3 No operation No operation CPFSEQ RF :	operation Q4 No operation No operation				
If skip and follows Q1 No operation No operation <u>Example</u> : Before Instru PC Addre WREG REG	ed by 2-word Q2 No operation No operation HERE NEQUAL EQUAL EQUAL ection BSS = HE = ? = ?	instruction Q3 No operation No operation CPFSEQ RF :	operation Q4 No operation No operation				
If skip and follows Q1 No operation No operation Example: Before Instru PC Addre WREG	ed by 2-word Q2 No operation No operation HERE NEQUAL EQUAL EQUAL eQUAL EQUAL	instruction Q3 No operation No operation CPFSEQ RF :	operation Q4 No operation No operation				
If skip and follows Q1 No operation No operation Example: Before Instru PC Addre WREG REG After Inst	ed by 2-word Q2 No operation No operation HERE NEQUAL EQUAL EQUAL EQUAL COLON ESS = HE = ? ; ruction = WI = Ad	instruction Q3 No operation Operation CPFSEQ RE : :	Q4 Q4 No operation No operation				

۲

PIC18C601/801

If skip: $Q1$ $Q2$ $Q3$ $Q4$ NoNoNoNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationQ1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3NoNoNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationNo <t< th=""><th>PFSGT</th><th>Compare skip if f ></th><th>f with WRE WREG</th><th>G,</th><th>CPF</th><th>SLT</th><th>Compare skip if f</th><th>e f with WRE < WREG</th><th>G,</th></t<>	PFSGT	Compare skip if f >	f with WRE WREG	G,	CPF	SLT	Compare skip if f	e f with WRE < WREG	G,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ntax:	[label] C	PFSGT f	[,a]	Syn	ax:	[label]	CPFSLT f[,a]
skip if (t) > (WREG) (unsigned comparison) Status Affected: None Encoding: 010 010a ffff ffff Description: Compares the contents of data memory location 1' to the contents of the WREG by performing an unsigned subtraction. If the contents of 1' are greater than the contents of 1' are greater the BSR value. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction: Q 1 Q2 Q3 Q4 No operation operation operation operation operation operation CORENER : Before Instruction If REG = ? After Instruction If REG =	erands:		5		Ope	rands:		5	
Encoding: 0110 $010a$ ffffffffDescription:Compares the contents of data memory location "to the contents of the WREG by performing an unsigned subtraction.Encoding: 0110 $000a$ ffffDescription:Compares the contents of the WREG by performing an unsigned subtraction.If the contents of the the fetched instruction is discarded and a NOP is executed instruction. If a is 0, the Access Bank will be selected, over- riding the BSR value.If the contents of, the memory location "to the contents of the wREG, then the excuted instruction. If a is 0, the Access Bank will be selected, over- riding the BSR value.If the contents of, the mestead, making two-cycle instruction. If a is 0, the Access Bank will be selected, over- riding the BSR value.Words:1Cycles:1Cycles:1(2)Words:1Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Words:1Cycles Activity:QQQQ 1Q2Q3Q4 $\frac{0}{peration}$ $peration$ $peration$ $peration$ $\frac{0}{poration}$ $peration$ $peration$ $peration$ $peration$ $\frac{0}{poration}$ <td>peration:</td> <td>skip if (f) ></td> <td>(WREG)</td> <td>)</td> <td>Оре</td> <td>ration:</td> <td>skip if (f)</td> <td>< (WREG)</td> <td>)</td>	peration:	skip if (f) >	(WREG))	Оре	ration:	skip if (f)	< (WREG))
Description:Compares the contents of data memory location "f to the contents of the WREG by performing an unsigned subtraction.Description:Compares the contents of memory location "f to the contents of the WREG by performing an unsigned subtraction.If the contents of 'f are greater than the contents of the the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected, over- riding the SPR value.Description:Contents of WREG, the the instruction is discarded and instruction. If 'a' is 0, the Access Bank will be selected, over- riding the SPR value.Words:1Words:1Cycles:1(2)Note:3 cycles if skip and to y a 2-word instruction.Q Cycle Activity:QQQQQ 1Q2Q3Q4DecodeRead register 'TData operation operation operationProcess No to perationNo to peration operationIf skip:Q1Q2Q3Q4NoNoNo operation operationNo operationQ1Q2Q3Q4NoNo operation operationNo operation operationMoNo operation operation operationNo operation operationMoNo operation operation operation	atus Affected:	None			Stat	us Affected:	None		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	coding:	0110	010a ff	ff ffff	Enc	oding:	0110	000a ff	ff ffff
the contents of , then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.Contents of WREG, then the instruction is discarded and a NOP is executed instead, making two-cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.Contents of WREG, then the instruction is discarded and a NOP is executed instead, making two-cycle instruction. If 'a' is 0, the Access Bank will be selected the BSR value.Words:1Cycles:1(2) Note: 3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:Q1Q2Q3Q1Q2Q3Q4 DecodeRead Read Process No DataQ1Q2Q1Q2Q3Q4 DecodeNo No No No Operation operationNo No No No No No No No No No No No No No No No No 	scription:	memory lo the WREG	cation 'f' to th by perform	e contents of	Des	cription:	memory of WREG	ocation 'f' to t by performir	the contents
Words:1Cycles:1Cycles:1(2)Note: 3 cycles if skip and followed by a 2-word instruction.Note: 3 cycles if skip and followed by a 2-word instruction.Note: 3 cycles if skip and by a 2-word instructQ Cycle Activity:Q1Q2Q3Q4DecodeReadProcess register 'f'Data operationIf skip:Q1Q2Q3Q4NoNoNoNoNooperationoperation operationoperation operationQ1Q2Q3If skip and followed by 2-word instruction:Q1Q2Q3Q1Q2Q3Q4NoNoNoNoNoNoNooperation operationOperation operationOperation operationExample:HERE MCREATERCPFSGT REG MCREATERNLESS:Before Instruction 		the conten instruction is execute two-cycle i Access Ba riding the B Bank will b	its of , then t is discarded d instead, m instruction. ank will be se BSR value.	he fetched and a NOP aking this a lf 'a' is 0, the elected, over- lf 'a' is 1, the			contents instructio is execut two-cycle Access B 1, the Ba	of WREG, the n is discarded ed instead, m instruction. ank will be sel nk will be sel	n the fetched d and a NOP aking this a lf 'a' is 0, the lected. If 'a' is
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q 1 Q2 Q3 Q4 Decode Read Process No Q 1 Q2 Q3 Q4 Q1 Q2 Q3 Q1 Q2 Q3 Q2 $Q2$ $Q3$ $Q1$ $Q2$ $Q3$ $Q2Q2$ $Q3$ $Q1$ $Q2$ $Q3$ $Q2Q2$ $Q3$ $Q1$ $Q2$					Wor	ds:	1		
Q Cycle Activity:Q1Q2Q3Q4 $Q1$ $Q2$ $Q3$ $Q4$ $Q1$ $Q2$ $Q3$ $Q2$ $Q3$ $Q1$ $Q2$ $Q3$ $Q3$ $Q4$ No		1(2)	cles if skip a	and followed	Cyc	es:	Note: 3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		by a	a 2-word inst	truction.	QC	ycle Activity:			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				_		Q1	Q2	Q3	Q4
If skip:Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationQ1Q2Q3Q4NoNoNoQ1Q2Q3Q4NoNoNoQ1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3NoNoNooperationoperationoperationNoNoNoNoNoNooperationoperationNo <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>Decode</td> <td></td> <td></td> <td>No</td>				1		Decode			No
If skip: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Decode				lfek	in:	register i	Data	operation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	skip:				11 514	•	02	03	Q4
No No No No operation	Q1	Q2	Q3	Q4					No
If skip and followed by 2-word instruction:Q1Q2Q3Q1Q2Q3NoNoNooperationoperationoperationNoNoNooperationoperationoperationNoNoNooperationoperationNoNoNooperationoperationNoNoNooperationoperationNoNoNooperationoperationoperationoperationNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationoperationExample:HERECPFSGTREGPCAddress (HERE)WREGPCPCAddress (CPEATER)PCAddress (CEEATER)PCAddress (LESS)	No	No	No	No		operation	operation	operation	operation
Q1 Q2 Q3 Q4 No No No No operation op				operation	lf sk	ip and follow	ed by 2-wor	d instruction:	
No No No No operation operation <thoperation< th=""> operation</thoperation<>						Q1	Q2	Q3	Q4
operation operation operation No No No operation operation						-			No
No No No operation operation operation MREG operation operation PC operation PC <t< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td>operation No</td></t<>						,			operation No
operation operation operation operation operation operation operation operation Example: HERE CPFSGT REG NLESS : NGREATER : LESS : GREATER : Before Instruction PC = Address (HERE) WREG = ? After Instruction If REG > WREG; PC = Address (CREATER) If REG < WREG;									operation
Example: HERE CPFSGT REG NLESS : NGREATER : LESS : GREATER : LESS : Before Instruction PC = Address (HERE) PC = Address (HERE) WREG = WREG = ? After Instruction If REG > WREG; PC = PC = Address (CREATER) If REG									
Before Instruction PC = Address (HERE) PC = Address (HERE) WREG = WREG = ? After Instruction After Instruction If REG WREG; If REG > WREG; PC = Address (CREATER) PC = Address (LESS)	ample:	NGREATER	:	ß	<u>Exa</u>	<u>mple</u> :	NLESS	:	
PC = Address (HERE) WREG = ? WREG = ? After Instruction After Instruction If REG WREG; If REG > WREG; PC = Address (LESS)			:						
WREG = ? After Instruction After Instruction If REG < WREG;)
After Instruction If REG VREG; If REG > WREG; PC = Address (LESS)			uress (HERE)						
If REG > WREG; PC = Address (LESS)								IDEC:	
PC - Address (CREATER)								,)
				TER)		If REG			
If REG ≤ WREG; PC = Address (NLESS) PC = Address (NGREATER)			,	ALEB)		PC	= A	ddress (NLESS	5)

© 2001-2013 Microchip Technology Inc.

O

۲

PIC18C601/801

DAW	Decimal /	Adjust WREC	3 Register	DECF	Dec
Syntax:	[<i>label</i>] D	AW		Syntax:	[lab
Operands:	None			Operands:	0 ≤ f
Operation:	If [WREG-	<3:0> >9] or [DC = 1] then		d∈
	•	$3:0>) + 6 \rightarrow W$	/<3:0>;	Operation	a ∈ /•)
	else		•	Operation:	(f) –
	(WREG<	$3:0>) \rightarrow W<3$:0>;	Status Affected:	C,D
	If [WREG	<7:4> >9] or [C = 1] then	Encoding:	00
	(WREG<7	$7:4>) + 6 \rightarrow V$	VREG<7:4>;	Description:	Deci resu
	else		.		ther
	-	$(4>) \rightarrow WRE$	G<7:4>;		(defa
Status Affected	-				will b valu
Encoding:	0000	0000 000	00 0111		sele
Description:	•	sts the eight- sulting from tl		Words:	1
		f two variable		Cycles:	1
	•	CD format) and	•	Q Cycle Activity:	
	•	cked BCD re	sult.	Q1	Q
Words:	1			Decode	Rea
Cycles:	1			<u> </u>	regist
Q Cycle Activity			.	Example:	DECE
Q1	Q2 Read	Q3	Q4	Before Instru	
Decode	register WREG	Process Data	Write WREG	CNT	= 0
Example1:	DAW		·	Z	= 0
Before Inst	truction			After Instruct	
WREG				CNT Z	= 0 = 1
C DC	= 0 = 0				
After Instru	iction				
WREG	= 05h				
C DC	= 1 = 0				
Example 2:	- 0				
Before Inst	truction				
WREG					
C DC	= 0 = 0				
50	-				
After Instru	lction				
After Instru WREG C					

DEC	F	Decreme	nt f				
Synt	ax:	[label]	DECF f	[,d [,a]]		
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Ope	ration:	$(f) - 1 \rightarrow c$	dest				
Statu	us Affected:	C,DC,N,O	V,Z				
Encoding:		0000	01da	ffff	ffff		
Description:		result is st the result i (default). I	tored in s stored f 'a' is 0, ected, o a' is 1, t	WREG back in the Ac verridir he Ban			
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q	3	Q4		
	Decode	Read register 'f'	Proce Data		Write to destination		
<u>Exar</u>	mple:	DECF	CNT				
	Before Instru CNT Z	iction = 01h = 0					
	After Instruct CNT Z	tion = 00h = 1					

۲

PIC18C601/801

DEC	FSZ	Decremer	nt f, skip if O	1	DCF	SNZ	Decreme	nt f, skip if r	not 0
Synt	ax:	[label] [DECFSZ f[,d	d [,a]]	Syn	tax:	[label] D	CFSNZ f[,c	l [,a]]
Ope	rands:	0 ≤ f ≤ 255	5		Ope	rands:	0 ≤ f ≤ 255	5	
		$d \in [0,1]$					$d \in [0,1]$		
		a ∈ [0,1]					a ∈ [0,1]		
Ope	ration:	(f) – 1 \rightarrow c skip if resu	,		Ope	ration:	()	$(f) - 1 \rightarrow dest,$ skip if result $\neq 0$	
Statu	us Affected:	None			Stat	us Affected:	None		
Enco	oding:	0010	11da fff	f ffff	Enc	oding:	0100	11da ffi	f ffff
Des	cription:	The conter	nts of register	r 'f' are decre-	Des	cription:	The conte	nts of register	r 'f' are decre-
			'd' is 0, the r					'd' is 0, the i	
		•	VREG. If 'd' is				•		s 1, the result
		•	0	er 'f' (default).			•	0	er 'f' (default).
			t is 0, the nex						next instruc-
			Iready fetche					n is already f , and a NOP i	
			haking it a tw					and a NOP in a two shores in a two shores and the shore and the shore and the shores and the sho	
			 If 'a' is 0, t 					. If 'a' is 0, t	
			e selected, o	•				,	verriding the
			e. If 'a' is 1, t ed as per the					e. If 'a' is 1, t d as per the	he Bank will
Mor	do	1	as per the	DOR Value.	Wor	do	1	u as per the	DOR Value.
Wor									
Cycl	es:	1(2) Note: 3 o	ycles if skip a	and followed	Сус	les:	1(2) Note: 3 cv	cles if skip a	and followed
			a 2-word inst					a 2-word inst	
QC	ycle Activity:				QC	ycle Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process Data	Write to destination		Decode	Read register 'f'	Process Data	Write to destination
lf ski	ip:			1 1	lf sk	ip:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
lf ski	•	ed by 2-word		.	lf sk	ip and follow			<i></i>
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
<u>Exar</u>	<u>mple</u> :	HERE	DECFSZ GOTO	CNT LOOP	<u>Exa</u>	<u>mple</u> :	ZERO	DCFSNZ TEN	ſ₽
		CONTINUE						:	
	Before Instru PC		6 (HERE)			Before Instru TEMP	uction =	?	
After Instruction			After Instruc						
	CNT If CNT	= CNT - 1				TEMP If TEMP	=	TEMP - 1,	
	PC	= 0; = Address	G (CONTINUE))		PC	=	0; Address (2	ERO)
	If CNT	≠ 0;				If TEMP	≠	0;	,
	PC	= Address	s (HERE+2)			PC	=	Address (N	ZERO)

© 2001-2013 Microchip Technology Inc.

O

۲

PIC18C601/801

GOTO Unconditional Branch						
Syntax:		[label]	GOTO	k		
Operands:		$0 \leq k \leq 1048575$				
Operation:		$k \rightarrow PC <$	20:1>			
Status Affecte	d:	None				
Encoding: 1st word (k<7 2nd word(k<1		1110 1111	1111 k ₁₉ kkk	k ₇ k kkł		kkkk ₀ kkkk ₈
Description:		GOTO allo branch ar byte men value 'k' GOTO is a instructio	nywhere nory rang is loaded always a	withinge. T d into	n en he 2 PC<	tire 2M 0-bit 20:1>.
Words:		2				
Cycles:		2				
Q Cycle Activi	ity:					
Q1		Q2	Q	3		Q4
Decode	F	Read literal 'k'<7:0>,	No operat		'k'<	ad literal <19:8>, te to PC
No		No	No			No
operation	n	operation	operat	tion	ор	eration
Example: GOTO THERE After Instruction						

PC = Address (THERE)

INCF	Incremen	t f		
Syntax:	[label]	INCF f	[,d [,a	a]]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	(f) + 1 \rightarrow (dest		
Status Affected:	C,DC,N,C	DV,Z		
Encoding:	0010	10da ffff i		f ffff
Description:	mented. If in WREG. placed bac 'a' is 0, the selected, o	''d' is 0, th If 'd' is 1 ck in regi e Access overridin the Bank	ne res I, the ster 'f s Ban g the c will b	' (default). If
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce: Data		Write to destination
Example:	INCF	CNT		
Before Instru CNT Z DC After Instruc CNT	= 0FFh = 0 = ? = ?			

۲

PIC18C601/801

INCI	FSZ	Incremen	t f, skip if 0		INF	SNZ	Incremen	t f, skip if n	ot 0
Synt	ax:	[label]	NCFSZ f[,	d [,a]]	Syn	tax:	[<i>label</i>] IN	NFSNZ f[,d	[,a]]
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5	
Ope	ration:	(f) + 1 \rightarrow c skip if resu			Ope	ration:	(f) + 1 \rightarrow of skip if rest		
Statu	Status Affected: None		Stat	us Affected:	None				
Enco	oding:	0011	11da ff	ff ffff	Enc	oding:	0100	10da ff	ff ffff
Description:		mented. If in WREG.				cription:	mented. If in WREG.	'd' is 0, the re If 'd' is 1, the	er 'f' are incre- sult is placed e result is r 'f' (default).
		which is al carded, ar instead, m instruction Bank will t the BSR v	Iready fetche ad a NOP is e aking it a tw . If 'a' is 0, t be selected,	xecuted o-cycle he Access overriding 5 1, the Bank			tion, which discarded instead, m instruction Bank will I the BSR v	n is already f , and a NOP naking it a tw n. If 'a' is 0, t pe selected,	is executed to-cycle the Access overriding s 1, the Bank
Wor	ds:	1			Wor	ds:	1		
Cycl	es:		/cles if skip a a 2-word inst	and followed ruction.	Cyc	les:		/cles if skip a a 2-word inst	and followed truction.
QC	cle Activity:				QC	ycle Activity:			
	Q1	Q2	Q3	Q4	-	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process Data	Write to destination		Decode	Read register 'f'	Process Data	Write to destination
lf sk	ip:				lf sk	ip:			
	Q1	Q2	Q3	Q4	т	Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
lf cki	operation	operation ed by 2-word	operation	operation	ll	operation	operation	operation	operation
II SK	Q1	Q2	Q3	Q4	11 314	Q1	Q2	Q3	Q4
	No	No	No	No	T	No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation
<u>Exar</u>	<u>mple</u> :	NZERO	INCFSZ CM :	ΙT	<u>Exa</u>	<u>mple</u> :	HERE INFSNZ REG ZERO NZERO		
Before Instruction PC = Address (HERE)			Before Instru PC		s (HERE)				
	If CNT	= CNT + 1 = 0; = Address ≠ 0;	(ZERO) (NZERO)			After Instruct REG If REG PC If REG PC	= REG + ≠ 0; = Address = 0;	1 s (NZERO) s (ZERO)	

© 2001-2013 Microchip Technology Inc.

۲

PIC18C601/801

IORLW	Inclusive	OR literal w	ith WREG			
Syntax:	[label]	ORLW k				
Operands:	$0 \le k \le 255$	$0 \le k \le 255$				
Operation:	(WREG) .	$OR.\ k \to WR$	EG			
Status Affected:	N,Z	N,Z				
Encoding:	0000	1001 kk}	k kkkk			
Description:		nts of WREG ght bit literal ' n WREG				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read literal 'k'	Process Data	Write to WREG			
Example: Before Instruc		35h				
N =	= 9Ah = ? = ?					
N =	on = 0BFh = 1 = 0					

IORWF	Inclusive	OR WR	EG with	f
Syntax:	[label]	IORWF	f [,d [,a]]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	(WREG) .	OR. (f) -	→ dest	
Status Affected:	N,Z			
Encoding:	0001	00da	ffff	ffff
Description:	Inclusive ('f'. If 'd' is (WREG. If placed bac If 'a' is 0, t selected, c If 'a' is 1, t as per the	0, the re 'd' is 1, t ck in reg he Acce overridin he Bant	sult is pla the result gister 'f' (o ess Bank og the BS o will be s	aced in is default). will be R value.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce Data		/rite to stination
Example:		ESULT,	W	
Before Instru RESULT WREG N Z After Instruct RESULT	= 13h = 91h = ? = ? tion = 13h			
WREG N Z	= 93h = 1 = 0			

C

۲

PIC18C601/801

LFSR		Load FSR			MOVF	Move f		
Syntax:		[label]	_FSR f,k		Syntax:	[label]	MOVF f[,d	[,a]]
Operan	ds:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 40 \end{array}$	95		Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	5	
Operati	on:	$k \rightarrow FSRf$				a ∈ [0,1]		
Status A	Affected:	None			Operation:	$f \to dest$		
Encodir	ng:	1110 1111		Dff k ₁₁ kkk kkk kkkk	Status Affected: Encoding:	N,Z	00da ffi	f fff
Descrip	tion:		literal 'k' is ect register		Description:	The conte to a destir	ents of registe ation depend d'. If 'd' is 0, t	r 'f' is mov lent upon t
Words:		2					WREG. If 'd' is	,
Cycles:		2					back in registe f' can be any	· ·
Q Cycle	e Activity:						Bank. If 'a' is C	
	Q1	Q2	Q3	Q4			be selected, o	
[Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB			e. If 'a' is 1, t ed as per the	
	Decode	Read literal	Process	to FSRfH Writeliteral'k'	Words:	1		
		'k' LSB	Data	to FSRfL	Cycles:	1		
					Q Cycle Activity			
Exampl	<u>e</u> :	LFSR FSR2	2, 3ABh		Q1	Q2	Q3	Q4
Afte	er Instruc FSR2H	= 03			Decode	Read register 'f'	Process Data	Write WREG
	FSR2L	= 0A	Bh		Example:	MOVF R	EG, W	
					Before Instr	uction		
					REG	= 22		
					WREG		Fh	
					N Z	= ? = ?		
					After Instru	ction		
					REG	= 22	!h	
					WREG	= 22	!h	
					N	= 0		
					Z	= 0		

PIC18C601/801

MOVFF	Move f t	o f		
Syntax:	[label]	MOVFF	f _s ,f _d	
Operands:	$\begin{array}{l} 0 \leq f_{S} \leq 4095 \\ 0 \leq f_{d} \leq 4095 \end{array}$			
Operation:	$(f_s) \to f_d$			
Status Affected:	None			
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d
Description:	The cont	ents of s	ource reg	ister 'f _s '

The contents of source register 'f_s' are moved to destination register 'f_d'. Location of source 'fs' can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination 'f_d' can also be anywhere from 000h to FFFh.

Either source or destination can be WREG (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

/LB	ral to lo	w nibbl	e in BSR		
ax:	[label]	MOVLB	k		
rands:	$0 \le k \le 25$	5			
ration:	$k\toBSR$	$k \rightarrow BSR$			
us Affected:	None				
oding:	0000	0001	kkkk	kkkk	
cription:					
ds:	1				
es:	1				
cle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read literal 'k'			Write eral 'k' to BSR	
	ax: rands: ration: us Affected: oding: oription: ds: es: vcle Activity: Q1	ax: $[label]$ rands: $0 \le k \le 25$ ration: $k \rightarrow BSR$ us Affected:Noneoding: 0000 cription:The 8-bitthe Bankds:1es:1vcle Activity:Q1Q1Q2DecodeRead literal	ax:[label]MOVLBrands: $0 \le k \le 255$ ration: $k \to BSR$ us Affected:Noneoding: 0000 0001 cription:The 8-bit literal 'k'the Bank Select Fcds:1es:1ycle Activity:Q2Q3DecodeRead literalProcessing	ax:[label]MOVLB krands: $0 \le k \le 255$ ration: $k \rightarrow BSR$ us Affected:Noneoding:00000001kkkkcription:The 8-bit literal 'k' is loade the Bank Select Registerds:1es:1ycle Activity:Q2Q1Q2Q2Q3DecodeRead literalProcess	

MOVLB 05h Example:

Before Instruction BSR register =	02h
After Instruction BSR register =	05h

Cycles:

Q Cycle Activity:

Words:

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example: MOVFF REG1, REG2

2

2 (3)

Before Instruction

Delote instructio		
REG1	=	33h
REG2	=	11h
After Instruction		
REG1	=	33h,
REG2	=	33h

C

۲

PIC18C601/801

мо	/LW	Move lite	eral to W	REG		
Synt	ax:	[label]	MOVLW	/ k		
Ope	rands:	$0 \le k \le 2\xi$	55			
Ope	ration:	$k \rightarrow WRE$	G			
Status Affected:		None				
Encoding:		0000	1110	kkk	k	kkkk
Description:		The eight WREG.	The eight bit literal 'k' is loaded into WREG.			
Wor	ds:	1				
Cycl	es:	1				
QC	cle Activity:					
	Q1	Q2	Q3	6		Q4
	Decode	Read literal 'k'	Proce Data			/rite to /REG
Exar	nple:	MOVLW	5Ah			
	After Instruct	ion				

WREG = 0x5A

мον	/WF	Move WF	EG to f		
Synt	ax:	[label]	MOVWF	f [,a]	
Ope	rands:	0 ≤ f ≤ 25 a ∈ [0,1]	5		
Oper	ration:	(WREG) -	$\rightarrow f$		
Statu	us Affected:	None			
Enco	oding:	0110	111a	ffff	ffff
Description:		Move data Location ' 256 byte E Bank will b BSR valu be selecte	f' can be Bank. If 'a be selecte e. If 'a' is	anywhe a' is 0, th ed, over s 1, the l	ere in the e Access riding the Bank will
Word	ds:	1			
Cycl	es:	1			
QC	ycle Activity:				
QC	vcle Activity: Q1	Q2	Q3		Q4
Q C		Q2 Read register 'f'	Q3 Proces Data		Q4 Write gister 'f'
	Q1	Read	Proces		Write
Exar	Q1 Decode	Read register 'f' MOVWF	Proces Data		Write

 $\ensuremath{\textcircled{}^{\circ}}$ 2001-2013 Microchip Technology Inc.

O

•

PIC18C601/801

MU	LLW	Multiply Literal with WREG				
Synt	ax:	[label]	MULLW k	(
Ope	rands:	$0 \leq k \leq 25$	5			
Ope	ration:	(WREG) x	$k \rightarrow PROD$	H:PRODL		
State	us Affected:	None				
Enco	oding:	0000	1101 kł	kk kkkk		
Des	cription:	An unsigned multiplication is carried out between the contents of WREG and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. WREG is unchanged. None of the status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected.				
Wor	ds:	1				
Cycl	es:	1				
QC	vcle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL		
Exa	mple:	MULLW	C4h			
<u></u>	Before Instru					
	WREG PRODH PRODL	= 0E = ? = ?	2h			
	After Instruct WREG PRODH PRODL	= 0E	Dh			

MULWF	Multiply \	WREG with f			
Syntax:	[label]	MULWF f	[,a]		
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]			
Operation:	(WREG) >	$(f) \rightarrow PROD$	H:PRODL		
Status Affected:	None				
Encoding:	0000	001a fff	f ffff		
Description:	carried ou of WREG location 'f' stored in t register pa the high b Both WRE unchange None of th affected. Note that carry is po A zero res detected. Bank will l the BSR v	An unsigned multiplication is carried out between the contents of WREG and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both WREG and 'f' are unchanged. None of the status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, the Bank will be selected as per the			
Words:	1				
Cycles:	1				
Q Cycle Activity	:				
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL		
Example:	MULWF	REG			
· · ·					
Before Insti WREG REG PRODH PRODL	= 0C = 0B I = ?	24h 95h			
After Instru WREG PRODH PRODL	= 0C = 0B 1 = 8A				

C

۲

PIC18C601/801

NEGF	Negate f			
Syntax:	[label] N	NEGF	f [,a]	
Operands:	 0 ≤ f ≤ 25			
	a ∈ [0,1]			
Operation:	(f) + 1 -	→ f		
Status Affected:	N,OV, C,	DC, Z		
Encoding:	0110	110a	ffff	ffff
Description:	Location complement the data r 0, the Acco overriding the Bank BSR valu	ent. The nemory I cess Ban g the BSI will be se	result is p ocation 'f k will be s R value.	blaced in ". If 'a' is selected, If 'a' is 1,
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read register 'f'	Proce Data		Write gister 'f'
	register i	Dala	a lei	gister i
Example:	NEGF	REG		
Before Instru REG N OV C DC Z		1010 [3A	h]	
After Instruc REG N OV C DC Z		0110 [OC	6h]	

NOF	NOP No Operation						
Synt	ax:	[label]	NOP				
Operands:		None					
Ope	ration:	No opera	tion				
Statu	us Affected:	None					
Encoding:		0000	0000	000	00	0000	
		1111	xxxx	XXX	x	xxxx	
Des	cription:	No opera	tion.				
Wor	ds:	1					
Cycl	es:	1					
QC	cle Activity:						
	Q1	Q2	Q3	3		Q4	
	Decode	No	No			No	
		operation	operat	ion	ор	eration	

Example:

None.

 $\ensuremath{\textcircled{}^{\circ}}$ 2001-2013 Microchip Technology Inc.

O

۲

PIC18C601/801

POP	Pop Top of Return Stack	PUSH	Push Top of Return Stack
Syntax:	[label] POP	Syntax:	[label] PUSH
Operands:	None	Operands:	None
Operation:	(TOS) \rightarrow bit bucket	Operation:	$(PC+2) \rightarrow TOS$
Status Affected:	None	Status Affected:	None
Encoding:	0000 0000 0000 0110	Encoding:	0000 0000 0000 0101
Description:	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previ- ous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a soft- ware stack.	Description: Words:	The PC+2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS, and then push it onto the return stack.
Words:	1	Cycles:	1
Cycles:	1	Q Cycle Activity:	
Q Cycle Activity:		Q1 Decode	Q2 Q3 Q4 Push PC+2 No No
Q1	Q2 Q3 Q4	Decode	onto return operation operation
Decode	No Pop TOS No		stack
Example:	operation value operation	Example:	PUSH
Example.	GOTO NEW	Before Instru TOS	ection = 00345Ah
Before Instru	ction	PC	= 000124h
TOS Stack (1 I	= 0031A2h evel down) = 014332h	After Instruct PC	ion = 000126h
After Instruct		TOS	= 000126h
TOS PC	= 014332h = NEW	Stack (1 I	level down) = 00345Ah

PIC18C601/801

RCA		Relative (Call				
Synt	ax:	[<i>label</i>] R	CALL	n			
Ope	rands:	-1024 ≤ n	$-1024 \le n \le 1023$				
Ope	ration:	· · ·	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC				
State	us Affected:	None					
Enco	oding:	1101	1nnn	nnnn	nnnn		
	cription:	Subrouting from the c return add onto the s compleme Since the to fetch the address w instruction	eurrent lo dress (PC tack. Th ent numb PC will h e next ins vill be PC	cation. C+2) is p en, add er '2n' to ave incre- struction +2+2n.	First, ushed the 2's the PC. emented , the new This		
Wor	ds:	1					
Cycl	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n' Push PC to stack	Proces Data	s Wri	te to PC		
	No	No	No		No		
	operation	operation	operatio	on op	eration		
Exai	mple:	HERE	RCALL J	ump			

RESET	Reset				
Syntax:	[label]	RESET			
Operands:	None				
Operation:	Reset all registers and flags that are affected by a MCLR Reset.				
Status Affected:	All				
Encoding:	0000	0000 11	11 1111		
Description:		uction provid MCLR Rese	es a way to et in software.		
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Start	No	No		
	reset	operation	operation		

Example: RESET

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

 $\texttt{RCALL} \ Jump$ Example: HERE

Before Instruction

PC = Address (HERE)

After Instruction

PC = Address (Jump) TOS = Address (HERE+2)

© 2001-2013 Microchip Technology Inc.

 \bigcirc

۲

PIC18C601/801

RETFIE	Return fro	om Interrup	t	RET	LW	Return Li	iteral
Syntax:	[label]	RETFIE [s]		Synt	tax:	[label]	RET
Operands:	s ∈ [0,1]			Ope	rands:	$0 \le k \le 25$	55
Operation:	$(TOS) \rightarrow F$ 1 \rightarrow GIE/C if s = 1	PC, GIEH or PEIE	E/GIEL,	Ope	ration:	k → W, (TOS) → PCLATU,	
	$(WS) \rightarrow W$	/REG, S) → STATU	^	Stat	us Affected:	None	
	(STATUSS (BSRS) →		5,	Enc	oding:	0000	110
	· · ·	,	unchanged.	Des	cription:	W is load	ed wi
Status Affected:	None					'k'. The pr	•
Encoding:	0000	0000 00	01 000s			from the t address).	•
Description:	Return fro	om Interrupt	. Stack is			(PCLATH	
			ack (TOS) is	Wor	ds:	1	
			terrupts are	Cyc	es:	2	
		by setting the	bal interrupt		vcle Activity:		
	enable bit	t. If 's' = 1, t	he contents	~ ~ ~	Q1	Q2	
		dow registe and BSRS			Decode	Read	Pro
			ng registers,			literal 'k'	D
		TATUS and			No	No	1
	,	update of t			operation	operation	ope
	0	occurs (defa	ault).				
Words:	1			Exa	mple:		
Cycles:	2			(CALL TABLE	; WREG co	ntai
Q Cycle Activity:			.			; offset	val
Q1	Q2	Q3	Q4	1		; WREG n	
Decode	No operation	No operation	Pop PC from stack	:	:	; table	vaiu
	oporation	oporation	Set GIEH or	TABI			
			GIEL		ADDWF PCL	; WREG =	
No	No	No	No		RETLW k0 RETLW k1	; Begin t	able
operation	operation	operation	operation			,	
				:	:		
Example:	RETFIE :	1		I	RETLW kn	; End of	tabl
After Interrup	ot				Defens lasta		
PC WREG		= TOS = WS			Before Instru WREG	= 07h	
BSR		= WS = BSRS			After Instruc		
STATUS		= STATU	JSS		WREG	= value o	of kn
GIE/GIEF	I, PEIE/GIEL	= 1					

RET	LW	Return Li	teral to	WREG	
Synt	ax:	[label]	RETLW	k	
Ope	rands:	$0 \le k \le 25$	5		
Ope	ration:	k → W, (TOS) → PCLATU,	,	l are und	hanged
Statu	us Affected:	None			
Enco	oding:	0000	1100	kkkk	kkkk
Desi	cription:	W is loade 'k'. The pr from the to address). (PCLATH)	ogram co op of the The high	ounter is stack (th addres	loaded ne return s latch
Wor	ds:	1			
Cycl	es:	2			
QC	cle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read literal 'k'	Proces: Data	stack	PC from , write to /REG
	No operation	No operation	No operatio	n ope	No eration
<u>Exar</u>	<u>nple</u> :				

CALL TABLE	;;	WREG contains offset value WREG now has table value	table
BLE			
ADDWF PCL	;	WREG = offset	
RETLW k0	;	Begin table	
RETLW k1	;		
:			
:			
RETLW kn	;	End of table	
Before Instru	ıcti	on	
WREG			
		-	

PIC18C601/801

Syntax:[label] RETURN [s]Syntax:[label] RLCF f [,d [,a]]Operands: $s \in [0,1]$ Operands: $0 \le f \le 255$ Operation:(TOS) \rightarrow PC, if $s = 1$ (WS) \rightarrow W, (STATUSS) \rightarrow STATUS, (BSRS) \rightarrow BSR, PCLATU, PCLATH are unchangedOperation: $0 \le f \le 255$ Status Affected:None(f <n>) \rightarrow dest<n+1>, (f<7>) \rightarrow C, (C) \rightarrow dest<0>Encoding:$0000 0001 001s$Operation:$0011 01da ffff fffff$Description:Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If 's' = 1, the contents of the shadow registers WS, STA- TUSS and BSRS are loaded into their corresponding registers,Syntax:$[label] RLCF f [,d [,a]]$Operation:$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$ a $\in [0,1]$Operation:$0 \le f \le 255$ (C) <math>\rightarrow dest<n+1>,(f<7>) $\rightarrow C$, (C) <math>\rightarrow dest<0>Status Affected:NoneC, N,ZEncoding:$0 \ge 0 \ge 1$Description:Return from subroutine. The stack is stored back in register 'f' are rotated one bit to the left through th is stored back in register f' (default) if 'a' is 0, the Access Bank will be selected, overriding the BSR value if 'a' is 1, the Bank will be selected</math></n+1></math></n+1></n>	RETURN	Return fro	om Subrout	ine	RLC	CF	Rotate L	eft f throug	h Carry
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Syntax:	[label]	RETURN [s	3]	Syn	tax:	[label]	RLCF f[,d	[,a]]
$\begin{array}{c} (105) \rightarrow FC, \\ \text{if } s = 1 \\ (WS) \rightarrow W, \\ (STATUSS) \rightarrow STATUS, \\ (BSRS) \rightarrow BSR, \\ PCLATU, PCLATH are unchanged \\ \\ \text{Status Affected:} \\ \text{Encoding:} \\ \hline 0000 0000 0001 001s \\ \\ \text{Description:} \\ \text{Return from subroutine. The stack} \\ \text{is popped and the top of the stack} \\ (TOS) \text{ is loaded into the program} \\ \text{counter. If } s' = 1, \text{ the contents of} \\ \text{the shadow registers WS, STA-} \\ \\ \text{TUSS and BSRS are loaded into} \\ \text{their corresponding registers,} \\ \end{array} $	Operands:	s ∈ [0,1]			Ope	erands:	$0 \le f \le 25$	5	
$\begin{array}{c} (WS) \rightarrow W, \\ (STATUSS) \rightarrow STATUS, \\ (BSRS) \rightarrow BSR, \\ PCLATU, PCLATH are unchanged \\ Status Affected: \\ Encoding: \\ \hline 0000 0000 0001 001s \\ \hline Description: \\ Return from subroutine. The stack \\ is popped and the top of the stack \\ (TOS) is loaded into the program \\ counter. If 's' = 1, the contents of \\ the shadow registers WS, STA- \\ TUSS and BSRS are loaded into \\ their corresponding registers, \\ \end{array}$	Operation:	$(TOS) \rightarrow I$	PC,						
$ \begin{array}{c} (STATUSS) \rightarrow STATUS, \\ (BSRS) \rightarrow BSR, \\ PCLATU, PCLATH are unchanged \\ Status Affected: \\ Encoding: \\ \hline 0000 & 0000 & 0001 & 001s \\ \hline Description: \\ Return from subroutine. The stack \\ is popped and the top of the stack \\ (TOS) is loaded into the program \\ counter. If 's' = 1, the contents of \\ the shadow registers WS, STA- \\ TUSS and BSRS are loaded into \\ their corresponding registers, \\ \end{array} $					0				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				\$	Ope	eration:	. ,		
Status Affected: None Encoding: 0000 0000 0011 01da ffff ffff Description: Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If 's' = 1, the contents of the shadow registers WS, STA-TUSS and BSRS are loaded into their corresponding registers, Description: The Access Bank will be selected.			,	0,			. ,		
Encoding: 0000 0001 001s Description: The contents of register if are rotated one bit to the left through th is popped and the top of the stack (TOS) is loaded into the program counter. If is' = 1, the contents of the shadow registers WS, STA-TUSS and BSRS are loaded into their corresponding registers, Description: The contents of register if are rotated one bit to the left through th contents of register if are rotated one bit to the left through th is stored back in register if (default) is stored back in register if (default) is stored back in register if (default) is selected, overriding the BSR value their corresponding registers,		PCLATU,	PCLATH are	unchanged	Stat	us Affected:	C,N,Z		
Description: Return from subroutine. The stack rotated one bit to the left through th is popped and the top of the stack Carry Flag. If 'd' is 0 the result is (TOS) is loaded into the program placed in WREG. If 'd' is 1 the result counter. If 's' = 1, the contents of is stored back in register 'f' (default) the shadow registers WS, STA- If 'a' is 0, the Access Bank will be TUSS and BSRS are loaded into selected, overriding the BSR value their corresponding registers, If 'a' is 1, the Bank will be selected	Status Affected:	None			Enc	oding:	0011	01da f	fff ffff
is popped and the top of the stack (TOS) is loaded into the program counter. If 's' = 1, the contents of the shadow registers WS, STA- TUSS and BSRS are loaded into their corresponding registers, If 'a' is 0, the Access Bank will be selected, overriding the BSR value If 'a' is 1, the Bank will be selected	Encoding:	0000	0000 00	01 001s		•	The conte	ents of regis	ter 'f' are
(TOS) is loaded into the program counter. If 's' = 1, the contents of the shadow registers WS, STA- TUSS and BSRS are loaded into their corresponding registers,placed in WREG. If 'd' is 1 the resu is stored back in register 'f' (default) If 'a' is 0, the Access Bank will be selected, overriding the BSR value If 'a' is 1, the Bank will be selected	Description:					·	rotated or	ne bit to the le	eft through the
counter.If 's' = 1, the contents of is stored back in register 'f' (default) the shadow registers WS, STA- TUSS and BSRS are loaded into their corresponding registers,is stored back in register 'f' (default) If 'a' is 0, the Access Bank will be selected, overriding the BSR value If 'a' is 1, the Bank will be selected								•	
the shadow registers WS, STA-If 'a' is 0, the Access Bank will beTUSS and BSRS are loaded intoselected, overriding the BSR valuetheir corresponding registers,If 'a' is 1, the Bank will be selected		· · ·		1 0					
their corresponding registers, If 'a' is 1, the Bank will be selected			•				,		
							,	0	
WREG, STATUS and BSR. If as per the BSR value.			1 0	0 ,					
's' = 0, no update of these		,							
registers occurs (default).		registers	occurs (defa	ault).				regiotor	·
Words: 1 Words: 1	Words:	1			Wor	ds:	1		
Cycles: 2 Cycles: 1		2			Сус	les:	1		
Q Cycle Activity: Q Cycle Activity:					QC	ycle Activity:			
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4	-		1	1			1	1	1
Decode No Process Pop PC Decode Read Process Write to operation Data from stack register 'f' Data destination		operation	Data	from stack		Decode			
No No No No operation operation operation Example: RLCF REG, W					Exa	mple:	RLCF	REG, W	
Before Instruction						Before Instru	uction		
REG = 1110 0110 Example: RETURN C = 0	Evenale	DEMILDI						110	
Example: RETURN C = 0 After Call N = ?	<u> </u>	REIURN							
PC = TOS $Z = ?$		= TOS							
RETURN FAST After Instruction		RETURN F.	AST						
REG = 1110 0110 Before Instruction WREG = 1100 1100	Before Instru	iction							
WRG = 04h $C = 1$								100	
STATUS = 00h N = 1 BSR = 00h Z = 0									
After Instruction						۷.	≓ U		
WREG = 04h									
STATUS = 00h BSR = 00h									
BSR = 00h PC = TOS									

© 2001-2013 Microchip Technology Inc.

 \bigcirc

۲

PIC18C601/801

RLN	ICF	Rotate L	eft f (no car	ry)			
Synt	tax:	[label]	RLNCF f[,d [,a]]			
Ope	erands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5				
Ope	eration:	$(f < n >) \rightarrow$ $(f < 7 >) \rightarrow$	dest <n+1>, dest<0></n+1>				
State	us Affected:	N,Z					
Enco	oding:	0100	01da f:	ff ffff			
Des	cription:	rotated of the result 1, the result 'f' (defaul Bank will BSR valu	The contents of register 'f' are rotated one bit to the left. If 'd' is 0 the result is placed in WREG. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.				
Wor	de.	1					
Cycl		1					
	ycle Activity:	•					
QU	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	Write to destination			
Eva	mple:	RLNCF	REG				
	Before Instru		REG				
	REG	= 1010 1	011				
	N	= ?					
	Z	= ?					
	After Instruct REG N Z	tion = 0101 0 = 0 = 0	111				

	Rotate Ri	ght f thr	ough C	arry
Syntax:	[label]	RRCF	f [,d [,a]]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	$(f < n >) \rightarrow (f < 0 >) \rightarrow (f < 0 >) \rightarrow (C) \rightarrow des$	C,	>,	
Status Affected:	C,N,Z			
Encoding:	0011	00da	ffff	ffff
	the Carry placed in V is placed b If 'a' is 0, 1 selected, 0 If 'a' is 1, 1 as per the	WREG. If back in re the Acce overridin the Bank	f 'd' is 1, gister 'f' ss Bank g the BS c will be	the resul (default) < will be SR value
	C	+ regi	ster f	
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce: Data		Write to estination
			ue de	Sunation
Example:	RRCF	REG		511141011
Before Instru	RRCF	REG		Sunation
Before Instru REG	RRCF uction = 1110 (
Before Instru REG C	RRCF uction = 1110 (= 0			
Before Instru REG	RRCF uction = 1110 (= 0			30112001
Before Instru REG C N Z	RRCF uction = 1110 (= 0 = ? = ?			30112001
Before Instru REG C N	RRCF uction = 1110 (= 0 = ? = ?	0110		
Before Instru REG C N Z After Instruc	RRCF = 1110 (= 0 = ? = ? tion = 1110 (0110		
Before Instru REG C N Z After Instruc REG	RRCF = 1110 (= 0 = ? = ? tion = 1110 (0110		Sunduon

 \bigcirc

۲

PIC18C601/801

RRNCF	Rotate R	ight f (no car	ry)	SETF	Se
Syntax:	[label]	RRNCF f[,c	d [,a]]	Syntax:	[la
Operands:	$0 \le f \le 25$	5		Operands:	0 ≤
	$d \in [0,1]$				a e
	a ∈ [0,1]			Operation:	FF
Operation:		dest <n-1>,</n-1>		Status Affected:	No
	(f<0>) →	dest<7>		Encoding:	
Status Affected:	N,Z			Description:	Th
Encoding:	0100	00da ffi	ff ffff	Description.	are
Description:	The conte	ents of registe	er 'f' are		Ba
		ne bit to the rig			BS
		is placed in W			be
		sult is placed b ault). If 'a' is 0		Words:	1
	· ·	be selected, o	,	Cycles:	1
		ie. If 'a' is 1, t	•	Q Cycle Activity	:
		ed as per the		Q1	
		 register 	f 🕨	Decode	R
					regi
Words:	1				
Cycles:	1			Example:	SE
Q Cycle Activity:				Before Instr	uctior
Q1	Q2	Q3	Q4	REG	
Decode	Read	Process	Write to	After Instruc REG	ction
	register 'f'	Data	destination	NEO NEO	
Example 1:	RRNCF	REG			
Before Instru		REG			
REG	= 1101	0111			
N	= ?	0111			
Z	= ?				
After Instruct	ion				
REG	= 1110	1011			
N Z	= 1				
2	= 0				
Example 2:	RRNCF	REG, 0, 0			
Before Instru					
WREG	= ?				
REG	= 1101	0111			
Ν	= ?				
Z	= ?				
	ion				
After Instruct					
WREG	= 1110				

Syntax:	[<i>label</i>] SE	TF f[,a]				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5				
Operation:	$FFh\tof$					
Status Affecte	ed: None					
Encoding:	0110	100a ff	ff ffff			
Description:	are set to Bank will b BSR value	The contents of the specified register are set to FFh. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.				
Words:	1					
Cycles:	1					
Q Cycle Activ	rity:					
Q1	Q2	Q3	Q4			
Decode	e Read register 'f'	Process Data	Write register 'f'			
Example:	SETF	REG				
Before Ir REG	struction = 5A	۱h				

0FFh

=

Set f

© 2001-2013 Microchip Technology Inc.

۲

PIC18C601/801

SLE	EP	Enter SI	Enter SLEEP mode				
Syntax:		[label]	[label] SLEEP				
Operands:		None	None				
Operation:							
Status Affected:		TO, PD	TO, PD				
Enco	oding:	0000	0000	0000	0011		
Description:		cleared. (TO) is s its posts The proc	The power-down status bit (\overline{PD}) is cleared. The time-out status bit (\overline{TO}) is set. Watchdog Timer and its postscaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.				
Words:		1	1				
Cycles:		1	1				
Q Cycle Activity:							
	Q1	Q2	Q3		Q4		
	Decode	No	Proce	SS	Go to		
		operation	Data		sleep		
Example: SLEEP							
Before Instruction $\overline{TO} = 2$							

SUB	FWB	Subtract f from WREG with borrow					
Synt	ax:	[label] S	[label] SUBFWB f [,d [,a]]				
Ope	rands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Ope	ration:	$(WREG) - (f) - (\overline{C}) \rightarrow dest$					
Statu	us Affected:	N,OV, C, DC, Z					
Enco	oding:	0101	01da	ffff	ffff		
Description:		Subtract register 'f' and carry flag (borrow) from WREG (2's comple- ment method). If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.					
Wor	ds:	1					
Cycl	es:	1					
QC	cle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read register 'f'	Proce Data		Write to destination		

 $\frac{\overline{TO}}{PD} =$? ?

After Instruction $\frac{TO}{PD} = 1 \uparrow$ $\frac{PD}{PD} = 0$ † If WDT causes wake-up, this bit is cleared.

 \bigcirc

۲

PIC18C601/801

SUBFWB (Cont.)						
Example 1:		SUBFWB		REG		
Before Instru	uctic	n				
REG	=	3				
WREG	=	2				
С	=	1				
After Instruction						
REG	=	0FF	⁻ h			
WREG	=	2				
С	=	0				
Z	=	0				
Ν	=	1	; res	ult is negative		
Example 2: SUBFWB REG						
Before Instru	uctic	n				
REG	=	2				
WREG	=	5				
С	=	1				
After Instruc	tion					
REG	=	2				
WREG	=	3				
С	=	1				
Z	=	0				
N	=	0	; res	ult is positive		
Example 3:		SUBF	WB	REG		
Before Instru	uctic	n				
REG	=	1				
WREG	=	2				
С	=	0				
After Instruction						
REG	=	0				
WREG	=	2				
С	=	1				
Z	=	1	; res	ult is zero		
N	=	0				

SUBLW	Subtract WREG from literal					
Syntax:	[<i>label</i>] SUBLW k					
Operands:	0 ≤ k ≤ 255					
Operation:	$k - (WREG) \rightarrow WREG$					
Status Affected:	N,OV, C, DC, Z					
Encoding:	0000 1000 kkkk kkkk					
Description:	WREG is subtracted from the eight bit literal 'k'. The result is placed in WREG.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2 Q3 Q4					
Decode	Read Process Write to literal 'k' Data WREG					
Example 1:	SUBLW 02h					
Before Instruction WREG = 1 C = ? After Instruction WREG = 1 C = 1 ; result is positive						
Z = 0 $N = 0$ Example 2: SUBLW 02h						
Before Instruction WREG = 2 C = ?						
After Instruction WREG = 0 C = 1 ; result is zero Z = 1 N = 0						
Example 3: SUBLW 02h						
Before Instruction WREG = 3 C = ?						
After Instruction WREG = 0FFh ; (2's complement) C = 0 ; result is negative Z = 0 N = 1						

© 2001-2013 Microchip Technology Inc.

PIC18C601/801

SUE	BWF	Subtract	Subtract WREG from f					
Syntax:		[label] 🕄	[label] SUBWF f [,d [,a]]					
Operands:		0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]						
Operation:		(f) – (WR	$(f) - (WREG) \rightarrow dest$					
Status Affected:		N,OV, C,	N,OV, C, DC, Z					
Encoding:		0101	11da	ffff	ffff			
Description:		the result is 1, the re ister 'f' (d Access B riding the Bank will	Subtract WREG from register 'f' (2's complement method). If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in reg- ister 'f' (default). If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, the Bank will be selected as per the BSR value.					
Words:		1	1					
Cycles:		1	1					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proces Data		Write to destination			

SUBWF (Cont.) Example 1: SUBWF REG **Before Instruction** REG 3 = WREG = 2 С = ? After Instruction REG = 1 WREG = 2 С = 1 ; result is positive Ζ = 0 Ν = 0 Example 2: SUBWF REG, W Before Instruction REG 2 = WREG 2 = С = ? After Instruction REG = 2 WREG = 0 С = 1 ; result is zero Ζ = 1 Ν 0 = Example 3: SUBWF REG Before Instruction REG = 1 WREG 2 ? = С = After Instruction REG WREG C Z = 0FFh ;(2's complement) 2 0 ; result is negative = = 0 Ν = 1

C

۲

PIC18C601/801

SUBWFB	WREG	from f v	with						
Syntax:	[label] S	SUBWFE	8 f [,d [,a]]					
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]								
Operation:	(f) – (WR	EG) – (C	$\overline{c}) \rightarrow de$	st					
Status Affected:	N,OV, C,	DC, Z							
Encoding:	0101	10da	ffff	ffff					
Description:	Subtract (borrow) plement i result is s the result 'f' (defaul Bank will the BSR will be se value.	from regi method). tored in N is stored t). If 'a' i be selec value. If	ister 'f' (If 'd' is WREG. I back ir s 0, the ted, ove 'a' is 1, t	2's com- 0, the If 'd' is 1, register Access erriding the Bank					
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proces Data	· ·	Vrite to stination					

SUBWFB (Cont.)

Example 1:	SUBWFB REG
Before Instruct REG = WREG =	: 19h (0001 1001) : 0Dh (0000 1101)
C = After Instruction REG = WREG = C = Z =	n • OCh (0000 1011) • ODh (0000 1101) • 1 • O
N =	
Example 2: Before Instruct REG = WREG = C = After Instruction REG = WREG = C =	 1Bh (0001 1011) 1Ah (0001 1010) 0 n 1Bh (0001 1011) 00h
Z = N =	. ,
Example 3:	SUBWFB REG
Before Instruct REG = WREG = C =	• 03h (0000 0011) • 0Eh (0000 1101)
After Instruction REG = WREG = C = Z = N =	OF5h (1111 0100) [2's comp] 0Eh (0000 1101) 0 0

© 2001-2013 Microchip Technology Inc.

 \bigcirc

۲

PIC18C601/801

SWAPF	Swap nib	bles in f								
Syntax:	Syntax: [label] SWAPF f [,d [,a]]									
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$									
Operation:	· · · ·	→ dest<7:4: → dest<3:0:	'							
Status Affected:	None									
Encoding:	0011	10da f	fff	f ffff bbles of reg- i'd' is 0, the 3. If 'd' is 1, gister 'f' ccess Bank ng the BSR nk will be						
Description:	Description: The upper and lower nibbles of re ister 'f' are exchanged. If 'd' is 0, th result is placed in WREG. If 'd' is ' the result is placed in wregister 'f' (default). If 'a' is 0, the Access Bar will be selected, overriding the BS value. If 'a' is 1, the Bank will be selected as per the BSR value.									
Words:	1	1								
Cycles:	1									
Q Cycle Activity:										
Q1	Q2	Q3		Q4						
Decode	Read register 'f'	Process Data								
Example:	SWAPF F	EG								
Before Instru REG	ction = 53h									
After Instruction REG = 35h										

DS39541B-page 254

۲

PIC18C601/801

TBL	RD	Table Read	d								
Synta	ax:	[<i>label</i>] TBLRD (*; *+; *-; +*)									
Oper	rands:	None	None								
$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Statu	s Affected	None									
Enco	oding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*						
Desc	pription:	address the called Table The TBLPT each byte i	tents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 Mbyte address range.								
		TBLP1	TBLPTR[0] = 0: Least Signific Byte of Progr Memory Wor								
		TBLP1	TBLPTR[0] = 1: Most Significant Byte of Program Memory Word								
		The TBLRI value of TE		on can m							
		post-incrpost-dec	 no change post-increment post-decrement pre-increment 								
Word	ds:	1									
Cycle	es:	2									
Q Cy	cle Activity	<i>'</i> :									
	Q1	Q2	Q3	Q	4						
	Decode	No operation	No operation	No opera							
	No operation	No operation (Read Program Memory)	No operation	N	o ation ite						

TBLRD (Cont.)

Example 1:	TBLRD	*+	;	
Before Instruc	ction			
TABLAT			=	55h
TBLPTR			=	00A356h
MEMORY	(00A356h))	=	34h
After Instruction	on			
TABLAT			=	34h
TBLPTR			=	00A357h
Example 2:	TBLRD	+*	;	
Before Instruc	ction			
TABLAT			=	0AAh
TBLPTR			=	01A357h
MEMORY	· /		=	12h
MEMORY	(01A358h))	=	34h
After Instruction	on			
TABLAT			=	34h
TBLPTR			=	01A358h

 $\ensuremath{\textcircled{}^{\circ}}$ 2001-2013 Microchip Technology Inc.

 \bigcirc

۲

PIC18C601/801

TBLWT		Table W	rite			TBLWT (Cont.))		
Syntax:		[label]	TBLWT	· (*; *+; *-;	+*)	Example 1:	TBLWT	*+;	
Operands	s:	None				Before Inst	ruction		
Operatior	า:		Γ) \rightarrow Prog	Mem (TBL	PTR) or	TABLA TBLPT MEMO		= = =	55h 00A356h 0FFh
		TBLPTF if TBLW (TABLA	Γ) \rightarrow Prog	nge; Mem (TBL	-PTR) or	TABLA TBLPT		write o = = =	completion) 55h 00A357h 55h
			Register; R) +1 \rightarrow T			Example 2:	TBLWT	+*;	
		if TBLW (TABLA Holding (TBLPT	LPTR) +1 → TBLPTR; 3LWT*-, BLAT) → Prog Mem (TBLPTR) or ding Register; LPTR) -1 → TBLPTR; 3LWT+*,		Before Inst TABLA TBLPT MEMO MEMO	T R RY(01389Ah) RY(01389Bh)	= = = =	34h 01389Ah 0FFh 0FFh	
		(TABLA		Mem (TBL	PTR) or	After Instru TABLA TBLPT		rite co = =	ompletion) 34h 01389Bh
Status Af	fected	d: None					RY(01389Ah) RY(01389Bh)	=	0FFh 34h
Encoding	J:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*	WEWO		-	U 1 11
Descriptio	on:			used to pro m Memory	-				
		each by TBLPTR The LSb	te in the protect of the second se second se	bit pointer ogram mer Byte addre PTR selec memory lo	nory. ess range. cts which				
		TBI	_PTR[0] =	0:Least Si Byte of I Memory	Program				
		TBI	_PTR[0] =	1:Most Sig Byte of I Memory	Program				
				tion can m as follows:	odify the				
		 post-c 	ange ncrement lecrement crement						
Words:		1							
Cycles:			if long wri program	te is to on∙ memory)	-chip				
Q Cycle /	Activit	y:	-						
C	21	Q2	Q3	Q	4				
Dec	ode	No	No	No					
N	o ation	operation No operation (Read	operation No operation	opera No ope (Write to	ration				

DS39541B-page 256

۲

PIC18C601/801

TSTFSZ	Test f, skip if 0								
Syntax:		[label] TSTFSZ f[,a]							
Operands: $0 \le f \le 255$ $a \in [0,1]$									
Operation:	skip if f = ()							
Status Affected:	None								
Encoding:	0110	011a f:	Eff	ffff					
Description:	during the cution, is o executed, instruction Bank will b BSR value	e next instru current ins discarded a making this . If 'a' is 0, e selected, e. If 'a' is 1, d as per th	truction nd a NC a two- the Acc overrid the Ba	exe- pp is cycle cess ing the nk wil					
Words:	1								
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction									
Q Cycle Activity:									
Q1	Q2	Q3		24					
Decode	Read register 'f'	Process Data		lo ation					
If skip:									
Q1	Q2	Q3	Q4						
No operation	No operation	No operation	No on operation						
If skip and follow	•			allon					
Q1	Q2	Q3		24					
No	No	No	Ν	lo					
operation	operation	operation	oper	ation					
No operation	No operation	No operation		No operation					
Example:	NZERO	rstfsz C1 :	IT						
ZERO : Before Instruction PC = Address (HERE)									
PC = Address (HERE) After Instruction If CNT = 00h, PC = Address (ZERO) If CNT ≠ 00h, PC = Address (NZERO)									

XORLW Exclusive OR literal with WR										
Syntax:	[label]	XORLW	k							
Operands:	$0 \le k \le 2$	$0 \le k \le 255$								
Operation:	(WREG)	.XOR. k	\rightarrow WRE	G						
Status Affected:	N,Z	N,Z								
Encoding:	0000	1010	kkkk	kkkk						
Description:	The cont XOR'ed result is	with the 8	3-bit litera	al 'k'. The						
Words:	1	1								
Cycles:	1									
Q Cycle Activity:										
Q1	Q2	Q3	Q4	1						
Decode	Read literal 'k'		Process Write Data WRE							
Example: XORLW 0AFh										

 $\begin{array}{rrrr} \text{Before Instruction} \\ \text{WREG} &= & \text{OB5h} \\ \text{N} &= & ? \\ \text{Z} &= & ? \\ \text{After Instruction} \\ \text{WREG} &= & 1\text{Ah} \\ \text{N} &= & 0 \\ \text{Z} &= & 0 \end{array}$

© 2001-2013 Microchip Technology Inc.

 \bigcirc

۲

PIC18C601/801

XORWF	Exclusive	e OR WREG	with f					
Syntax:	[label]	XORWF f[,	d [,a]]					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]							
Operation:	(WREG) .	XOR. (f) \rightarrow d	est					
Status Affected:	N,Z							
Encoding:	0001	10da ff:	ff ffff					
Description:	with regist stored in \ is stored I (default). will be sel value. If '	OR the conte ter 'f'. If 'd' is 0 WREG. If 'd' is back in the re If 'a' is 0, the ected, overrid a' is 1, the Ba as per the BS	, the result is a 1, the result gister 'f' Access Bank ding the BSR ank will be					
Words:	1							
Cycles:	1							
Q Cycle Activity	:							
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
Example:	XORWF	REG						
Before Inst								
REG WREG N Z	= 0AFh = 0B5h = ? = ?							
After Instruc REG WREG N Z	ction = 1Ah = 0B5h = 0 = 0							

DS39541B-page 258

21.0 DEVELOPMENT SUPPORT

The PIC^{\circledast} microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
- MPASM[™] Assembler
- MPLAB C17 and MPLAB C18 C Compilers
- MPLINK[™] Object Linker/
- MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- · In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE® II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- · Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
- KEELOQ[®] Demonstration Board

21.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows®-based application that contains:

- An interface to debugging tools
- simulator
- programmer (sold separately)
- emulator (sold separately)
- in-circuit debugger (sold separately)
- · A full-featured editor
- A project manager
- · Customizable toolbar and key mapping
- A status bar
- · On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

21.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

21.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

21.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

21.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

21.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

21.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

DS39541B-page 260

21.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F87X and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the in-circuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

21.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

21.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

21.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

21.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

© 2001-2013 Microchip Technology Inc.

21.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

21.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

21.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

DS39541B-page 262

Т

C

۲

PIC18C601/801

	MPLAB [®] Integrated Development Environment	MPLAB [®] C17 C Compiler	MPLAB® C18 C Compiler	MPASM TM Assembler/ MPLINK TM Object Linker	MPLAB [®] ICE In-Circuit Emula	ICEPIC TM In-Circuit Emulator	MPLAB® ICD In-Circuit Debugger	PICSTART® Plus Entry Level Development Programmer	PRO MATE® II Universal Device Programmer	PICDEM TM 1 Demonstration Board	PICDEM TM 2 Demonstration Board	PICDEM TM 3 Demonstration Board	PICDEM TM 14A Demonstration Board	PICDEM TM 17 Demonstration Board	KEELoq [®] Evaluation Kit	KEELoQ [®] Transponder Kit	microID TM Programmer's Kit	125 kHz microlD™ Developer's Kit	125 kHz Anticollision microlD Developer's Kit	13.56 MHz Anticollision microlD TM Developer's Kit	MCP2510 CAN Developer's Kit
					tor								uo	<u>د</u>					ID™		Kit
PIC12CX	>			>	~	>		>	>												
PIC1400	>			>	~			>	>				>								
PIC16C5	>			~	~	~		`	>	>											
PIC16C6	>			~	1	~	*>	`	>		✓†										
PIC16CX	>			`	`	>		>	>	>											
PIC16F6	>			^	**^			**`	** `												
PIC16C	`			`	>	>	*	>	>	⁺5	^+										
7281519	>			`	`	>		>	>												
PIC16C	`			>	>	>		>	>	>											
PIC16F8	`			>	>		>	>	>												
PIC16C9)	`			`	>	>		>	`			`									
PIC17C4	`	>		>	>			>	>	>											
27271219	`	>		>	`			>	>					>							
70812I9	`		>	>	>			>	>		>										
52CXX				`					>												
XXSOH				`					>						>	>					
мсвехх																	`	>	`	>	
MCP251																					>
BLE 21	-1:	D	EV	/ELC	DPI	MENT	TOOLS	FRO	M MIC	ROC	HIP										

BLE 21-1: DEVELOPMENT TOOLS FROM MICROCHIP

© 2001-2013 Microchip Technology Inc.

9541a.book Page 264 Tuesday, January 29, 2013 2:34 PM

PIC18C601/801

NOTES:

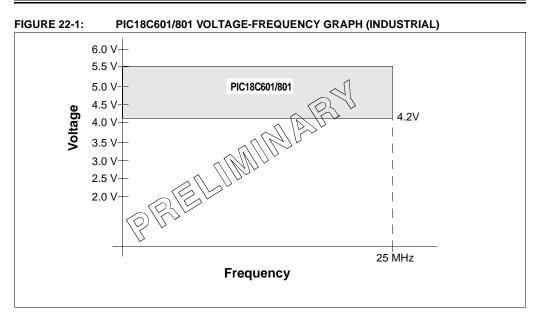
 \bigcirc

۲

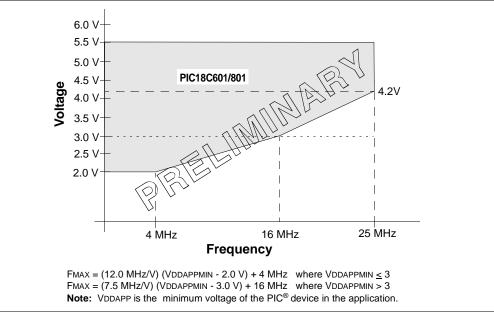
DS39541B-page 264

22.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)


Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports (combined)	
Maximum current sourced by all ports (combined)	200 mA
Note 1: Power dissipation is calculated as follows:	

Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)


2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather

than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC18LC60 (Industria			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18C601 (Industria	I /801 I, Extended)			ird Oper ing temp	-	-40°C	ns (unless otherwise stated) ≤ TA ≤ +85°C for industrial ≤ TA ≤ +125°C for extended	
Param No.	Symbol	Characteristic/ Device	Min	Тур	Мах	Units	Conditions	
D001	Vdd	Supply Voltage						
		PIC18LC601/801	2.0	_	5.5	V		
D001		PIC18C601/801	4.2	_	5.5	V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_		v r		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-		6.7		See section on Power-on Reset for details	
D004	SVDD	VDD Rise Rate to ensure internal Power- on Reset signal	0.05	JF/	7-0	V/ms	See section on Power-on Reset for details	

22.1 DC Characteristics

Legend: Rows with industrial-extended data are shaded for improved readability.

Note 1: This is the limit to which VpD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

____QSC1 + external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD

MOLR = VOD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).

4: For RC osc option, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

22.1 DC Characteristics (Continued)

PIC18LC60 (Industria			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
PIC18C601/801 (Industrial, Extended)			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C} \mbox{ for industrial} \\ & -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +125^{\circ}\mbox{C for extended} \end{array}$				\leq TA \leq +85°C for industrial
Param No.	Symbol	Characteristic/ Device	Min	Тур	Мах	Units	Conditions
D010	IDD	Supply Current ^(2,4)					
		PIC18LC601/801	_	TBD	TBD	mA	RC osc option Fosc = 4 MHz, VDR = 2.5V
D010		PIC18C601/801	_	TBD	TBD	mA	RC osc options Fpsc = 4 MHz, VDD = 4.2V
D010A		PIC18LC601/801	_	TBD	ABD ,	HA.	LP osc option Fosc = 32 kHz, VDD = 2.5V
D010A		PIC18C601/801	\sim	TBP	твр	μA	LP osc option Fosc = 32 kHz, VDD = 4.2V
D010C		PIC18LC601/801	/_/	TBD	↓ 45	mA	EC osc option, Fosc = 25 MHz, VDD = 5.5V
D010C		PIC18@601/801	\sum	7	45	mA	EC osc option, Fosc = 25 MHz, VDD = 5.5V
D013		PJC18bC601/801			TBD 50 50	mA mA mA	HS osc options FOSC = 6 MHz, VDD = $2.5V$ FOSC = 25 MHz, VDD = $5.5V$ HS + PLL osc option FOSC = 10 MHz, VDD = $5.5V$
D013 < <		PIC18C601/801	_	_	50 50	mA mA	HS osc option Fosc = 25 MHz, VDD = 5.5V HS + PLL osc option Fosc = 10 MHz, VDD = 5.5V
D014		PIC18LC601/801	_	_	48 TBD	μΑ μΑ	Timer1 osc option Fosc = 32 kHz, VDD = 2.5V Fosc = 32 kHz, VDD = 2.5V, 25°C
D014		PIC18C601/801		_	TBD TBD	μΑ μΑ	OSCB osc option Fosc = 32 kHz, VDD = 4.2V Fosc = 32 kHz, VDD = 4.2V, 25°C

Legend: Rows with industrial-extended data are shaded for improved readability.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSs, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).

4: For RC osc option, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

PIC18LC60 (Industrial			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial				
PIC18C601 (Industrial	/801 I, Extended)			ard Oper ing temp		-40°C	The second seco
Param No.	Symbol	Characteristic/ Device	Min	Тур	Мах	Units	Conditions
D020	IPD	Power-down Current ⁽³⁾)				
		PIC18LC601/801		TBD —	5 36 TBD	μΑ μΑ μΑ	VDD = 2,5V, -40°C to +85°C VDD = 5,5V, -40°C to +85°C VDD = 2,5V, -40°C to +85°C VDD = 2,5V, 25°C
D020		PIC18C601/801		TBD	TBD 36	μΑ	₩DD = 4.2V, -40°C to +85°C ₩DD = 5.5V, -40°C to +85°C
D020A			—	$ \in $	TBD	μλą L	VDD = 4.2V, 25°C
D021B			<u></u> [\твр \ \	TBD 42	μĂ	VDD = 4.2V, -40°C to +125°C VDD = 5.5V, -40°C to +125°C
D022	Δ IWDT	Module Differential Cu	rrent	$ \rangle\rangle$			
	5	PIC18LC801/601 Watchdog Timer		1BD 6.5 —	TBD 12 TBD TBD	μΑ μΑ μΑ μΑ	VDD = 2.5V VDD = 3.0V VDD = 5.5V VDD = 2.5V, 25°C
D022		PIC180601/801 Watchdog Timer			TBD TBD TBD	μΑ μΑ μΑ	VDD = 5.5V, -40°C to +85°C VDD = 5.5V, -40°C to +125°C VDD = 4.2V, 25°C
D022B		PIC18LC801/601 Low Voltage Detect			50 TBD	μΑ μΑ	VDD = 2.5V VDD = 2.5V, 25°C
D0228	V	PIC18C601/801 Low Voltage Detect			TBD TBD TBD	μΑ μΑ μΑ	VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C VDD = 4.2V, 25°C
D025	∆IOSCB	PIC18LC801/601 Timer1 Oscillator		_	3 TBD	μΑ μΑ	VDD = 2.5V VDD = 2.5V, 25°C
D025		PIC18C601/801 Timer1 Oscillator			TBD TBD TBD	μΑ μΑ μΑ	VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C VDD = 4.2V, 25°C

22.1 DC Characteristics (Continued)

Legend: Rows with industrial-extended data are shaded for improved readability.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).

4: For RC osc option, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

22.2 DC Characteristics: PIC18C801 (Industrial, Extended) PIC18LC601/801 (Industrial)

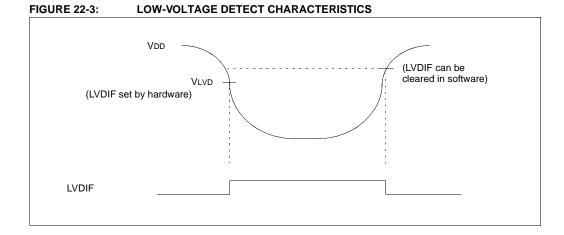
	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \\ -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +125^{\circ}\mbox{C for extended} \end{array}$						
	Symbol		Min	Max	Units	Conditions			
No.		Device							
	VIL	Input Low Voltage	1			\square			
		I/O ports:							
D030		with TTL buffer	Vss	0.15Vdd	V	VOD < 4.5V			
D030A			—	0.8	V	4.5V ≤ VDD ≤ 5.5V			
D031		with Schmitt Trigger buffer	Vss	0.2 Vdd	N N				
		RC3 and RC4	Vss	0.3VQD	$ \rangle\rangle$	$\setminus \lor$			
D032		MCLR	Vss	Q.2 VDD	\V	\sim			
D032A		OSC1 (in XT, HS and LP modes) and T1OSI	Vss	Q3V02 /	M				
D033		OSC1(in RC mode) ⁽¹⁾	Wss \	0.2 VDD	V				
	Viн	Input High Voltage		172					
		I/O ports:	/////	~					
D040		with TTL buffer	0.25VDD + 0.8V	Vdd	V	VDD < 4.5V			
D040A			2.0	Vdd	V	$4.5V \le VDD \le 5.5V$			
D041		with Schmitt Trigger butter	0.8VDD	Vdd	V				
		RC3 and RC4	0.7Vdd	Vdd	V				
D042		MCLR	0.8Vdd	Vdd	V				
D042A	\frown	OSC1 (in HS and LP modes) and TIOSI	0.7Vdd	Vdd	V				
D043 <		OSC1 (RC mode) ⁽¹⁾	0.9Vdd	Vdd	V				
	WHY'S	Hysteresis of Schmitt Trigger Ir	puts						
D050			TBD	TBD	V				
		Input Leakage Current ^(2,3)				ł			
D060		I/O ports	_	±1	μA	$VSS \le VPIN \le VDD$, Pin at hi-impedance			
D061		MCLR	—	±5	μA	$Vss \le VPIN \le VDD$			
D063		OSC1	_	±5	μA	$Vss \le VPIN \le VDD$			
	IPU	Weak Pull-up Current	ļ			ļ			
	-	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS			

Note 1: In RC oscillator option, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Standard Operating Conditions (unless otherwise stated) DC CHARACTERISTICS Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial -40°C \leq TA \leq +125°C for extended Param Symbol Characteristic/ Min Units Conditions Max Device No. Vol **Output Low Voltage** D080 $I_{QL} = 8.5 mA, VDD = 4.5V,$ I/O ports 0.6 ν -40°C to +85°C v D080A $V_{OL} = 7.0 \text{ mA}, \text{VDD} = 4.5 \text{V},$ 0.6 -40°C to +125°C D083 OSC2/CLKO $R_{L} \ge 1.6 \text{ mA}, \text{VDD} = 4.5 \text{V},$ 0.6 -40°C to +85°C (RC mode) D083A V IOL = 1.2 mA, VDD = 4.5 V,0\6 -40°C to +125°C D084 System Bus mode TBD IOL = 1.6 mA, VDD = 4.5 V,V -40°C to +85°C IOL = 1.2 mA, VDD = 4.5V, D084A TBD V -40°C to +125°C D085 **Control Signals** TBD V IOL = 1.6 mA, VDD = 4.5 V,-40°C to +85°C D085A TBD V IOL = 1.2 mA, VDD = 4.5 V,-40°C to +125°C Output High Voltage⁽³⁾ Vон D090 I/Ø ports VDD - 0.7 V IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C D090A IOH = -2.5 mA, VDD = 4.5V, VDD - 0.7 V -40°C to +125°C D092 OSC2/CLKO VDD - 0.7 V IOH = -1.3 mA, VDD = 4.5V, (RC mode) -40°C to +85°C D092A VDD - 0.7 V IOH = -1.0 mA, VDD = 4.5 V,-40°C to +125°C D093 System Bus mode TBD V IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C D093A TBD V IOH = -1.0 mA, VDD = 4.5 V,-40°C to +125°C D094 IOH = -1.3 mA, VDD = 4.5V, **Control Signals** TBD V -40°C to +85°C D094A IOH = -1.0 mA, VDD = 4.5 V,TBD V -40°C to +125°C Vod **Open-drain High Voltage** D150 V RA4 pin 7.5 **Capacitive Loading Specs on Output Pins** Сю All I/O pins and OSC2 To meet the AC Timing D101 50 pF Specifications (in RC mode) In I²C mode D102 CB SCL, SDA 400 pF


22.2 DC Characteristics: PIC18C801 (Industrial, Extended) PIC18LC601/801 (Industrial) (Continued)

Note 1: In RC oscillator option, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC device be driven with an external clock while in RC mode.

 The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

© 2001-2013 Microchip Technology Inc.

TABLE 22-1: LOW VOLTAGE DETECT CHARACTERISTICS

			VCC = 2.0V tc	5.5V						
			Commercial (C): TAM	в = 0°С	to +70°0	C			
			Industrial (I): TAMB = -40°C to +85°C							
Param No.	Characte	eristic	Symbol	Min	Тур†	Max	Units	Conditions		
D420	LVD Voltage on VDD	LV V = 0001	VLVD	2.0	2.06	272	νV			
	Transition High to	LVV = 0010		2.2	2127	2:34>	V			
	Low	LVV = 0011		2,4	2.47	2.54	V			
		LVV = 0100		17.51	2,58	2.66	V			
		LVV = 0101		<u>\ \$.</u> 7 \	2.78	2.86	V			
		LV V = 0110	$\Box \cap M$	2.8	2.89	2.98	V			
		LVV = 0111	U 170.	3.0	3.1	3.2	V			
		LVV = 1000		3.3	3.41	3.52	V			
		LVV = 1001		3.5	3.61	3.72	V			
		LVX=1070]	3.6	3.72	3.84	V			
		LV(V=1041		3.8	3.92	4.04	V			
		LV 🕅 = 1100		4.0	4.13	4.26	V			
		LVV = 1101		4.2	4.33	4.46	V			
		LVV = 1110		4.5	4.64	4.78	V			
D421	LVD Voltage Drift Tem Coefficient	perature	TCVout	—	15	50	ppm/°C			
D422	Bandgap Voltage Drift	with respect to	$\Delta VBG/$	_	_	50	μV/V			
	VDD Regulation		$\Delta V D D$							
D423	Bandgap Reference \	/oltage Value	VBG		1.22		V			

Note: Production tested at TAMB = 25°C. Specifications over temperature limits guaranteed by characterization.

۲

PIC18C601/801

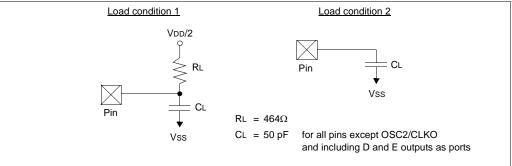
22.3 AC (Timing) Characteristics

22.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	oS	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	Т	Time
Lowercas	se letters (pp) and their meanings:	1	
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data-in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercas	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I	² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

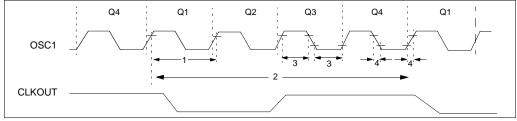
© 2001-2013 Microchip Technology Inc.


22.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 22-2 apply to all timing specifications, unless otherwise noted. Figure 22-4 specifies the load conditions for the timing specifications.

TABLE 22-2: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions (unless otherwise stated)
	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial
AC CHARACTERISTICS	-40°C \leq TA \leq +125°C for extended
	Operating voltage VDD range as described in DC spec Section 22.1.
	LC parts operate for industrial temperatures only.

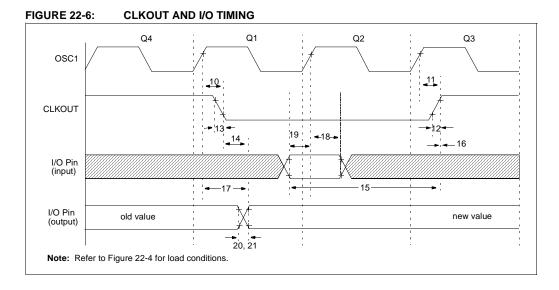

FIGURE 22-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Advance Information © 2001-2013 Microchip Technology Inc.

22.3.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 22-5: EXTERNAL CLOCK TIMING

TABLE 22-3: EXTERNAL CLOCK TIMING REQUIREMENTS


Param No.	Symbol	Characteristic	Min	Тур	Max	Units
	Fosc	External CLKI Frequency	DC	_	4	MHz
		(Note 1)	DC	_	25	_/MHz
			4	_	6.25	MHz
			DC	_	25	MHz 🔨
			DC	—	200	kiңz
		Oscillator Frequency (Note 1)	DC	—	< 4<	D∠ MHz
			4	\sim	25	MHz
			4	+V	6.25、	MHz
			5 🧹	$\sqrt{+}$	200	kHz
1	Tosc	External CLKI Period (Note 1)	250	$\backslash + \land$	\sim	ns
			< ¥0 <>	1 /-N	—	ns
		\land	\ \40\ \]	\searrow	—	ns
		~ 1	\ ↑€0 \ \	—	—	ns
			5	—	_	μS
		Oscillator Period (Note 1)	250	—	—	ns
			40	_	100	ns
			160	—	100	ns
			5	_	_	μS
2	TCY	Instruction Cycle Time (Note 1)	160	TCY	DC	ns
3	Tost,	External Clock in (OSC1) High or	2.5	—	—	μs
	TøsA	Low Time	10	_		ns
4	TosR.	External Clock in (OSC1) Rise or	—	—	50	ns
$\langle \bigcirc \rangle$	TosF	Fat Time	—	—	5	ns

Note 1: Unstruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 22-4:	PLL CLOCK TIMING SPECIFICATION (VDD ₹ 4.2V - 5.5V)

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
7		PLL Start-up Time (Lock Time)	_	2	ms	
	∆CLK	CLKOUT Stability (Jitten) Using PLL	-2	+2	%	

© 2001-2013 Microchip Technology Inc.

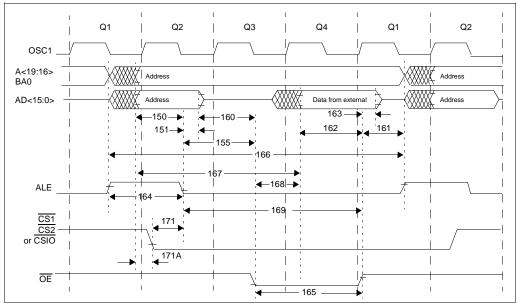


TABLE 22-5: CLKOUT AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓	,		75	200	ns/	(1)
11	TosH2ckH	OSC1 [↑] to CLKOUT ¹		—	75	200	ns	(1)
12	TckR	CLKOUT rise time		—	-35	100	ns	(1)
13	TckF	CLKOUT fall time		_ \	135	100	ns	(1)
14	TckL2ioV	CLKOUT ↓ to Port or	ut valid	\neq		0.5TCY + 20	ns	(1)
15	TioV2ckH	Port in valid before C	LKOUT 1	Q.25Tex + 25	Ι£	—	ns	(1)
16	TckH2iol	Port in hold after CL	KOUT ↑ <	103	<u> </u>		ns	(1)
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to	Port out valid	$/ \rightarrow$	50	150	ns	
18	TosH2iol	OSC1↑ (Q2 cycle)	PIC18C601/801	100	_	_	ns	
18A		to Port input invalid (I/O in hold time)	PIC18LC601/801	200	—	—	ns	
19	TioV2osH	Port input valid to OS (I/O in setup time)	sch	0	_	—	ns	
20	TioR	Port output rise	PIC18C601/801	—	10	25	ns	
20A		time	PIC18LC601/801	—	—	60	ns	
21	TioF	Port output fall time	PIC18C601/801	—	10	25	ns	
21A 🦯	$\sum \sum$		PIC18LC601/801	—		60	ns	
227	TINP	INT pin high or low ti	me	Тсү	_	—	ns	
23††	T RBP	RB7:RB4 change IN	T high or low time	Тсү		_	ns	

these parameters are asynchronous events, not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO pin output is 4 x Tosc.

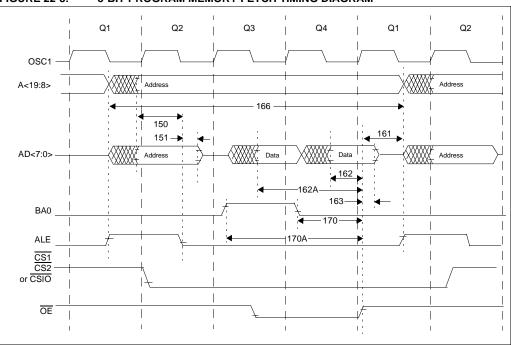


FIGURE 22-7: PROGRAM MEMORY READ TIMING DIAGRAM

Operating Conditions: 2.0V <Vcc <5.5V, -40°C <TA <125°C, unless otherwise stated.

TABLE 22-6: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Symbol	Characteristics	Min	Тур	Мах	Units
150	TadV2alL	Address out valid to ALE \downarrow (address setup time)	0.25Tcy-10	_	-	ns
151	TalL2adl	ALE \downarrow to address out invalid (address hold time)	5	—	—	ns
155	TalL2oeL	ALE \downarrow to $\overline{OE} \downarrow$	C (P2)	0.125Tcy	—	ns
160	TadZ2oeL	AD high-Z to $\overline{OE} \downarrow$ (bus release to \overline{OE})	1228	_	—	ns
161	ToeH2adD	OE ↑ to AD driven	0.125Tcy-5	_	—	ns
162	TadV2oeH	LS data valid before OE ↑ (data setup lime)	20	_	—	ns
163	ToeH2adl	OE ↑ to data in invalid (data hold time)	0	_	—	ns
164	TalH2alL	ALE pulse width	_	Тсү	—	ns
165	ToeL2oeH	OE pulse width	0.5TCY-5	0.5Tcy	—	ns
166	TalH2alH	ALE↑ to ALE↑ (cycle time)	_	0.25Tcy	—	ns
167	Tacc	Address valid to data valid	0.75Tcy-25	_	—	ns
168	Тое	$\overline{OE} \downarrow$ to data valid		_	0.5Tcy-25	ns
169	TalL2oeH	ALE \downarrow to \overline{OE} \uparrow	0.625Tcy-10	—	0.625Tcy+10	ns
171	TalH2csL	Chip select active to ALE \downarrow	0.25Tcy-20	_	—	ns
171A	TubL2oeH	AD valid to chip select active	_	_	10	ns

FIGURE 22-8: 8-BIT PROGRAM MEMORY FETCH TIMING DIAGRAM

Operating Conditions: 2.0V <Vcc <5.5V, -40°C <TA <125°C, Fosc max = 25MHz, unless otherwise stated.

TABLE 22-7: 8-BIT PROGRAM MEMORY FETCH TIMING REQUIREMENTS

Symbol	Characteristics	Min	Тур	Max	Units
TadV2alL	Address out valid to ALE↓ (address setup time)	0.25Tev-10		—	ns
TalL2adl	ALE \downarrow to address out invalid (address hold time)	D_5	<u> </u>	_	ns
ToeH2adD	OE ↑ to AD driven	0.125TCY-5		_	ns
TadV2oeH	LS data valid before OE ↑ (data setup time)	20		_	ns
TadV2oeH	MS data valid before OE ↑ (data setup time)	0.25Tcy+20	-	_	ns
ToeH2adl	OE ↑ to data in invalid (data hold time)	0		_	ns
TalH2alH	ALET to ALET (cycle time)	_	0.25Tcy	_	ns
TubH2oeH	BA0 = 0 valid before OE ↑	0.25Tcy-10	_	_	ns
TubL2oeH	BA0 = 1 valid before OE ↑	0.5Tcy-10	_	_	ns
	TadV2alL TalL2adl ToeH2adD TadV2oeH TadV2oeH ToeH2adl TalH2alH TubH2oeH	TadV2alL Address out valid to ALE↓ (address setup time) TalL2adl ALE↓ to address out invalid (address hold time) ToeH2adD \overline{OE} ↑ to AD driven TadV2oeH LS data valid before \overline{OE} ↑ (data setup time) TadV2oeH MS data valid before \overline{OE} ↑ (data setup time) TadV2oeH MS data valid before \overline{OE} ↑ (data setup time) TadV2oeH MS data valid before \overline{OE} ↑ (data setup time) TadV2oeH MS data valid before \overline{OE} ↑ (data setup time) TadH2adl \overline{OE} ↑ to data in invalid (data hold time) TalH2alH ALE↑ to ALE↑ (cycle time) TubH2oeH BA0 = 0 valid before \overline{OE} ↑	TadV2alL Address out valid to ALE \downarrow (address setup time) 0.2516 Y 10 TalL2adl ALE \downarrow to address out invalid (address hold time) 5 ToeH2adD \overline{OE} \uparrow to AD driven 0.125TcY-5 TadV2oeH LS data valid before \overline{OE} \uparrow (data setup time) 20 TadV2oeH MS data valid before \overline{OE} \uparrow (data setup time) 0.25TcY+20 ToeH2adl \overline{OE} \uparrow to data in invalid (data hold time) 0 TalH2alH ALE↑ to ALE↑ (cycle time) - TubH2oeH BA0 = 0 valid before \overline{OE} \uparrow 0.25TcY-10	TadV2alL Address out valid to ALE↓ (address setup time) 0.2516740 TalL2adl ALE↓ to address out invalid (address hold time) 5 - ToeH2adD $\overline{OE} \uparrow$ to AD driven 0.25Tcr-5 - TadV2oeH LS data valid before $\overline{OE} \uparrow$ (data setup time) 20 - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data setup time) 0.25Tcr+20 - ToeH2adl $\overline{OE} \uparrow$ to data in invalid (data hold time) 0 - ToeH2adl $\overline{OE} \uparrow$ to data in invalid (data hold time) 0 - TalH2alH ALE↑ to AEE↑ cycle time) - 0.25Tcr+10 TubH2oeH BA8 = 0 valid before $\overline{OE} \uparrow$ 0.25Tcr+10 -	TadV2alL Address out valid to ALE↓ (address setup time) $Q.25TeY.10$ - TalL2adl ALE↓ to address out invalid (address hold time) S - ToeH2adD $\overline{OE} \uparrow$ to AD driven $Q.125TeY.5$ - TadV2oeH LS data valid before $\overline{OE} \uparrow$ (data setup time) 20 - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data setup time) 20 - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data setup time) $0.25TcY+20$ - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data setup time) $0.25TcY+20$ - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data hold time) 0 - - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data hold time) 0 - - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data hold time) 0 - - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data hold time) 0 - - TadV2oeH MS data valid before $\overline{OE} \uparrow$ (data hold time) 0 - - TadV2oeH BA0 = 0 valid before $\overline{OE} \uparrow$ $0.25TcY-10$ - -

DS39541B-page 278

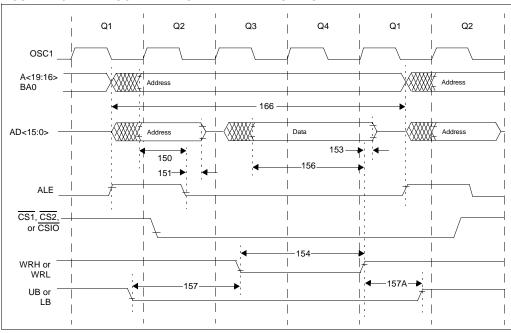
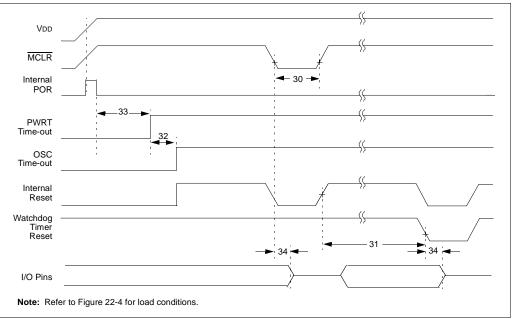


FIGURE 22-9: PROGRAM MEMORY WRITE TIMING DIAGRAM


Operating Conditions: 2.0V <Vcc <5.5V, -40°C <TA <125°C unless otherwise stated.

Param No.	Symbol	Characteristics	Min	Тур	Мах	Units
150	TadV2alL	Address out valid to ALE↓ (address setup time)	0.25TCY-10		_	ns
151	TalL2adl	ALE \downarrow to address out invalid (address hold time)	5	-	—	ns
153	TwrH2adl	WRn ↑ to data out invalid (data hold time)	5	_	—	ns
154	TwrL	WRn pulse width	0.5Tcy-5	0.5Tcy	—	ns
156	TadV2wrH	Data valid before WRN t (data setup time)	0.5Tcy-10		—	ns
157	TbsV2wrL	Byte select valid before WRn \downarrow (byte select setup time)	0.25Tcy		—	ns
157A	TwrH2bsI	WRn \uparrow to byte select invalid (byte select hold time)	0.125Tcy-5		—	ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	_	0.25Tcy	—	ns
36	TIVRST	Time for Internal Reference Voltage to become stable	_	20	50	μS

TABLE 22-8: PROGRAM MEMORY WRITE TIMING REQUIREMENTS

© 2001-2013 Microchip Technology Inc.

TABLE 22-9: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	TYP	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1230	20,	—	μs	
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	MAD.	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	× –	_	1024Tosc		Tosc = OSC1 period
33	TPWRT	Power up Timer Period	28	72	132	ms	
34	Tioz	I/O Hi-Impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	

DS39541B-page 280

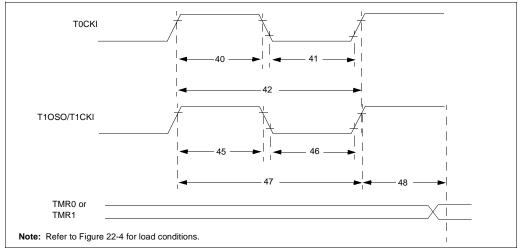
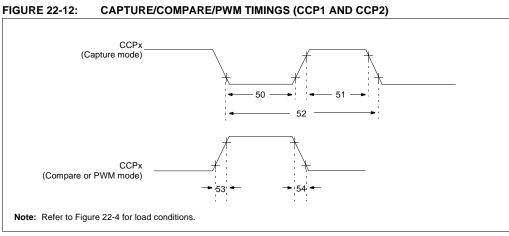



FIGURE 22-11: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 22-10: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Symbol		Characteri	stic	Min	Max	Units	Conditions
40	Tt0H	T0CKI H	ligh Pulse Width	No Prescaler	0.5TCY + 20	—	ns	1
				With Prescaler	10	_	ns	
41	Tt0L	T0CKI L	ow Pulse Width	No Prescaler	0.5TCY + 20	—	ns	
				With Prescaler	10	_/	ns)	
42	Tt0P	T0CKI F	Period	No Prescaler	Tcy + 10	_/ /	ns ⁻	
				With Prescaler	Greater of:	$\setminus - \setminus$	ns `	W≟ prescale value
					20 ns or <u>Tcy + 40</u>	>>	\searrow	(1, 2, 4,, 256)
45	Tt1H	T1CKI	Synchronous, no	o prescaler	(0.5Tey + 20		ns	
		High	Synchronous,	PIC18C601/801	\ \ \te ² \ ¹	_	ns	
		Time	with prescaler	PIC18LC601/801	\ \ 25	—	ns	
			Asynchronous	PIC18C601/801	\ 30	—	ns	
			<	PIC18LC601/801	50	—	ns	
46	Tt1L	T1CKI	Synchronous, no	oʻprescaler	0.5TCY + 5	—	ns	
		Low	Synchronous,	PIC18C601/801	10	—	ns	
		Time	with prescaler	PIC18LC601/801	25	—	ns	
		$\langle \langle \rangle$	Asynchronous	PIC18C601/801	30	—	ns	
		\bigcirc '		PIC18LC601/801	TBD	TBD	ns	
47	Tt1P 🤇 🤇	T1CK	Synchronous		Greater of:	—	ns	N = prescale value
		input			20 ns or <u>TCY + 40</u>			(1, 2, 4, 8)
$\left \right\rangle$	$\langle \rangle \rangle$	period~			N			
$ \rightarrow $			Asynchronous		60		ns	
	Fti		scillator input free	. , ,	DC	50	kHz	
48	Toké2tmrl	Delay fro	om external T1CF prement	<i clock="" edge="" td="" to<=""><td>2Tosc</td><td>7Tosc</td><td>—</td><td></td></i>	2Tosc	7Tosc	—	

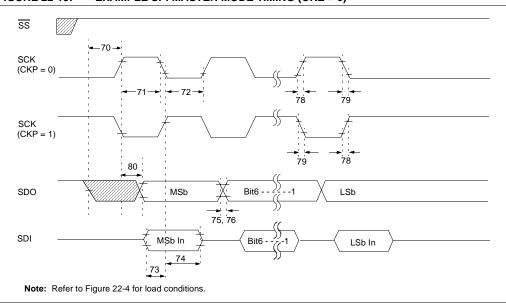
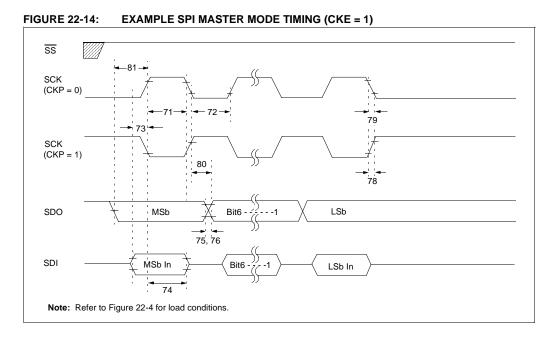

© 2001-2013 Microchip Technology Inc.

TABLE 22-11: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param. No.	Symbol	(Characteris	tic	Min	Max	Units	Conditions
50	TccL	CCPx input low	No Presca	ler	0.5Tcy + 20	_	ns	
		time	With	PIC18C601/801		<u> </u>	ns	
			Prescaler	PIC18LC601/8Q1	10 20	_	ns	
51	TccH	CCPxinputhigh	No Presca	ler	015TCY + 20	_	ns	
		time	With	PIC180601/801	10	_	ns	
			Prescaler	PIC 184 C601/801	20		ns	
52	TccP	CCPx input perio	Dd Dc	FILL	<u>3Tcy + 40</u> N	—	ns	N = prescale value (1, 4 or 16)
53	TccR	CCPx output fat	time	PIC18C601/801	—	25	ns	
			K.	PIC18LC601/801	_	45	ns	
54	TccF	CCPx output fall	time	PIC18C601/801	—	25	ns	
				PIC18LC601/801	—	45	ns	

DS39541B-page 282

FIGURE 22-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

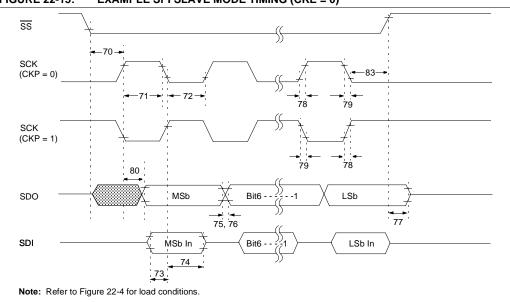

TABLE 22-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү		ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	$\backslash \downarrow$	ns	\lor
71A		(Slave mode)	Single Byte	40	$ \neq \langle$	ns>	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tc+ 30		ns	
72A		(Slave mode)	Single Byte		\sim	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input	o SCK edge	100	—	ns	
73A	Тв2в	Last clock edge of Byte1 to th Byte2	e 1st clock edge of	√1.5TCY + 40	—	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to	SCK edge	100	—	ns	
75	TdoR	SDO data output rise time	PIC18 C 601/801		25	ns	
			PIC18LC601/801		45	ns	
76	TdoF	SDO data output fall time			25	ns	
78	TscR	SCK output rise time	PIC18 C 601/801	—	25	ns	
4	()	(Master mode)	PIC18LC601/801		45	ns	
79	TŞCF	SCK output fall time (Master	_	25	ns		
80	TscH2doV,	SDO data output valid after	PIC18 C 601/801	—	50	ns	
	TscL2doV	SCK edge	PIC18LC601/801		100	ns	

Note 1: Requires the use of parameter # 73A.

2: Only if parameter #s 71A and 72A are used.

© 2001-2013 Microchip Technology Inc.


TABLE 22-13: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

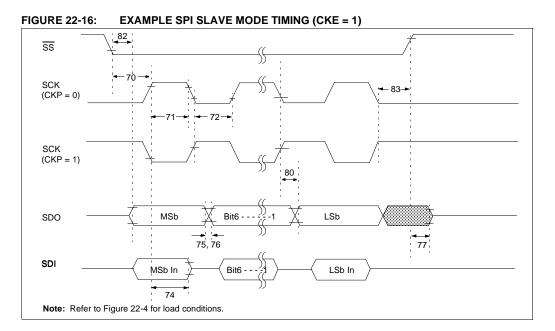
Param. No.	Symbol	Characteris	stic	Min	Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25Tcy + 30		<ns \<="" td=""><td></td></ns>	
71A		(Slave mode)	Single Byte	40	\bigwedge	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	(\in)	ns	\sum
72A		(Slave mode)	Single Byte	4,0	$\backslash $	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input	to SCK edge		+)	ns	
73A	Тв2в	Last clock edge of Byte1 to t of Byte2	1.5TCY + 40	\leq	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold time of SDI data input t	o SCK edge	100	—	ns	
75	TdoR	SDO data output rise time	PIC18C6011801	—	25	ns	
		$ \land \land$	RIC18LC601/801	—	45	ns	
76	TdoF	SDO data output fall time		—	25	ns	
78	TscR	SCK output rise time	PIC18 C 601/801	—	25	ns	
		(Master mode)	PIC18 LC 601/801	—	45	ns	
79	TscF <	SCK output fall time (Master	mode)	—	25	ns	
80	TscH2doV,	SDO data output valid after	PIC18 C 601/801	_	50	ns	
	TscL2doV	SCK edge>	PIC18LC601/801	—	100	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to SO	CK edge	Тсү	—	ns	

Note 1: Requires the use of parameter # 73A.

2: Only if parameter #s 71A and 72A are used.

PIC18C601/801

FIGURE 22-15: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)


TABLE 22-14: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	_	ns	\prod
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	-	ns	
71A		(Slave mode)	Single Byte	40 <	$\langle \langle \langle \rangle \rangle$) nis	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcr+30	$\left \left\langle -\right\rangle \right\rangle$	ms	\checkmark
72A		(Slave mode)	Single Byte	40	(\rightarrow)	\ ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to S	CK edge		> '	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st	clock edge of Byte2	1.5TcX + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SC	K edge	100	—	ns	
75	TdoR	SDO data output rise time	PIC18C601/801	_	25	ns	
			RIC18LC601/801		45	ns	
76	TdoF	SDO data output fall time		—	25	ns	
77	TssH2doZ	SS1 to SDO output hi-impedance	é l	10	50	ns	
78	TscR	SCK output rise time	PIC18 C 601/801	—	25	ns	
	\langle	(Master mode)	PIC18LC601/801		45	ns	
79	TseF	SCK output fall time (Master mod	—	25	ns		
80	TscH2dov,	SDQ data output valid after SCK	PIC18 C 601/801	—	50	ns	
	TscL2doV	edge	PIC18LC601/801		100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	ns	

Note 1: Requires the use of parameter # 73A.

2: Only if parameter #s 71A and 72A are used.

© 2001-2013 Microchip Technology Inc.

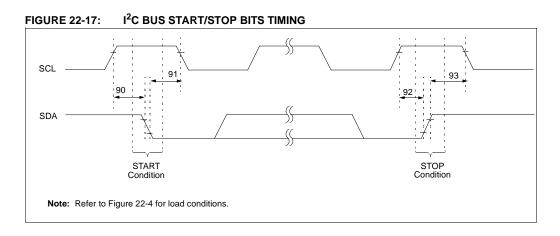


TABLE 22-15: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input		Тсү	—	ns	
71	TscH	SCK input high time	Continuous	1.25TCY + 30	—	ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	140	—	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte1 to the 1st c	ock edge of Byte2	 4.5TCY + 40 	—	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK	400	—	ns		
75	TdoR	SDO data output rise time	PIC18C601/801	_	25	ns	
			RIC186C601/801		45	ns	
76	TdoF	SDO data output fall time	MDA	_	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	192	10	50	ns	
78	TscR	SCK output rise time	PIC18C601/801	—	25	ns	
		(Master mode)	PIC18LC601/801		45	ns	
79	TscF	SCK output fall time (Master mode)		_	25	ns	
80	TscH2doV,	SDO data output valid after SCK	PIC18C601/801	_	50	ns	
	TscL2doV	edge	PIC18LC601/801	—	100	ns	
82	TssL2doV	SDO data output valid after $\overline{\text{SS}}\downarrow$	PIC18C601/801	—	50	ns	
		edge	PIC18LC601/901	—	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1	1.5Tcy + 40	—	ns	

Note 1: Requires the use of parameter # 73A.

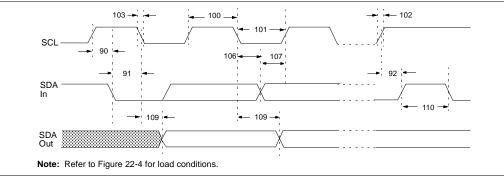
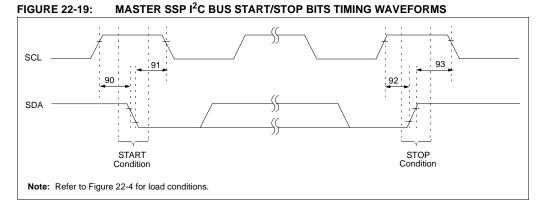

2: Only if parameter #s 71A and 72A are used.

TABLE 22-16: I²C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characte	ristic	Min	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	1 4700 V	×_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	—		START condition
91	THD:STA	START condition	100 kHz mode	^V 4000	—	ns	After this period, the first
		Hold time	400 kHz mode	600	—		clock pulse is generated
92	TSU:STO	STOP condition	100 ktlz mode	4700	_	ns	
		Setup time	400 kHz mode	600	—		
93	THD:STO	STOP condition	100 kHz mode	4000	—	ns	
		Hold time \lor	400 kHz mode	600	—		

FIGURE 22-18: I²C BUS DATA TIMING



Param Units Conditions Symbol Characteristic Min Max No. 100 Clock high time 4.0 PIC18C601/801 must operate THIGH 100 kHz mode μS at a minimum of 1.5 MHz PIC18C601/801 must operate 400 kHz mode 0.6 _ μS at a minimum of 10 MHz SSP Module 1.5TCY 101 TLOW Clock low time 100 kHz mode 4.7 μS PIC18C601/801 must operate at a minimum of 1.5 MHz PIC18C601/801 must operate 400 kHz mode 1.3 _ μS at a minimum of 10 MHz SSP module 1.5TCY ns 102 TR SDA and SCL rise 100 kHz mode 1000 ns time 400 kHz mode 20 + 0.1Cb ns Cb is specified to be from \300 10 to 400 pF 103 TF SDA and SCL fall time 100 kHz mode 300 nş 400 kHz mode 20 + 0.10b 300 \ns Cb is specified to be from 10 to 400 pF 100 kHz mode 90 TSU:STA START condition 4.7 Only relevant for Repeated μS START condition setup time 400 kHz mode Q.6 μS 91 THD:STA START condition hold 100 kHz mode 4.0 After this period the first clock μS pulse is generated time 400 kHz mode 0.6 μs 100 kHz mode 106 THD:DAT Data input hold time 0 ns 400 kHz mode 0 0.9 μS 107 TSU:DAT Data input setup time 100 kHz mode 250 _ ns (Note 2) 400 kHz mode 100 ns 92 TSU:STO STOP condition setup 100 kHz mode 4.7 μS time 400 kHz mode 0.6 μS TAA 109 Output valid from 100 kHz mode 3500 ns (Note 1) cloek 400 kHz mode ns TBUF 110 4.7 Bus free time 100 kHz mode Time the bus must be free μS before a new transmission can 400 kHz mode 1.3 μS start D102 pF Cb Bus capacitive loading 400

TABLE 22-17: I²C BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. Before the SCL line is released, TR max. + tsu;DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification).

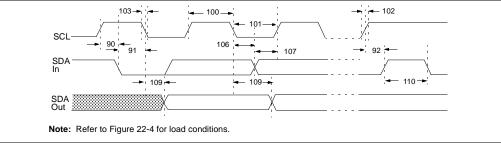


TABLE 22-18: MASTER SSP I²C BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characte	ristic	Min	Max	Units	Conditions	
90	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_		Only relevant for	
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	1 —	ns	Repeated START condition	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG+1)	<u> </u>		condition	
91	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG+4)	·		After this period, the first	
		Hold time	400 kHz mode	2(10sc)(BRG + 1)	_	ns	clock pulse is generated	
			1 MHz mode	2(Tosc)(BRG + 1)				
92	Tsu:sto	STOP condition	100 kttz mode	2(Tosc)(BRG + 1)				
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		E C	1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_			
93	THD:STO	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)				
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	—	ns		
		~	1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—			

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

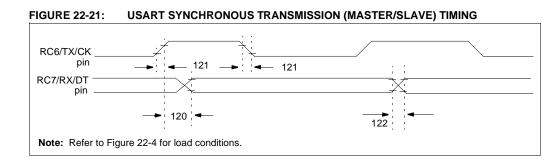
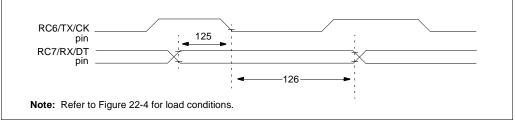

© 2001-2013 Microchip Technology Inc.

TABLE 22-19: MASTER SSP I²C BUS DATA REQUIREMENTS

Param No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	1
101	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	\sim
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	\square
102	TR	SDA and SCL	100 kHz mode	_	1000	ns <	Cto is specified to be
		rise time	400 kHz mode	20 + 0.1Cb	300	∕ ns	trom 10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300 \	Mis	
103	TF	SDA and SCL	100 kHz mode	- <	300	DS	Cb is specified to be
		fall time	400 kHz mode	20 + 0.1Cb	\3Q0	ns	from 10 to 400 pF
			1 MHz mode ⁽¹⁾	$\langle \langle \rangle \rangle$	100	Ins	
90	TSU:STA	START condition	100 kHz mode	2(70SC)(BRG + 1)	\searrow	ms	Only relevant for
		setup time	400 kHz mode	2(Tolsc)(BRG+1)	> _	ms	Repeated START
			1 MHz mode ⁽¹⁾	12(10sc)(BRG-+1)	_	ms	condition
91	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first
		hold time	,400 kHz mode	2(Tosc)(BRG + 1)		ms	clock pulse is generated
				2(Tosc)(BRG + 1)		ms	
106	THD:DAT	Data input	100 kHz mode	0	_	ns	
		hold time	400 kHz mode	0	0.9	ms	
		$() \setminus ($	1 MHz mode ⁽¹⁾	TBD	_	ns	
107	TSU:DAT	Data input	100 kHz mode	250	_	ns	(Note 2)
-	$\left(\right)$	setup time >	400 kHz mode	100	_	ns	
```	$\langle \nabla \rangle$		1 MHz mode ⁽¹⁾	TBD	_	ns	
92	TSU:STO	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
	Ť		1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms	
109	TAA	Output valid from	100 kHz mode	_	3500	ns	
		clock	400 kHz mode	_	1000	ns	
			1 MHz mode ⁽¹⁾	_	_	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	_	ms	Time the bus must be
			400 kHz mode	1.3	_	ms	free before a new
			1 MHz mode ⁽¹⁾	TBD	_	ms	transmission can start
D102	Cb	Bus capacitive loa		_	400	pF	

**Note 1:** Maximum pin capacitance = 10 pF for all  $I^2C$  pins.


2: A fast mode I²C bus device can be used in a standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. Before the SCL line is released, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode).



#### TABLE 22-20: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	ET.	Min	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (Master & Slave)	n A				
		5	RIG180601/801	—	40	ns	
		All a second sec	PIC18LC601/801		100	ns	
121	Tckrf	Clock out rise time and fall time	PIC18 <b>C</b> 601/801		20	ns	
		(Master mode)	PIC18 <b>LC</b> 601/801		50	ns	
122	Tdtrf	Data-out rise time and tall time	PIC18 <b>C</b> 601/801	_	20	ns	
			PIC18 <b>LC</b> 601/801	_	50	ns	

#### FIGURE 22-22: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

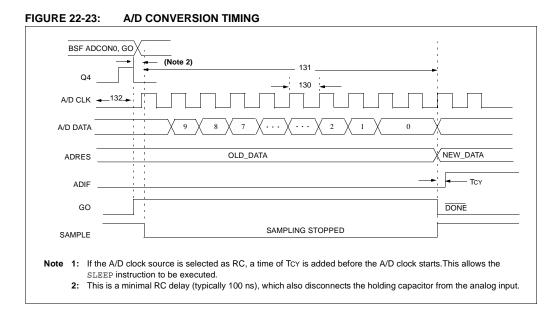


#### TABLE 22-21: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (Master & Slave)				
		Data-hold before CK ( (D) hold time)	10	—	ns	
126	TckL2dtl	Data-hold after CK (DT hold time)	15	—	ns	
		PRE.				

© 2001-2013 Microchip Technology Inc.

# TABLE 22-22: A/D CONVERTER CHARACTERISTICS: PIC18C601/801 (INDUSTRIAL, EXTENDED) PIC18LC601/801 (INDUSTRIAL)


Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution	—	—	10	bit	$\text{VREF}=\text{VDD}\geq3.0\text{V}$
			—	—	TBD	bit	VREF = VDD < 3.0V
A03	E⊫	Integral linearity error	—	—	<±1	LSb	VREF = VDD ≥ 3.0V
					TBD	LSb	VREF VOD < 3.0V
A04	Edl	Differential linearity error	—	—	<±1	LSb	VREF = VDD ≥ \$.0V
				—	TBD		
A05	EFS	Full scale error	—	—	<±1	LSib	VREF = VDD ≥ 3.0V
				—	TBD	LSb	VREF → VDD < 3.0V
A06	EOFF	Offset error	—	—	< <u>+1</u>	LSb	VREF = VDD ≥ 3.0V
						LSb	VREF = VDD < 3.0V
A10	—	Monotonicity	aŕ	arantee	6(3) / []	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	0	$/ \neq /$	$\backslash \searrow$	V	
A20A		(Vrefh - Vrefl)	3		$\sim$ –	V	For 10-bit resolution
A21	Vrefh	Reference voltage High	( XAVXSA /	$\langle \gamma \rangle$	AVDD + 0.3 V	V	
A22	VREFL	Reference voltage Low	AV\$\$ V.3 V	<u> </u>	AVDD	V	
A25	VAIN	Analog input voltage	AVSS - 0.3 V	_	Vref + 0.3 V	V	
A30	ZAIN	Recommended impedance of analog voltage source	V –	—	10.0	kΩ	
A40	IAD	A/D conversion PIC186604/801	—	180	_	μΑ	Average current
		eurrent (VbD) PtC18LC601/801		90		μA	consumption when A/D is on ⁽¹⁾
A50 -	TREF	VREF input current ⁽²⁾	10		1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD, see Section 17.0.
			—	—	10	μA	During A/D conversion cycle.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

 $\label{eq:VREF} VREF \mbox{ current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVSS pins, whichever is selected as reference input.$ 

**2:** Vss  $\leq$  VAIN  $\leq$  VREF

3: The A/D conversion result either increases or remains constant as the analog input increases.



#### TABLE 22-23: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Character	ristic	Min	Max	Units	Conditions
130	TAD	A/D clock period	PIC18 <b>C</b> 601/801	1.6	20 <b>(5)</b>	μS	Tosc based, VREF $\geq 3.0V$
			PIC18 <b>LC</b> 601/801	3.0	20(5)	μS	Tosc based, VREF full range
			PIC18 <b>C</b> 601/801	2.0	6.0	μS	A/D RC mode
			PIC18 <b>LC</b> 601/801	3.0	9.0	μS	A/D RC mode
131	TCNV	Conversion time (not including acquisitior	n time) ⁽¹⁾		12	TAD	
132	TACQ	Acquisition time ⁽³⁾	N RALL	15 10	_	μs μs	-40°C ≤ Temp ≤ 125°C 0°C ≤ Temp ≤ 125°C
135	Tswc	Switching time from eon	vert -> sample		(Note 4)		
136	Тамр	Amplifier settling time?		1		μS	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 17.0 for minimum conditions, when input voltage has changed more than 1 LSb.

**3:** The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω.

4: On the next Q4 cycle of the device clock.

5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

9541a.book Page 294 Tuesday, January 29, 2013 2:34 PM

# PIC18C601/801

NOTES:

 $\bigcirc$ 

۲

DS39541B-page 294

#### 23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Graphs and Tables are not available at this time.

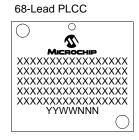
 $\ensuremath{\textcircled{}^{\circ}}$  2001-2013 Microchip Technology Inc.

9541a.book Page 296 Tuesday, January 29, 2013 2:34 PM

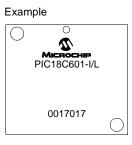
# PIC18C601/801

NOTES:

 $\bigcirc$ 


۲

DS39541B-page 296


#### 24.0 PACKAGING INFORMATION

#### 24.1 Package Marking Information

64-Lead TQFP



Example



80-Lead TQFP





 Legend:
 XX...X
 Customer specific information*

 YY
 Year code (last 2 digits of calendar year)

 WW
 Week code (week of January 1 is week '01')

 NNN
 Alphanumeric traceability code

 Note:
 In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

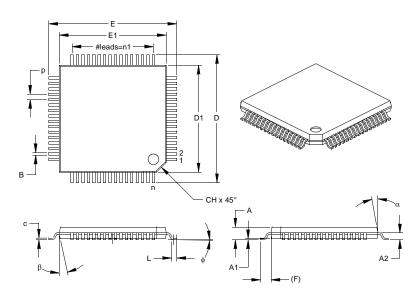
© 2001-2013 Microchip Technology Inc.

# PIC18C601/801

#### Package Marking Information (Cont'd)

#### 84-Lead PLCC




Example



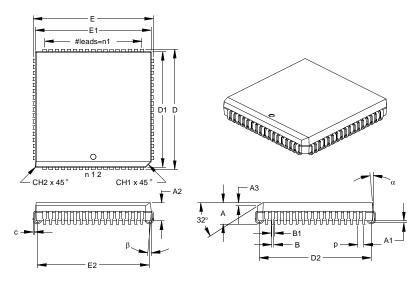
DS39541B-page 298

#### 64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units	INCHES		MILLIMETERS*			
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		64			64	
Pitch	р		.020			0.50	
Pins per Side	n1		16			16	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039			1.00	
Foot Angle	¢	0	3.5	7	0	3.5	7
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.005	.007	.009	0.13	0.18	0.23
Lead Width	В	.007	.009	.011	0.17	0.22	0.27
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15
* Controlling Parameter							


* Controlling Parameter § Significant Characteristic

Notes:

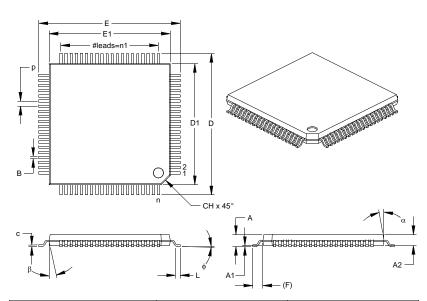
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-085

#### 68-Lead Plastic Leaded Chip Carrier (L) - Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Units		INCHES*			MILLIMETERS		
Dimensior	1 Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		68			68	
Pitch	р		.050			1.27	
Pins per Side	n1		17			17	
Overall Height	А	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.985	.990	.995	25.02	25.15	25.27
Overall Length	D	.985	.990	.995	25.02	25.15	25.27
Molded Package Width	E1	.950	.954	.958	24.13	24.23	24.33
Molded Package Length	D1	.950	.954	.958	24.13	24.23	24.33
Footprint Width	E2	.890	.920	.930	22.61	23.37	23.62
Footprint Length	D2	.890	.920	.930	22.61	23.37	23.62
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10


* Controlling Parameter § Significant Characteristic

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-047 Drawing No. C04-049

#### 80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

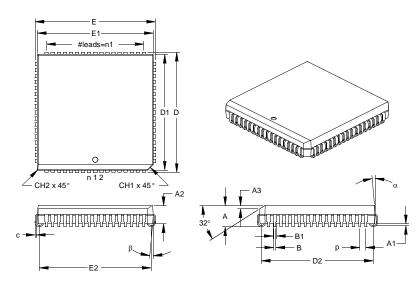
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units	INCHES		MILLIMETERS*			
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		80			80	
Pitch	р		.020			0.50	
Pins per Side	n1		20			20	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039			1.00	
Foot Angle	φ	0	3.5	7	0	3.5	7
Overall Width	E	.541	.551	.561	13.75	14.00	14.25
Overall Length	D	.541	.551	.561	13.75	14.00	14.25
Molded Package Width	E1	.463	.472	.482	11.75	12.00	12.25
Molded Package Length	D1	.463	.472	.482	11.75	12.00	12.25
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.007	.009	.011	0.17	0.22	0.27
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15
* Controlling Parameter							

* Controlling Parameter § Significant Characteristic

#### Notes:


Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-092

۲

# PIC18C601/801

#### 84-Lead Plastic Leaded Chip Carrier (L) - Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Units			INCHES*		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		68			68	
Pitch	р		.050			1.27	
Pins per Side	n1		17			17	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	E	.985	.990	.995	25.02	25.15	25.27
Overall Length	D	.985	.990	.995	25.02	25.15	25.27
Molded Package Width	E1	.950	.954	.958	24.13	24.23	24.33
Molded Package Length	D1	.950	.954	.958	24.13	24.23	24.33
Footprint Width	E2	.890	.920	.930	22.61	23.37	23.62
Footprint Length	D2	.890	.920	.930	22.61	23.37	23.62
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010° (0.254mm) per side. JEDEC Equivalent: MO-047 Drawing No. C04-093

#### APPENDIX A: DATA SHEET REVISION HISTORY

#### **Revision A**

This is a new data sheet.

#### **Revision B (January 2013)**

Added a note to each package outline drawing.

#### APPENDIX B: DEVICE DIFFERENCES

The differences between the PIC18C601/801 devices listed in this data sheet are shown in Table B-1.

TABLE B-1:	DEVICE DIFFERENCES
------------	--------------------

Fe	ature	PIC18C601	PIC18C801
Program	m External m Memory ytes)	256K	2M
Data Mer	nory (Bytes)	1.5K	1.5K
A/D C	hannels	8	12
Package	TQFP	64-pin	80-pin
Types	PLCC	68-pin	84-pin

© 2001-2013 Microchip Technology Inc.

#### APPENDIX C: DEVICE MIGRATIONS

This section is intended to describe the functional and electrical specification differences when migrating between functionally similar devices (such as from a PIC16C74A to a PIC16C74B).

Not Applicable

#### APPENDIX D: MIGRATING FROM OTHER PIC DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC18CXXX family of devices.

#### D.1 PIC16CXXX to PIC18CXXX

See application note AN716.

#### D.2 PIC17CXXX to PIC18CXXX

See application note AN726.

DS39541B-page 304

#### APPENDIX E: DEVELOPMENT **TOOL VERSION** REQUIREMENTS

This lists the minimum requirements (software/ firmware) of the specified development tool to support the devices listed in this data sheet.

MPLAB[®] IDE: TBD MPLAB[®] SIMULATOP TBD

M	PL/	۹B∞	SIM	ULA	TOR	:

#### MPLAB® ICE 3000:

PIC18C601/801 Processor Module: Part Number -TBD

PIC18C601/801	Device Adapter:
Socket	Part Number
64-pin TQFP	TBD
68-pin PLCC	TBD
80-pin TQFP	TBD
84-pin PLCC	TBD

MPLAB [®] ICD:	TBD
PRO MATE [®] II:	TBD
PICSTART [®] Plus:	TBD
MPASM [™] Assembler:	TBD
MPLAB [®] C18 C Compiler:	TBD

Note:	Please read all associated README.TXT
	files that are supplied with the develop-
	ment tools. These "read me" files will dis-
	cuss product support and any known
	limitations.

9541a.book Page 306 Tuesday, January 29, 2013 2:34 PM

# PIC18C601/801

NOTES:

 $\bigcirc$ 

۲

DS39541B-page 306

#### INDEX

#### Α

A/D
A/D Converter Flag (ADIF Bit)195
A/D Converter Interrupt, Configuring197
ADCON0 Register
ADCON1 Register
ADCON2 Register
ADRES Register
Analog Port Pins, Configuring
Associated Registers
Block Diagram
Block Diagram, Analog Input Model
Configuring the Module
0 0
Conversion Clock (TAD)
Conversion Status (GO/DONE Bit)
Conversions200
Converter Characteristics 272, 292
Effects of a RESET206
Equations
Acquisition Time198
Minimum Charging Time198
Operation During SLEEP206
Sampling Requirements
Sampling Time
Special Event Trigger (CCP) 144, 200
Timing Diagram
Absolute Maximum Ratings
Access Bank
ADCON0 Register
GO/DONE Bit
Registers
ADCON2 (A/D Control 2) 195
ADCON1 Register 193, 194
ADCON2 Register
ADDLW
ADDWF
ADDWFC
ADRES Register 193, 195
AKS
Analog-to-Digital Converter. See A/D
ANDLW
ANDWF
Assembler
MPASM Assembler
В
Bank Select Register
Baud Rate Generator
Associated Registers
//0000/0100 //09/010/0 /////////////////

BF ......167

Block Diagram ......119

Baud Rate Generator ......164

Capture Mode Operation ......143

Compare Mode Operation ......144

Interrupt Logic ......90

 I²C Mode
 159

 SPI Mode
 153

 On-Chip Reset Circuit, Simplified
 29

Phase Lock Loop2 PORTA	23
RA3:RA0 and RA5 Pins	13
RA4/T0CKI Pin	
PORTB	
RB3 Pin	)6
RB3:RB0 Port Pins	
RB7:RB4 Port Pins10	
PORTC 10	)8
PORTD	
I/O Mode 11	
System Bus Mode 11	
PORTD (In I/O Port Mode) 12	24
PORTE	
I/O Mode 11	
System Bus Mode 11	4
PORTF	
RF2:RF0 Pins	
RF5:RF3 Pins	
RF7:RF6 Pins 11 PORTG	1
I/O Mode11	0
System Bus Mode 12	
PORTH	.0
RH3:RH0 Pins (I/O Mode)	21
RH3:RH0 Pins (System Bus Mode)	
RH7:RH4 Pins	
PORTJ	
I/O Mode	24
System Bus Mode 12	
Simplified PWM Diagram14	
SSP (SPI Mode)	53
Timer0	
16-bit Mode 12	28
8-bit Mode12	
Timer1	
16-bit R/W Mode	
Timer2	
Timer3	
16-bit R/W Mode 13	38
USART	)E
Asynchronous Receive	
Watchdog Timer	
BN	
BNC	
BNN	
BNOV	26
BNZ	
BOV	29
BRA	27
BRG16	
BSF	27
BSR. See Bank Select Register.	
BTFSC	
BTFSS	
BTG	
Bus	
Bus Collision During a START Condition	
Bus Collision During a START Condition	5
	76
BZ	

PIC18C601/801

© 2001-2013 Microchip Technology Inc.

Block Diagrams

MSSP

 $\bigcirc$ 

۲

# PIC18C601/801

С
CALL
Capture (CCP Module)
Block Diagram
CCP Pin Configuration142
CCPR1H:CCPR1L Registers142
Changing Between Capture Prescalers
Software Interrupt143
Timer1 Mode Selection142
Capture/Compare/PWM (CCP)141
Capture Mode. See Capture
CCP1
CCPR1H Register
CCPR1L Register
CCPR2H Register
CCPR2L Register
Compare Mode. See Compare
Interaction of Two CCP Modules
PWM Mode. See PWM
Registers Associated with Capture
and Compare145
Timer Resources
Timing Diagram282
Chip Select
Chip Select 2 (CS2)71
Chip Select I/O (CSIO)71
Chip Selects
Chip Select 1 (CS1)
Clocking Scheme
CLRF
CLRWDT
Code Examples
Clearing RAM Using Indirect Addressing
Combination Unlock (Macro)
Combination Unlock (Subroutine)
Fast Register Stack
Initializing PORTA
Initializing PORTB105
Initializing PORTC
Initializing PORTD110
Initializing PORTE113
Initializing PORTF116
Initializing PORTG119
Initializing PORTH121
Initializing PORTJ124
Programming Chip Select Signals
Saving STATUS, WREG and BSR Registers101 Table Read
Table Write
COMF
Compare (CCP Module)
Block Diagram
CCP Pin Configuration
CCPR1H:CCPR1L Registers
Software Interrupt
Special Event Trigger
Timer1 Mode Selection144
Configuration Address Map, Example71
Configuration Bits
Table207
Context Saving During Interrupts
CPFSEQ232
CPFSGT

#### D

Data Memory General Purpose Registers	49
Special Function Registers Data Memory Map	
Program Bit Not Set	
Program Bit Set	
DAW	
DC and AC Characteristics Graphs and Tables	
DCFSNZ DECF	
DECF	
Development Support	
Development Tool Version Requirements	
Device Differences	
Device Migrations	
Direct Addressing	
E	
Electrical Characteristics	265
Errata	
External Wait Cycles	
F	
Fast Register Stack	45
Firmware Instructions	
_	0
G	
General Call Address Sequence	
General Call Address Support	
GOTO	. 236
1	
I/O Mode	. 119
I/O Ports	. 103
I ² C (SSP Module)	. 159
ACK Pulse159,	160
Addressing	. 160
Block Diagram	. 159
Read/Write Bit Information (R/W Bit)	
Reception	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	. 159
Timing Diagram, Data Timing Diagram, START/STOP Bits	. 287
Transmission	
I ² C Master Mode Reception	
I ² C Master Mode RESTART Condition	
I ² C Module	
Acknowledge Sequence Timing	. 170
Baud Rate Generator	
Block Diagram	. 164
BRG Reset due to SDA Collision	. 174
BRG Timing	. 165
Bus Collision	
Acknowledge	
RESTART Condition	
RESTART Condition Timing (Case1)	. 175
RESTART Condition Timing (Case2)	
START Condition START Condition Timing	
STOP Condition	
STOP Condition Timing (Case1)	
STOP Condition Timing (Case1)	
Transmit Timing	
Bus Collision Timing	
-	

DS39541B-page 308

Advance Information

 $\ensuremath{\textcircled{}^{\circ}}$  2001-2013 Microchip Technology Inc.

 $\bigcirc$ 

۲

# PIC18C601/801

Clock Arbitration	171
Clock Arbitration Timing (Master Transmit)	171
General Call Address Support	162
Master Mode 7-bit Reception Timing	169
Master Mode Operation	164
Master Mode START Condition	165
Master Mode Transmission	
Master Mode Transmit Sequence	164
Multi-Master Mode	172
Repeated START Condition Timing	166
STOP Condition Receive or Transmit Timing	170
STOP Condition Timing	
Waveforms for 7-bit Reception	
Waveforms for 7-bit Transmission	
ICEPIC In-Circuit Emulator	
INCF	
INCFSZ	
In-Circuit Serial Programming (ICSP)	
Indirect Addressing	60
FSR Register	
INFSNZ	
Initialization Conditions for All Registers	
Instruction Cycle	
Instruction Flow/Pipelining	
Instruction Format	
Instruction Set	
ADDLW	
ADDUV	
ADDWF	
ANDLW ANDWF	
BC	
BCF	
BN	
BNC	
BNN	
BNOV	
BNZ	
BOV	
BRA	
BSF	
BTFSC	
BTFSS	
BTG	
BZ	
CALL	
CLRF	
CLRWDT	
COMF	
CPFSEQ	
CPFSGT	
CPFSLT	
DAW	234
DCFSNZ	
DECF	234
DECFSZ	
GOTO	236
INCF	236
INCFSZ	237
INFSNZ	237
IORLW	238
IORWF	238
LFSR	239
MOVF	
MOVFF	

MOVLB	240
MOVLW	241
MOVWF	
MULLW	242
MULWF	242
NEGF	243
NOP	243
POP	
PUSH	244
RCALL	245
RESET	
RETFIE	246
RETLW	
RETURN	
RLCF	
RLNCF	
RRCF	
RRNCF	
SETF	
SLEEP	
SUBFWB	
SUBLW	,
SUBWF	
SUBWFB	
SWAPF	
TBLRD	
TSTFSZ	
XORLW	
XORWF	
Instruction Set, Summary	
INT Interrupt (RB0/INT). See Interrupt Sources	
INTCON Register	
INTCON Register RBIF Bit	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C	105
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers	105 91
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register	105 91 91
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Register INTCON Register INTCON2 Register INTCON3 Register	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register INTCON3 Register IPR Registers	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Register INTCON Register INTCON2 Register INTCON3 Register	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register INTCON3 Register IPR Registers PIE Registers PIR Registers	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register INTCON3 Register IPR Registers PIE Registers	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register INTCON3 Register IPR Registers PIE Registers PIR Registers	105 91 92 93 99 99 97 95 94
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Register INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIE Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIE Registers PIR Registers RCON Register Interrupt Sources	
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIE Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP)	105 91 92 93 99 99 97 95 94 89, 207 197 143 143
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIE Registers PIE Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP)	105 91 92 93 99 99 97 95 94 89, 207 197 143 143
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP)	105 91 92 93 99 97 97 95 94 89, 207 197 143 144 105
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4)	105 91 92 93 93 99 97 95 94 89, 207 197 143 144 105 
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External	105 91 92 93 99 97 95 94 89, 207 197 
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIE Registers PIE Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete	105 91 92 93 99 99 95 94 89, 207 197 143 144 105 101 149 129
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow	105 91 92 93 93 99 97 95 94 89, 207 197 143 143 144 105 101 149 129 
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIE Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR2 to PR2 Match	105 91 92 93 99 97 97 95 94 89, 207 197 143 144 105 101 144 105 101 149 129 130, 133 136
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR2 to PR2 Match TMR2 to PR2 Match TMR2 to PR2 Match (PWM)	105 91 92 93 99 97 97 95 94 89, 207 197 143 144 105 101 149 129 130, 133 136 135, 146
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON Register INTCON3 Register IPR Registers PIR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) INTERVIEW/Transmit Complete SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR2 to PR2 Match TMR2 to PR2 Match (PWM) TMR3 Overflow	105 91 92 93 99 97 95 95 94 89, 207 197 143 144 105 101 111 149 129 130, 133 136 135, 146 137, 139
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON2 Register IPR Registers PIE Registers PIE Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR2 to PR2 Match TMR2 to PR2 Match TMR3 Overflow USART Receive/Transmit Complete	105 91 92 93 99 97 95 95 94 89, 207 197 143 144 105 101 111 149 129 130, 133 136 135, 146 137, 139
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register INTCON3 Register IPR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR2 to PR2 Match TMR2 to PR2 Match (PWM) TMR3 Overflow USART Receive/Transmit Complete	105 91 92 93 99 99 97 95 94 89, 207 197 143 143 144 105 101 129 130, 133 136 135, 146 137, 139 177
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIE Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR2 to PR2 Match (PWM) TMR3 Overflow USART Receive/Transmit Complete INTR2 to PR2 Match (PWM) TMR3 Overflow USART Receive/Transmit Complete Interrupts, Enable Bits CCP1 Enable (CCP1IE Bit)	105 91 92 93 99 99 97 95 94 89, 207 197 143 143 144 105 101 149 129 130, 133 136 135, 146 137, 139 177
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON Register INTCON3 Register IPR Registers PIR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR1 to PR2 Match TMR2 to PR2 Match TMR3 Overflow USART Receive/Transmit Complete 	105 91 92 93 99 97 97 95 94 89, 207 197 143 144 105 101 149 129 130, 133 136 135, 146 137, 139 177 143
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON Register INTCON3 Register IPR Registers PIE Registers PIE Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR2 to PR2 Match TMR2 to PR2 Match TMR2 to PR2 Match (PWM) TMR3 Overflow INTR1 Sources CCP1 Enable Bits CCP1 Enable Bits CCP1 Enable (CCP1IE Bit) Interrupts, Flag Bits A/D Converter Flag (ADIF Bit)	105 91 92 93 99 97 95 94 89, 207 197 143 144 105 101 149 129 130, 133 136 135, 146 137, 139 177 143 135
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR2 to PR2 Match TMR2 to PR2 Match (PWM) TMR3 Overflow USART Receive/Transmit Complete Interrupts, Enable Bits CCP1 Enable (CCP1IE Bit) Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) CCP1 Flag (CCP1IF Bit)	105 91 92 93 99 97 95 94 89, 207 197 143 144 105 101 149 129 130, 133 136 135, 146 137, 139 177 143 135
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR2 to PR2 Match TMR2 to PR2 Match TMR3 Overflow USART Receive/Transmit Complete Interrupts, Enable Bits CCP1 Enable (CCP1IE Bit) Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) CCP1 Flag (CCP1IF Bit) Interrupton-Change (RB7:RB4) Flag	105 91 92 93 99 99 97 95 94 89, 207 197 143 143 144 105 101 149 129 130, 133 136 135, 146 137, 139 137, 139 137, 139 142, 143, 144
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIE Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR2 to PR2 Match (PWM) TMR3 Overflow USART Receive/Transmit Complete 	105 91 92 93 99 97 95 94 89, 207 197 143 144 105 101 144 135, 146 135, 146 137, 139 137, 139 137, 139 137, 139 142, 143, 144
INTCON Register RBIF Bit Inter-Integrated Circuit. See I ² C Interrupt Control Registers INTCON Register INTCON2 Register INTCON3 Register IPR Registers PIR Registers RCON Register Interrupt Sources A/D Conversion Complete Capture Complete (CCP) Compare Complete (CCP) Compare Complete (CCP) Interrupt-on-Change (RB7:RB4) RB0/INT Pin, External SSP Receive/Transmit Complete TMR0 Overflow TMR1 Overflow TMR1 Overflow TMR2 to PR2 Match TMR2 to PR2 Match TMR3 Overflow USART Receive/Transmit Complete Interrupts, Enable Bits CCP1 Enable (CCP1IE Bit) Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) CCP1 Flag (CCP1IF Bit) Interrupton-Change (RB7:RB4) Flag	105 91 92 93 99 97 97 95 94 89, 207 197 143 144 105 101 144 135, 146 135, 146 137, 139 136 135, 146 137, 139 142, 143, 144 105 238

© 2001-2013 Microchip Technology Inc.

#### Κ

L
Loading the SSPBUF (SSPSR) Registers
Low Voltage Detect
Block Diagram
LVDCON Register
LVD. See Low Voltage Detect.
м
MEMCOM. See Memory Control Register
Memory
Memory Control Register (MEMCOM)
Memory Organization
Data Memory49
Program Memory
Migrating from other PIC Devices
MOVF
MOVFF
MOVLB
MOVLW
MOVWI MPLAB C18 C Compilers
MPLAB ICD In-Circuit Debugger
MPLAB ICE High Performance Universal
In-Circuit Emulator with MPLAB IDE
MPLAB Integrated Development
Environment Software259
MPLINK Object Linker/MPLIB Object Librarian
MULLW
Multi-Master Mode
16 x 16 Signed
16 x 16 Unsigned
Multiply Examples
16 x 16 Signed Routine
16 x 16 Unsigned Routine86
8 x 8 Signed Routine86
8 x 8 Unsigned Routine
MULWF
Ν
NEGF
NOP
0
On-Chip Reset Circuit
OPTION_REG Register
PS2:PS0 Bits
PSA Bit
TOSE Bit
OSCCON Register
Oscillator Configuration
Oscillator Configurations
HS21
LP21
RC
Oscillator, Timer1130, 133, 137

Oscillator, WDT ......210

Р	
Packaging	)7
Phase Lock Loop	
Block Diagram	
Time-out	50
Demonstration Board	5
PICDEM 17 Demonstration Board	
PICDEM 2 Low Cost PIC16CXX	
Demonstration Board	ì
PICDEM 3 Low Cost PIC16CXXX Demonstration Board	
PICSTART Plus Entry Level	)_
Development Programmer	5
Pin Functions	
Avdd2	
Avss	
MCLR/VPP1	
OSC1/CLKI 1 OSC2/CLKO 1	
RA0/AN0	
RA1/AN11	
RA2/AN2/VREF 1	1
RA3/AN3/VREF+1	
RA4/T0CKI	
RA5/AN4/SS/LVDIN1 RB0/INT01	
RB1/INT1 1	
RB2/INT2	
RB3/INT31	4
RB41	
RB51	
RB61 RB71	
RC0/T1OSO/T1CKI	
RC1/T1OSI 1	
RC2/CCP1 1	
RC3/SCK/SCL 1	
RC4/SDI/SDA1	
RC5/SDO1 RC6/TX/CK1	
RC7/RX/DT	
RD0/AD0	
RD0/PSP0 1	
RD1/AD1 1	
RD2/AD21	
RD3/AD31 RD4/AD41	
RD5/AD5 1	
RD6/AD6	
RD7/AD7 1	6
RE0/ <u>ALE</u> 1	
RE1/OE	
RE2/CS	(  -
RE2/WRL	
RE4	
RE51	
RE6 1	17
RE7/CCP21	
RF0/AN5	
RF1/AN61 RF2/AN71	
RF2/AN7 1 RF3/AN8	
RF4/AN9 1	

Advance Information

© 2001-2013 Microchip Technology Inc.

۲

# PIC18C601/801

RF5/AN10	
RF6/AN11	
RF7	
RG0/CANTX1	
RG1/CANTX2	
RG2/CANRX	
RG3	
RG4	
RH1/A17	
RH2/A18	
RH3/A19	
RH4/AN12	
RH5/AN12	•••••
RH6/AN14 RH7/AN15	
RJ0/AD8	
RJ1/AD9	
RJ2/AD10	
RJ3/AD11	
RJ4/AD12	
RJ5/AD13	
RJ6/AD14	
RJ7/AD15	
VDD	
Vss	
POP	
POR. See Power-on Reset	
PORTA	
Associated Registers	104
Block Diagram	
RA3:RA0 and RA5 Pins	
RA4/T0CKI Pin	104
Functions	101
T unotions	
Initialization	
	103
Initialization	103 103
Initialization PORTA Register	103 103
Initialization PORTA Register TRISA Register	103 103 103
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram	
Initialization PORTA Register TRISA Register PORTB Associated Registers	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Functions	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Functions Initialization	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Functions Initialization PORTB Register	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Functions Initialization PORTB Register RB0/INT Pin, External	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Functions Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3:RB0 Port Pins RB3:RB0 Port Pins RB7:RB4 Port Pins Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit TRISB Register	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit TRISB Register PORTC	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Functions Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit TRISB Register PORTC Associated Registers	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Functions Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit TRISB Register PORTC Associated Registers Block Diagram	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3:RB0 Port Pins RB3:RB0 Port Pins RB7:RB4 Port Pins Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit TRISB Register PORTC Associated Registers Block Diagram Functions Initialization	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit TRISB Register PORTC Associated Registers Block Diagram Functions Initialization	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit TRISB Register PORTC Associated Registers Block Diagram Functions Initialization PORTC Register	
Initialization	
Initialization	
Initialization	
Initialization	
Initialization PORTA Register TRISA Register PORTB Associated Registers Block Diagram RB3 Pin RB3:RB0 Port Pins RB7:RB4 Port Pins Functions Initialization PORTB Register RB0/INT Pin, External RB7:RB4 Interrupt-on-Change Flag (RBIF Bit TRISB Register PORTC Associated Registers Block Diagram Functions Initialization PORTC Register RC3/SCK/SCL Pin RC7/RX/DT Pin TRISC Register PORTD Associated Registers Block Diagram	
Initialization	
Initialization PORTA Register	
Initialization	
Initialization	
Initialization	

PORTE		
Associated Registers 115		
Block Diagram		
I/O Mode 113		
System Bus Mode 114		
Functions 115		
Initialization113		
PORTE Register 113		
TRISE Register 113		
PORTF		
Associated Registers 118		
Block Diagram		
RF2:RF0 Pins 116		
RF5:RF3 Pins 117		
RF7:RF6 Pins 117		
Functions 118		
Initialization116		
PORTF Register 116		
TRISF 116		
PORTG 119		
Associated Registers 120		
Block Diagram		
System Bus Mode 120		
Functions 120		
Initialization119		
PORTG Register 119		
TRISG 119		
PORTH		
Associated Registers 123		
Block Diagram121, 122		
Functions 123		
Initialization121		
PORTH Register 121		
TRISH 121		
PORTJ		
Associated Registers		
Block Diagram		
I/O Mode		
System Bus Mode 125		
Functions		
Initialization		
PORTJ Register 124		
TRISJ		
Postscaler, WDT		
Assignment (PSA Bit)		
Rate Select (PS2:PS0 Bits) 129		
Switching Between Timer0 and WDT 129		
Power-down Mode. See SLEEP		
Power-on Reset (POR)		
Oscillator Start-up Timer (OST)		
Power-up Timer (PWRT)		
Time-out Sequence		
Time-out Sequence on Power-up		
Timing Diagram		
Prescaler, Capture		
Prescaler, Timer0		
Assignment (PSA Bit)		
Rate Select (PS2:PS0 Bits)		
Switching Between Timer0 and WDT		
Prescaler, Timer1		
Prescaler, Timer2		
PRO MATE II Universal Device Programmer		
Product Identification System 317		

© 2001-2013 Microchip Technology Inc.

Program Counter
PCL Register
PCLATH Register
Program Memory
Boot Loader
Memory Map, PIC18C601
Program Bit Not Set40
Program Bit Set41
Memory Map, PIC18C801
Program Bit Not Set40
Program Bit Set
Program Memory Map
PIC18C601
Program Bit Set
PIC18C801
Program Bit Set
Programming, Device Instructions
PUSH
PWM (CCP Module)
Block Diagram
CCPR1H:CCPR1L Registers
Duty Cycle146
Example Frequencies/Resolutions147
Output Diagram146
Period146
Registers Associated with PWM147
Setup for PWM Operation147
Setup for PWM Operation         147           TMR2 to PR2 Match         135, 146
TMR2 to PR2 Match 135, 146
TMR2 to PR2 Match
TMR2 to PR2 Match 135, 146 Q Q Clock
TMR2 to PR2 Match
TMR2 to PR2 Match 135, 146 Q Q Clock
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       R         RAM. See Data Memory       245         RCSTA Register       245
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       RAM. See Data Memory         RCALL       245
TMR2 to PR2 Match
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       R         RAM. See Data Memory       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       146         R       146         RCALL       245         RCSTA Register       29EN Bit         SPEN Bit       177         Reader Response       316         Register File       49
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       146         RAM. See Data Memory       245         RCALL       245         RCSTA Register       3PEN Bit         SPEN Bit       177         Reader Response       316         Register File       49         Register File       49         Register File Summary       54
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       R         RAM. See Data Memory       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Registers       54
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       146         RAM. See Data Memory       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Register S       54         Registers       ADCON0 (A/D Control 0)         193
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       R         RCALL       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Register File Summary       54         Register File Summary       54         ADCON0 (A/D Control 0)       193         ADCON1 (A/D Control 1)       194
TMR2 to PR2 Match       135, 146         Q       Q Clock       146         R       R       146         RCALL       245       245         RCSTA Register       SPEN Bit       177         Reader Response       316       316         Register File       49       49         Register File Summary       54       54         Register       193       ADCON0 (A/D Control 0)       193         ADCON1 (A/D Control 1)       194       CCP1CON and CCP2CON (CCP Control)       141
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       R         RCALL       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Register File Summary       54         Registers       ADCON1 (A/D Control 0)       193         ADCON1 (A/D Control 1)       194         CCP1CON and CCP2CON (CCP Control)       141         CONFIG1H (Configuration Register 1 High)       208
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       146         RAM. See Data Memory       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Register File Summary       54         Registers       ADCON0 (A/D Control 0)       193         ADCON1 (A/D Control 1)       194         CCP1CON and CCP2CON (CCP Control)       141         CONFIG1H (Configuration Register 1 High)       208         CONFIG2H (Configuration Register 2 High)       209
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       R         RAM. See Data Memory       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Register File Summary       54         Registers       ADCON0 (A/D Control 0)       193         ADCON1 (A/D Control 1)       194         CCP1CON and CCP2CON (CCP Control)       141         CONFIG1H (Configuration Register 1 High)       208         CONFIG2L (Configuration Register 2 Low)       208
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       R         RAM. See Data Memory       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Register File Summary       54         Registers       ADCON0 (A/D Control 0)       193         ADCON1 (A/D Control 1)       194         CCP1CON and CCP2CON (CCP Control)       141         CONFIG1H (Configuration Register 1 High)       208         CONFIG2H (Configuration Register 2 Low)       209         CONFIG4L (Configuration Register 4 Low)       209
TMR2 to PR2 Match       135, 146         Q       Q Clock       146         R       R       146         R       RCALL       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Register File Summary       54         Register File Summary       54         CONON (A/D Control 0)       193         ADCON0 (A/D Control 1)       194         CCP1CON and CCP2CON (CCP Control)       141         CONFIG2H (Configuration Register 1 High)       208         CONFIG2H (Configuration Register 2 Low)       209         CONFIG2L (Configuration Register 4 Low)       209         CONFIG2L (Configuration Register 4 Low)       209         CSEL2 (Chip Select 2)       70
TMR2 to PR2 Match       135, 146         Q       Q         Q Clock       146         R       R         RAM. See Data Memory       245         RCSTA Register       245         SPEN Bit       177         Reader Response       316         Register File       49         Register File Summary       54         Registers       ADCON0 (A/D Control 0)       193         ADCON1 (A/D Control 1)       194         CCP1CON and CCP2CON (CCP Control)       141         CONFIG1H (Configuration Register 1 High)       208         CONFIG2H (Configuration Register 2 Low)       209         CONFIG4L (Configuration Register 4 Low)       209

INTCON2 (Interrupt Control 2) ......92 

PIE (Peripheral Interrupt Enable) ......97 PIR (Peripheral Interrupt Request) ......95 PSPCON (PSP Control) ......50 RCON (Register Control) ......94 

	78
SSPCON1 (SSP Control 1)1	
SSPCON2 (SSP Control 2) 15	52
SSPSTAT (SSP Status)15	50
STATUS	61
STKPTR (Stack Pointer)	44
T0CON (Timer0 Control)12	27
T1CON (Timer1 Control)13	30
T2CON (Timer2 Control)13	
T3CON (Timer3 Control)	
TXSTA (Transmit Status and Control)	
WDTCON (Watchdog Timer Control)	
RESET	
Timing Diagram	
RETFIE	
RETLW	
RETURN	
Revision History	
RH3:RH0 Pins (I/O Mode) 12	
RH3:RH0 Pins (System Bus Mode) 12	22
RH7:RH4 Pins12	21
RLCF	47
RLNCF	48
RRCF	48
RRNCF	
2	
S	
Sales and Support	17
SCI. See USART	.,
SCK	<b>E</b> 2
SDI	
SDO	
Serial Clock, SCK	53
Serial Communication Interface. See USART	
Serial Data In, SDI 15	
Serial Data In, SDI	
Serial Data In, SDI	53
Serial Data In, SDI	53
Serial Data In, SDI	53 49
Serial Data In, SDI       19         Serial Data Out, SDO       19         Serial Peripheral Interface. See SPI       19         SETF       24         Slave Select Synchronization       19	53 49 56
Serial Data In, SDI       11         Serial Data Out, SDO       12         Serial Peripheral Interface. See SPI       12         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14	53 49 56 53
Serial Data In, SDI         19           Serial Data Out, SDO         19           Serial Peripheral Interface. See SPI         24           SETF         24           Slave Select Synchronization         14           SLEEP         20           SLEEP         207, 212, 25	53 49 56 53 50
Serial Data In, SDI       19         Serial Data Out, SDO       19         Serial Peripheral Interface. See SPI       24         SETF       24         Slave Select Synchronization       11         Slave Select, SS       11         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       26	53 49 56 53 50
Serial Data In, SDI       11         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       14         SETF       2         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       20         Special Event Triager. See Compare       20	53 49 56 53 50 60
Serial Data In, SDI       11         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       14         SETF       2         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       20         Special Event Trigger. See Compare       20         Special Features of the CPU       20	53 49 56 53 50 60 07
Serial Data In, SDI       11         Serial Data Out, SDO       12         Serial Peripheral Interface. See SPI       14         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       26         Special Features of the CPU       22         Special Function Register Map       24	53 49 56 53 50 60 07 53
Serial Data In, SDI       11         Serial Data Out, SDO       12         Serial Peripheral Interface. See SPI       12         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 25         Software Simulator (MPLAB SIM)       26         Special Event Trigger. See Compare       20         Special Function Register Map       25         Special Function Registers       26	53 49 56 53 50 60 07 53
Serial Data In, SDI       19         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       24         SIave Select Synchronization       11         Slave Select, SS       11         SLEEP       207, 212, 25         Software Simulator (MPLAB SIM)       26         Special Event Trigger. See Compare       26         Special Features of the CPU       26         Special Function Register Map       26         Special Function Register S       27	53 49 56 53 50 60 07 53 49
Serial Data In, SDI       19         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       14         SETF       24         Slave Select Synchronization       14         SLEEP       207, 212, 25         Software Simulator (MPLAB SIM)       26         Special Event Trigger. See Compare       26         Special Features of the CPU       20         Special Function Register Map       26         Spl       32         SPI       32         Associated Registers       14	53 49 56 53 50 60 07 53 49 58
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       14         SETF       24         Slave Select, SS       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       26         Special Event Trigger. See Compare       26         Special Features of the CPU       20         Special Function Register Map       26         Special Function Registers       27         SPI       Associated Registers       14         Master Mode       14	53 49 56 53 50 60 07 53 49 58 55
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       14         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       24         Special Event Trigger. See Compare       3         Special Features of the CPU       22         Special Function Register Map       4         Special Function Registers       14         Master Mode       14         Serial Clock       14	53 49 56 53 50 60 07 53 49 58 55 53
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       14         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 24         Software Simulator (MPLAB SIM)       20         Special Event Trigger. See Compare       20         Special Function Register Map       2         Special Function Registers       4         Master Mode       14         Serial Clock       14         Serial Data In       14	53 49 56 53 50 60 07 53 49 58 55 53 53
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       14         SETF       24         Slave Select Synchronization       14         SLEEP       207, 212, 25         Software Simulator (MPLAB SIM)       20         Special Event Trigger. See Compare       29         Special Function Register Map       2         Special Function Registers       14         Serial Clock       15         Serial Data In       14         Serial Data Out       14	53 49 56 53 50 60 07 53 49 58 55 53 53 53
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       21         SETF       22         Slave Select Synchronization       14         SLEF       21         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       20         Special Event Trigger. See Compare       21         Special Features of the CPU       20         Special Function Register Map       21         Special Function Registers       14         Serial Clock       11         Serial Data In       11         Serial Data Out       11         Serial Data Out       11         Serial Data Out       11	53 49 56 53 50 60 07 53 49 58 53 53 53 53 53
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       14         SETF       24         Slave Select Synchronization       14         SLEEP       207, 212, 25         Software Simulator (MPLAB SIM)       20         Special Event Trigger. See Compare       29         Special Function Register Map       2         Special Function Registers       14         Serial Clock       15         Serial Data In       14         Serial Data Out       14	53 49 56 53 50 60 07 53 49 58 53 53 53 53 53
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       21         SETF       22         Slave Select Synchronization       14         SLEF       21         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       20         Special Event Trigger. See Compare       21         Special Features of the CPU       20         Special Function Register Map       21         Special Function Registers       14         Serial Clock       11         Serial Data In       11         Serial Data Out       11         Serial Data Out       11         Serial Data Out       11	53 49 56 53 50 60 07 53 49 58 53 53 53 53 53 53
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       24         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       26         Special Event Trigger. See Compare       3         Special Features of the CPU       20         Special Function Register Map       26         Special Function Registers       4         Master Mode       19         Serial Clock       11         Serial Data Out       11         Save Select       11         SPI Clock       12	53 49 56 53 50 60 07 53 49 58 53 53 53 53 53 53
Serial Data In, SDI       11         Serial Data Out, SDO       12         Serial Peripheral Interface. See SPI       24         SETF       24         Slave Select Synchronization       11         Slave Select, SS       12         Superstand       14         Slave Select, SS       14         Slave Select, SS       14         Slave Select, SS       14         Stere       207, 212, 24         Software Simulator (MPLAB SIM)       26         Special Features of the CPU       20         Special Features of the CPU       20         Special Function Register Map       25         Special Function Registers       14         Master Mode       15         Serial Clock       14         Serial Data In       14         Serial Data Out       14         SIave Select       14         SPI Mode       14         SPI Mode       14         SPI Mode       14         SPI Module       14	53 49 56 53 50 60 07 53 49 55 53 53 53 53 53 53 53
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       24         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 24         Software Simulator (MPLAB SIM)       20         Special Event Trigger. See Compare       29         Special Function Register Map       24         Special Function Registers       14         Serial Data In       14         Serial Data Out       14         Serial Data Out       14         SPI Clock       14         SPI Mode       14         SPI Module       14         Slave Mode       14	53 49 56 53 50 60 7 53 50 60 7 53 55 53 55 53 55 53 55 53 55 53
Serial Data In, SDI       11         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       24         SETF       27         Slave Select Synchronization       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       26         Special Event Trigger. See Compare       29         Special Features of the CPU       20         Special Function Register Map       26         Special Function Registers       27         SPI       Associated Registers         Master Mode       11         Serial Data Out       11         Serial Data Out       11         SPI Clock       11         SPI Mode       12         SPI Mode       14         Serial Data Out       14         Serial Data Out       14         SPI Node       14         SPI Mode       14         SPI Mode       14         Slave Select       14         Slave Mode       14         Slave Mode       14         Slave Select Synchronization       14	53 49 56 50 60 7 53 60 7 53 50 60 7 53 53 53 53 53 53 53 55 53 55 56 56
Serial Data In, SDI       14         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       24         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       24         Special Event Trigger. See Compare       29         Special Features of the CPU       22         Special Function Register Map       25         Special Function Registers       26         SPI       Associated Registers         Master Mode       11         Serial Data In       11         Serial Data Out       12         SPI Mode       13         SPI Mode       14         Serial Data Out       14         Serial Data Out       14         SPI Mode       14         SPI Module       14         Slave Select Synchronization       14         Slave Select Synchronization	53 49 553 50 60 73 49 553 53 553 553 553 553 553 553 553 553
Serial Data In, SDI       11         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       24         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       26         Special Features of the CPU       22         Special Function Register Map       25         Special Function Registers       26         SPI       Associated Registers         Master Mode       11         Serial Data In       12         Serial Data Out       14         SIave Select       14         SPI Mode       14         Slave Select       14         Serial Data Out       14         Slave Select       14         Slave Mode       14         Slave Select Synchronization       14         Slave Select Synchronization	53 49 56 50 60 73 49 55 53 53 53 53 55 55 56 56 57
Serial Data In, SDI       11         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       24         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 24         Software Simulator (MPLAB SIM)       26         Special Features of the CPU       26         Special Function Register Map       26         Special Function Registers       14         Serial Clock       14         Serial Data In       14         Serial Data Out       14         SIave Select       15         SPI Mode       16         SPI Mode       17         Slave Select       18         SIave Select Synchronization       14         Slave Select       15         SPI Mode       14         Slave Slave Synchronization       14         Slave Slave Synchronization       14         Slave Suphort Timing       15         Slave Timing with CKE = 0       14         Slave Timing with CKE = 1       14	53 49 56 53 50 60 07 53 53 53 53 53 55 55 55 55 55 55 55 55
Serial Data In, SDI       11         Serial Data Out, SDO       14         Serial Peripheral Interface. See SPI       24         SETF       24         Slave Select Synchronization       14         Slave Select, SS       14         SLEEP       207, 212, 22         Software Simulator (MPLAB SIM)       26         Special Features of the CPU       22         Special Function Register Map       25         Special Function Registers       26         SPI       Associated Registers       14         Master Mode       11         Serial Data In       12         Serial Data Out       14         SIave Select       14         SPI Mode       14         Slave Select       14         SPI Mode       14         Slave Select       14         Slave Select Synchronization       14         Slave S	53 49 56 53 50 60 07 53 53 53 53 53 55 55 55 55 55 55 55 55

Advance Information

۲

# PIC18C601/801

SSP14	
	49
Block Diagram	10
SPI Mode15	- 2
Block Diagram (SPI Mode)	53
I ² C Mode. See I ² C	
SPI Mode15	53
SPI Mode. See SPI	
SSPBUF15	55
SSPCON1	51
SSPCON215	52
SSPSR	
SSPSTAT	
TMR2 Output for Clock Shift 135, 13	36
SSP Module	
SPI Master Mode15	55
SPI Slave Mode15	56
SSPCON1 Register	51
SSPCON2 Register	
SSPOV	
SSPSTAT Register	
R/W Bit	
SUBFWB	
SUBLW	51
SUBWF	52
SUBWFB	53
SWAPF	
Synchronous Serial Port. See SSP	
Synchionous Senai Font. See SSF	
т	
•	
Table Pointer Register	
Table Read7	
Table Read/Write Control Registers7	74
Table Write	77
16-bit External	
16-bit Word Write Mode	
Byte Select Mode	R1
Byte Write Mode	
	32
	32 30
8-bit External	32 30
Table Writes	32 30 78
	32 30 78
Table Writes	32 30 78
Table Writes Long Writes	32 30 78 33 55
Table Writes	32 30 78 33 55 56
Table Writes         6           Long Writes         2           TBLRD         2           TBLWT         2           Timer0         12	32 30 78 33 55 56 27
Table Writes       8         Long Writes       8         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12	32 30 78 33 55 56 27
Table Writes       8         Long Writes       25         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       12	32 30 78 33 55 56 27 29
Table Writes       8         Long Writes       26         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       16-bit Mode       12	32 30 78 33 55 56 27 29 28
Table Writes       6         Long Writes       25         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       16-bit Mode         8-bit Mode       12	32 30 78 33 55 56 27 29 28 28
Table Writes       6         Long Writes       25         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       16-bit Mode         8-bit Mode       12	32 30 78 33 55 56 27 29 28 28
Table Writes         8           Long Writes         8           TBLRD         25           TBLWT         25           Timer0         12           Associated Registers         12           Block Diagram         16-bit Mode           8-bit Mode         12           Clock Source Edge Select (TOSE Bit)         12	32 30 78 33 55 56 27 29 28 28 28 29
Table Writes         8           Long Writes         8           TBLRD         26           TBLWT         26           Timer0         12           Associated Registers         12           Block Diagram         12           16-bit Mode         12           &-bit Mode         12           Clock Source Edge Select (T0SE Bit)         11           Clock Source Select (T0CS Bit)         12	32 30 78 33 55 56 27 29 28 28 29 29
Table Writes         8           Long Writes         8           TBLRD         25           TBLWT         25           Timer0         12           Associated Registers         12           Block Diagram         12           16-bit Mode         12           8-bit Mode         12           Clock Source Edge Select (TOSE Bit)         12           Clock Source Select (TOCS Bit)         12           Interrupt         10	32 30 78 33 55 56 27 29 28 28 29 20 1
Table Writes       8         Long Writes       8         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       12         16-bit Mode       12         8-bit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Interrupt       11         Overflow Interrupt       12	32 30 78 33 55 56 27 29 28 28 29 20 1
Table Writes       8         Long Writes       8         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       12         16-bit Mode       12         8-bit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Interrupt       10         Overflow Interrupt       12         Prescaler. See Prescaler, Timer0       12	32 30 78 33 55 56 27 29 28 29 29 29 29 29 29 29
Table Writes       8         Long Writes       8         TBLRD       25         TBLWT       26         Timer0       12         Associated Registers       12         Block Diagram       16-bit Mode         16-bit Mode       12         Shit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Interrupt       10         Overflow Interrupt       12         Prescaler. See Prescaler, Timer0       10CON Register	32 30 78 33 55 56 27 29 28 29 29 29 21 29 21 29 21 29 21
Table Writes       8         Long Writes       8         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       12         16-bit Mode       12         &-bit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Interrupt       10         Overflow Interrupt       12         Prescaler. See Prescaler, Timer0       12         TOCON Register       12         Timing Diagram       26	32 30 78 33 55 56 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29
Table Writes       8         Long Writes       8         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       12         16-bit Mode       12         8-bit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Interrupt       10         Overflow Interrupt       12         Prescaler. See Prescaler, Timer0       12         TOCON Register       12         Timing Diagram       26         Timer1       13	32 30 78 35 56 27 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29
Table Writes       8         Long Writes       8         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       12         16-bit Mode       12         &-bit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Interrupt       10         Overflow Interrupt       12         Prescaler. See Prescaler, Timer0       12         TOCON Register       12         Timing Diagram       26	32 30 78 35 56 27 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29
Table Writes       8         Long Writes       26         TBLRD       25         TBLWT       25         Timer0       12         Associated Registers       12         Block Diagram       12         16-bit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Interrupt       10         Overflow Interrupt       12         Prescaler. See Prescaler, Timer0       12         TOCON Register       12         Timing Diagram       28         Timer1       13         Associated Registers       13	32 30 78 35 56 27 29 28 29 29 29 29 29 21 29 21 29 21 29 27 30 34
Table Writes       8         Long Writes       26         TBLRD       26         TBLWT       26         Timer0       12         Associated Registers       12         Block Diagram       12         16-bit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Clock Source Select (TOCS Bit)       12         Nerrlow Interrupt       12         Prescaler. See Prescaler, Timer0       10         TOCON Register       12         Timing Diagram       12         Timer1       13         Associated Registers       13         Block Diagram       13	32 30 78 35 56 27 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29
Table Writes         8           Long Writes         8           TBLRD         25           TBLWT         26           Timer0         12           Associated Registers         12           Block Diagram         16-bit Mode           16-bit Mode         12           Clock Source Edge Select (TOSE Bit)         12           Clock Source Select (TOCS Bit)         12           Interrupt         10           Overflow Interrupt         12           Prescaler. See Prescaler, Timer0         12           Timing Diagram         26           Timer1         13           Associated Registers         13           Block Diagram         13           16-bit R/W Mode         13	32         30         78         355         56         27         28         29         28         29         21         22         23         23         23         24         25         26         27         330         34         31         32
Table Writes       8         Long Writes       26         TBLRD       26         TBLWT       26         Timer0       12         Associated Registers       12         Block Diagram       12         16-bit Mode       12         Clock Source Edge Select (TOSE Bit)       12         Clock Source Select (TOCS Bit)       12         Clock Source Select (TOCS Bit)       12         Nerrlow Interrupt       12         Prescaler. See Prescaler, Timer0       10         TOCON Register       12         Timing Diagram       12         Timer1       13         Associated Registers       13         Block Diagram       13	32         33         56         27         28         29         21         22         23         24         25         26         27         30         31         32         33         34         31         32         33

	escaler. See Prescaler, Timer1		
Sp	pecial Event Trigger (CCP)	133,	144
	CON Register		
	ming Diagram		
TN	/R1H Register		130
	/R1L Register		
	MR3L Register		
Timer2	·····		
	sociated Registers		136
	ock Diagram		
	ostscaler. See Postscaler, Timer2		100
	R2 Register	135	1/6
	escaler. See Prescaler, Timer2	155,	140
	SP Clock Shift	105	100
	2CON Register		
	/R2 Register		
	MR2 to PR2 Match Interrupt 135,		
	sociated Registers		
BI	ock Diagram		
	16-bit R/W Mode		
	scillator		
	verflow Interrupt		
Sp	becial Event Trigger (CCP)		139
та	CON Register		137
	MR3H Register		
Timing	Diagrams		
Ă	knowledge Sequence Timing		170
	aud Rate Generator with Clock Arbitration		
	RG Reset Due to SDA Collision		
	us Collision		
	START Condition Timing		173
Bi	us Collision During a RESTART Condition		
D	(Case 1)		175
D,	us Collision During a RESTART Condition		175
DU	(Case 2)		175
D.	us Collision During a START Condition		175
ы			171
р.	(SCL = 0)		
	us Collision During a STOP Condition		
	us Collision for Transmit and Acknowledge		
1-(	C Bus Data		289
	C Master Mode First START Bit Timing		
	C Master Mode Reception Timing		
	C Master Mode Transmission Timing		
	aster Mode Transmit Clock Arbitration		
	epeated START Condition		
	ave Synchronization		
SI	ow Rise Time		. 33
SF	PI Mode Timing (Master Mode) SPI Mode		
	Master Mode Timing Diagram		155
	PI Mode Timing (Slave Mode with CKE = 0)		
SF	PI Mode Timing (Slave Mode with CKE = 1)		157
	TOP Condition Receive or Transmit		
	me-out Sequence on Power-up		
	SART Asynchronous Master Transmission		
	SART Asynchronous Reception		
	SART Synchronous Reception		
	SART Synchronous Transmission		
	ake-up from SLEEP via Interrupt		

 $\ensuremath{\textcircled{}^{\circ}}$  2001-2013 Microchip Technology Inc.

O

۲

# PIC18C601/801

Timing Diagrams and Specifications27	75
A/D Conversion	
Capture/Compare/PWM (CCP)28	
CLKOUT and I/O27	76
External Clock27	75
I ² C Bus Data28	37
I ² C Bus START/STOP Bits28	37
Oscillator Start-up Timer (OST)28	30
Power-up Timer (PWRT)28	30
RESET	30
Timer0 and Timer128	31
USART Synchronous Receive	
(Master/Slave)29	<del>)</del> 1
USART Synchronous Transmission	
(Master/Slave)29	<del>)</del> 1
Watchdog Timer (WDT)28	30
TRISE Register11	13
TSTFSZ25	57
Two-Word Instructions	48
TXSTA Register17	77
BRGH Bit17	79

#### U

0
Universal Synchronous Asynchronous
Receiver Transmitter. See USART
USART
Asynchronous Mode183
Master Transmission184
Receive Block Diagram185
Reception186
Registers Associated with Reception
Registers Associated with Transmission
Transmit Block Diagram183
Baud Rate Generator (BRG)179
Baud Rate Error, Calculating179
Baud Rate Formula179
High Baud Rate Select (BRGH Bit)179
Sampling179
Serial Port Enable (SPEN Bit)177
Synchronous Master Mode
Reception
Registers Associated with Reception
Registers Associated with Transmission
Timing Diagram,
Synchronous Receive
Timing Diagram,
Synchronous Transmission
Transmission
Synchronous Slave Mode
Registers Associated with Reception
Registers Associated with Transmission 190

#### w

Wake-up from SLEEP207, 21	2
Timing Diagram21	3
Watchdog Timer (WDT)207, 21	0
Associated Registers 21	1
Block Diagram21	1
Postscaler. See Postscaler, WDT	
Programming Considerations	
RC Oscillator21	
Time-out Period21	0
Timing Diagram 28	0
WDTCON Register 21	0
Waveform for General Call Address Sequence 16	
WCOL165, 167, 17	
WCOL Status Flag 16	
Worldwide Sales and Service 31	8
WWW, On-Line Support7, 31	5
Х	
XORI W 25	7

XORLW	
XORWF	

DS39541B-page 314

# PIC16XXXXXX FAMILY

#### THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

#### CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

© 2001-2013 Microchip Technology Inc.

# PIC16XXXXXX FAMILY

#### **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent		
From: Name				
	Company Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Appl	lication (optional):			
Would you like a reply? Y N				
Devi	ice: PIC16xxxxxx family	Literature Number: DS39541B		
Que	stions:			
1. 1	What are the best features of this document?			
-				
2.	2. How does this document meet your hardware and software development needs?			
-				
3.	3. Do you find the organization of this document easy to follow? If not, why?			
-				
4.	What additions to the document do you think would enhar	nce the structure and subject?		
-				
-		effective the every live fulles and		
5.	5. What deletions from the document could be made without affecting the overall usefulness?			
-				
6.	6. Is there any incorrect or misleading information (what and where)?			
-				
7.	How would you improve this document?			
-				
-				

DS39541B-page 316

© 2001-2013 Microchip Technology Inc.

#### **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X /XX XXX   femperature Package Pattern Range	<ul> <li>Examples:</li> <li>a) PIC18LC601 - I/L = Industrial temp., PLCC package, Extended VDD limits, 16-bit data bus.</li> <li>b) PIC18LC801 - E/PT = Extended temp., TQFP package, Extended VDD limits, 16-bit data bus.</li> </ul>
Device	PIC18C601/801 ⁽¹⁾ , PIC18C601/801T ⁽²⁾ : VDD range, 4.2V to 5.5V PIC18LC601/801 ⁽¹⁾ , PIC18LC601/801T ⁽²⁾ VDD range, 2.5V to 5.5V	
Temperature Range	I = $-40^{\circ}$ C to $+70^{\circ}$ C (Industrial) E = $-40^{\circ}$ C to $+125^{\circ}$ C (Extended)	
Package	PT = TQFP L = PLCC	Note 1: C = Standard Voltage Range LC = Wide Voltage Range
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	2: T = In tape and reel (both PLCC and TQFP packages)

#### SALES AND SUPPORT

#### Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)

39541a.book Page 318 Tuesday, January 29, 2013 2:34 PM

# PIC18C601/801

NOTES:

 $\bigcirc$ 

۲

DS39541B-page 318

C

۲

# PIC18C601/801

NOTES:

 $\ensuremath{\textcircled{}^{\circ}}$  2001-2013 Microchip Technology Inc.

39541a.book Page 320 Tuesday, January 29, 2013 2:34 PM

۲

# PIC18C601/801

DS39541B-page 320

Advance Information

 $\ensuremath{\textcircled{}^{\circ}}$  2001-2013 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
  intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

2001-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769331

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELO[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

### QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949

© 2001-2013 Microchip Technology Inc.



#### Worldwide Sales and Service

#### AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

**Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

**Toronto** Mississauga, Ontario, Canada

Tel: 905-673-0699 Fax: 905-673-6509

#### ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu

Tel: 86-28-8665-5511

Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

**China - Hangzhou** Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

**China - Hong Kong SAR** Tel: 852-2943-5100 Fax: 852-2401-3431

**China - Nanjing** Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

**China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

**China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

**China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

**China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130

**China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

ASIA/PACIFIC

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

**Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934 Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

**Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850

**Taiwan - Hsin Chu** Tel: 886-3-5778-366 Fax: 886-3-5770-955

**Taiwan - Kaohsiung** Tel: 886-7-213-7828 Fax: 886-7-330-9305

**Taiwan - Taipei** Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

**Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350

#### EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

**Italy - Milan** Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12

DS39541B-page 322

Advance Information

© 2001-2013 Microchip Technology Inc.

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 8-bit Microcontrollers - MCU category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

CY8C20524-12PVXIT MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2 MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2 MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2 MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2 MB95F818KPMC-G-SNE2 LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA MB95F318EPMC-G-SNE2 MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H MB95F108AJSPMC-G-JNE1 73S1210F-68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2 MB88386PMC-GS-BNDE1 LC87FBK08AU-SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-N2E1 LC87F5NC8AVU-QIP-E LC87F76C8AU-TQFP-E LC87F2G08AU-SSOP-E CP8085AT MB95F564KPF-G-UNE2 MC9S08PA4VWJ MC9S08QG8CDTE MC9S08SH4CWJR