MICROCHIP PIC18F04/05/14/15Q40

14/20-Pin, Low-Power, High-Performance Microcontroller
with XLP Technology

Introduction

The PIC18-Q40 microcontroller family is available in 14/20-pin devices for real-time control applications. This family
features a 12-bit ADC with Computation (ADCC) automating Capacitive Voltage Divider (CVD) techniques for
advanced capacitive touch sensing, averaging, filtering, oversampling and threshold comparison and two 8-bit DAC
modules. The family showcases a 16-bit Pulse-Width Modulator (PWM) module which provides dual independent
outputs on the same time base. Additional features include vectored interrupt controller with fixed latency for handling
interrupts, system bus arbiter, Direct Memory Access (DMA) capabilities, UART with support for asynchronous,
DMX, Digital Addressable Lighting Interface (DALI) and Local Interconnect Network (LIN) protocols, Serial Peripheral
Interface (SPI), I2C and a programmable 32-bit Cyclic Redundancy Check (CRC) with memory scan. This family
also includes memory features such as Memory Access Partition (MAP) to support users in data protection and
bootloader applications and Device Information Area (DIA), which stores factory calibration values to help improve
temperature sensor accuracy.

PIC18-Q40 Family Types

Table 1. Devices included in this data sheet

1/0 Pins/
Peripheral Pin Select

=
<
o
(7]
S
©
(=]

Program Memory Flash
DETEY S S o]
Memory Access Partition/
Device Information Area
8-Bit Timer with HLT/
16-Bit Timers
16-Bit Dual PWM/
Complimentary Waveform
Generator
Signal Measurement Timer
Numerically Controlled
Oscillator
Configurable Logic Cell
12-Bit ADCC (channels)
8-Bit DAC
Comparator/
Zero-Cross Detect
High-Low Voltage Detect
UART with Protocol Support
32-Bit CRC with Scanner
Vectored Interrupts
Peripheral Module Disable
Temperature Indicator

I A NY Direct Memory Access (DMA)
MM dEd Windowed Watchdog Timer

PIC18F04Q40 16k 1024 512 YIY | 12IY 2/3 31 1 1 1 4 1 2 2/1 1 2/1 2/1 Y Y Y Y

PIC18F05Q40 32k 2048 512 YIY | 12IY 2/3 31 1 1 1 4 " 2 2/ 1 21 211 Y Y Y Y

PIC18F14Q40 16k 1024 512 YIY | 18lY 2/3 31 1 1 1 4 17 2 21 1 21 2/1 Y Y Y Y

PIC18F15Q40 32k 2048 512 YIY | 18/Y 2/3 31 1 1 1 4 17 2 2/ 1 2/1 2/1 Y Y Y Y
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 1

and its subsidiaries

PIC18F04/05/14/15Q40

Table 2. Devices not included in this data sheet

DETER Y
Data EEPROM
1/0 Pins/
Peripheral Pin Select
8-Bit Timer with HLT/
16-Bit Timers
16-Bit Dual PWM/
Generator
Oscillator
8-Bit DAC
Comparator/
Zero-Cross Detect

<
[}
1]
fra
2
I
£
Q
=
=
©
[
<)
o
<
o

Memory Access Partition/
Device Information Area
Complimentary Waveform
Signal Measurement Timer
Numerically Controlled
Configurable Logic Cell
12-Bit ADC2 (channels)
High-Low Voltage Detect

PIC18F06Q40 64k 4096 512 Y | 121y 2/3 31 1 1 1 4 1" 2 211 1 211
PIC18F16Q40 64k 4096 512 YIY | 18/Y 2/3 31 1 1 1 4 17 2 2/ 1 21

Features

UART with Protocol Support

211
211

S § 5 2
5
o
1838 e
o | £ < [=
< £ £ = B
> | & H = (<]
5| S || 8| =
€| "4 = ©
s | 2| o0 | 8|5
s H = 9 =
,..-g [11] > o
° g e
@ = N @
R o
a
4 Y Y Y Y
4 Y Y Y

* C Compiler Optimized RISC Architecture
» Operating Speed:
— DC - 64 MHz clock input
— 62.5 ns minimum instruction cycle
» Four Direct Memory Access (DMA) Controllers:

— Data transfers to SFR/GPR spaces from either Program Flash Memory, Data EEPROM or SFR/GPR

spaces
— User programmable source and destination sizes
— Hardware and software triggered data transfers
» Vectored Interrupt Capability:
— Selectable high/low priority
— Fixed interrupt latency of three instruction cycles
— Programmable vector table base address
— Backwards compatible with previous interrupt capabilities
» 128-Level Deep Hardware Stack
* Low-Current Power-on Reset (POR)
« Configurable Power-up Timer (PWRT)
» Brown-out Reset (BOR)
* Low-Power BOR (LPBOR) Option
* Windowed Watchdog Timer (WWDT):
— Watchdog Reset on too long or too short interval between watchdog clear events
— Variable prescaler selection
— Variable window size selection

Memory

» Up to 64 KB of Program Flash Memory
* Up to 4 KB of Data SRAM Memory
* 512 Bytes Data EEPROM
* Memory Access Partition: The Program Flash Memory can be partitioned into:
— Application Block
— Boot Block
— Storage Area Flash (SAF) Block
» Programmable Code Protection and Write Protection
» Device Information Area (DIA) Stores:
— Temperature indicator factory calibrated data

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet
and its subsidiaries

DS40002236C-page 2

Temperature Indicator

PIC18F04/05/14/15Q40

— Fixed Voltage Reference measurement data
— Microchip unique identifier
» Device Characteristics Information (DCI) Area Stores:
— Program/erase row sizes
— Pin count details
— EEPROM size
« Direct, Indirect and Relative Addressing modes

Operating Characteristics

» Operating Voltage Range:
- 1.8Vto 5.5V

» Temperature Range:
— Industrial: -40°C to 85°C
— Extended: -40°C to 125°C

Power-Saving Functionality

» Doze: CPU and Peripherals Running at Different Cycle Rates (typically CPU is lower)

» Idle: CPU Halted While Peripherals Operate
» Sleep: Lowest Power Consumption
» Peripheral Module Disable (PMD):

— Ability to selectively disable hardware module to minimize active power consumption of unused peripherals

* Low-Power Mode Features:
— Sleep: < 1 pA typical @ 3V
— Operating Current:
* 48 pA @ 32 kHz, 3V, typical

Digital Peripherals

* Three 16-Bit Pulse-Width Modulators (PWM):
— Dual outputs for each PWM module
— Integrated 16-bit timer/counter
— Double-buffered user registers for duty cycles
— Right/Left/Center/Variable-Aligned modes of operation
— Multiple clock and Reset signal selections
* Three 16-Bit Timers (TMRO0/1/3)
* Two 8-Bit Timers (TMR2/4) with Hardware Limit Timer (HLT)
» Four Configurable Logic Cell (CLC):
— Integrated combinational and sequential logic
* One Complimentary Waveform Generator (CWG):
— Rising and falling edge dead-band control
— Full-bridge, half-bridge, 1-channel drive
— Multiple signal sources
— Programmable dead band
— Fault-shutdown input
* One Capture/Compare/PWM (CCP) module:
— 16-bit resolution for Capture/Compare modes
— 10-bit resolution for PWM mode

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet
and its subsidiaries

DS40002236C-page 3

PIC18F04/05/14/15Q40

* One Numerically Controlled Oscillator (NCO):
— Generates true linear frequency control and increased frequency resolution
— Input clock up to 64 MHz
» Signal Measurement Timer (SMT):
— 24-bit timer/counter with prescaler
— Several modes of operation like Time-of-Flight, Period and Duty Cycle measurement, etc.
« Data Signal Modulator (DSM):
— Multiplex two carrier clocks, with glitch prevention feature
— Multiple sources for each carrier
* Programmable CRC with Memory Scan:
— Reliable data/program memory monitoring for Fail-Safe operation (e.g., Class B)
— Calculate 32-bit CRC over any portion of Program Flash Memory
* Three UART modules:
One module (UART1) supports LIN host and client, DMX mode, DALI gear and device protocols
Asynchronous UART, RS-232, RS-485 compatible
Automatic and user timed BREAK period generation
Automatic checksums
— Programmable 1, 1.5, and two Stop bits
Wake-up on BREAK reception
DMA compatible
* Two SPI modules:
— Configurable length bytes
Arbitrary length data packets
Transmit-without-receive and receive-without-transmit option
Transfer byte counter
Separate transmit and receive buffers with 2-byte FIFO and DMA capabilities
+ One I2C module, SMBus, PMBus™ Compatible:
— Supports Standard-mode (100 kHz), Fast-mode (400 kHz) and Fast-mode plus (1 MHz) modes of operation
— 7-bit and 10-bit addressing modes with address masking modes
— Dedicated address, transmit and receive buffers and DMA capabilities
— Bus collision detection with arbitration
— Bus time-out detection and handling
— 12C, SMBus 2.0 and SMBus 3.0, and 1.8V input level selections
— Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
— Multi-Master mode, including self-addressing
* Device I/O Port Features:
— 121/0 pins (PIC18F04/05/06Q40)
— 18 1/0O pins (PIC18F14/15/16Q40)
— Individually programmable I/O direction, open-drain, slew rate and weak pull-up control
— Interrupt-on-change on most pins
— Three programmable external interrupt pins
» Peripheral Pin Select (PPS):
— Enables pin mapping of digital /0

Analog Peripherals

* Analog-to-Digital Converter with Computation (ADCC):
— Up to 17 external channels
— Upto 140 KSPS

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 4
and its subsidiaries

PIC18F04/05/14/15Q40

Automated math functions on input signals:
» Averaging, filter calculations, oversampling and threshold comparison
Operates in Sleep
Four internal analog channels
Hardware Capacitive Voltage Divider (CVD) Support:
* Adjustable sample and hold capacitor array
* Guard ring digital output drive
» Automates touch sampling and reduces software size and CPU usage when touch or proximity
sensing is required
« Two 8-Bit Digital-to-Analog Converters (DAC):
— Buffered output available on two 1/O pins
— Internal connections to ADC and Comparators
* Two Comparators (CMP):
— Four external inputs
— Configurable output polarity
— External output via Peripheral Pin Select
» Zero-Cross Detect (ZCD):
— Detect when AC signal on pin crosses ground
» Voltage Reference:
— Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels
— Internal connections to ADC, Comparator and DAC

Clocking Structure

» High-Precision Internal Oscillator Block (HFINTOSC):

— Selectable frequencies up to 64 MHz

— *1% at calibration

— Active Clock Tuning of HFINTOSC for better accuracy
» 32 kHz Low-Power Internal Oscillator (LFINTOSC)
» External 32 kHz Crystal Oscillator (SOSC)
» External High-Frequency Oscillator Block:

— Three crystal/resonator modes

— Digital Clock Input mode

— 4x PLL with external sources
* Fail-Safe Clock Monitor:

— Allows for operational recovery if external clock stops
» Oscillator Start-up Timer (OST):

— Ensures stability of crystal oscillator sources

Programming/Debug Features

+ In-Circuit Serial Programming™ (ICSP™) via Two Pins
» In-Circuit Debug (ICD) with Three Breakpoints via Two Pins
» Debug Integrated On-Chip

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 5
and its subsidiaries

PIC18F04/05/14/15Q40

PIC18-Q40 Block Diagram

PPS Module

Memory Peripherals
Data Memory ‘ 3
(RAM) Data Bus cLC UART
Data
EEPROM CLKREF SPI
Program 5 .
Flash ,aemory Instruction Bus Timers r’c
) SMT 4 HLVD
System Arbiter o
(8]
Program, Debug and ccp 2 FVR
Supervisory Modules S
- 2
IV l=) Single-Supply In-Circuit 9
MCLR——% Programming Debugger DMA PWM = ADCC
Power-up Brown-out
Timer Reset CRC CWG DAC
CPU iths
Oscillator Fail-Safe with scanner
Start-up Timer| | Clock Monitor NCO CMP
o T Interrupt
ower-on emperature Controller
Reset Indicator DSM ZCD
WWDT PMD .
Oscillator and Clock
SOsCl | sosc HFINTOSC
SOSCO—» with
0SC1—» Active Clock
Precision Band Gap Reference i
p 0sCc2) EXTOSC Tuning
EXTOSC +
AxXPLL LFINTOSC
Advance Information Datasheet DS40002236C-page 6

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

PIC18F04/05/14/15Q40

Table of Contents

[0 To [0 e (1] o TP P U PP P PTRPPRPPPROI 1
[(O @ O =T o T1 Y Y o= SO TR 1
FEALUIES. ...ttt a et o b e bt e h et e b e e e et e nn et e na e e e e bn e nnee 2
LR == o7 = Lo = PP U OPUPRRN 10
A 1T - To | = 10 0 TP PO PU PR UPRPUPR 11
3. PiNAIIOCALION TADIES........eeeiieie et e e 12
4. Guidelines for Getting Started with PIC18-Q40 Microcontrollers.............ccceeiiieerieriiieeeeiee e 16
5. Register and Bit Naming CONVENTIONS.c..oiiiiiiiiiiie e 21
LT = To 153 (T gl I =To [=T o o FO PP PRPRRP 23
A o (O < O PO PR 24
S T B oAV oY @o o 1o U =1 (o o TSR 42
L1V =Y g To T A @ (o T= a1 2 (] PRSP 56
10. NVM - Nonvolatile Memory MOAUIE............ooii et e e e e e e e e e e e e e 87
11. VIC - Vectored Interrupt Controller MOAUIE...............ooeiiiiiiiiiiie et iveee e 112
12. OSC - Oscillator Module (With Fail-Safe Clock MONItOr)..........c.coiiiiiiiieiiii e 173
13. CRC - Cyclic Redundancy Check Module with Memory Scanner............ccccevieeeiieeeiiieeesee e 200
T4, RESEBES. .ttt h e eh e e et e e s 219
15. WWDT - Windowed WatChdOg TiMET........ccoo ittt e e et e e e e e e e e e e nneeas 232
16. DMA - DIr€Ct MEMOIY ACCESS.....ccieeieiiee ettt e ettt e e et e e e e e et e e e e e st e e e e e s esbaeeeeesaasseeaeeesnssnnaaeaan 243
17. POWEI-SAVING MOUES....... ittt e e e s r e e bt e e sne e e nne e e s annee s 280
18. PMD - Peripheral Module DiSabIe............uuuiiiiiiiiiiiieee ettt e e e e e e e e e e e e e e e e e e e s snenenennnes 288
LRSI VO B o o RO URRRTIN 296
b2 B (O TR [(=Y {0 o] RO = oo =S 311
21. PPS - Peripheral Pin Select MOQUIE.cooiiiiiiiie et 317
22. CLC - Configurable LOGIC Cell........ .. ettt e et e e e e e e e e e ennnneaaean 328
23. CLKREF - Reference Clock Output MOAUIE.............uiiiiiiiiiiiie ettt 348
24, TMRO - TiMEIO MOGUIE......c.ueiitiiiieetie ettt ettt et e et e et e b e st e e beesnbeesneesabeesbeeannee e 353
25. TMR1 - Timer1 Module with Gate CONTrOL...........cocuiiiiiiiiii e 361
26. TMR2 - TIMEI2 MOGUIE......cueiitii ettt ettt ettt et e e see e be e sateesbeesnbeesneesnbeesreeennee e 376
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 7

and its subsidiaries

PIC18F04/05/14/15Q40

27. SMT - Signal MeasuremMeENt TiMEI.........coiuiiiiiiie ittt e e e e e e snnee s 398
28. CCP - Capture/Compare/PWM MOQUIE...........ooeiiiiiiiieie ettt e et e e 422
29. Capture, Compare, and PWM Timers SeleCtion...........ooooiiiiiiiiiiiiie ettt 435
30. PWM - Pulse-Width Modulator with COmMPAre.............uuuiiiiiiiiiiiiiiceee e 438
31. CWG - Complementary Waveform Generator MOdUIE.............coocuiiiiiiiiiiiiiee e 464
32. NCO - Numerically Controlled Oscillator MOdUIE............ccoiiiiiiiiiiiiecee e 491
33. DSM - Data Signal Modulator MOUIE............coceiiiiiiieee e e e 500
34. UART - Universal Asynchronous Receiver Transmitter with Protocol Support...........ccccccevieiiiienn. 511
35. SPI - Serial Peripheral Interface ModUIE..............ooooiiiiiiiii i 557
36. 12C - Inter-Integrated CirGUit MOAUIE.............c.ccovoveueeieeieieececeieeeeec et ee e ee et eseneaas 590
37. HLVD - High/LOW-Voltage DEeteCt............ueiiiiieee ettt e e e 676
38. FVR - Fixed Voltage REfEIENCE.cooiieiiie et e e e e e e e ee e e e eaees 684
39. Temperature INdiCator MOAUIE..............oooiiiiiiii et 688
40. ADCC - Analog-to-Digital Converter with Computation Module.............cccocoiiiiiiiiiiiie e 693
41. DAC - Digital-to-Analog Converter MOAUIE.............coiiiiiiiiiiic e 737
42. CMP - Comparator MOAUIE.uuuuiiiiiiieieiee e e e e e e e e e e e aeeaeaeeeeaeeeeaaaaannnnsnenrnrnnnes 745
43. ZCD - Zero-Cross Detection MOAUIE..............coouiiiiiiiiieic et 756
44, INSTrUCION St SUMMAIY ...ttt ettt e e et e e s e e e sareeeenneeea 763
45, ICSP™ - In-Circuit Serial Programming™............oocieiiieceeeeeeeeeeee e ese s en s e s s s enen s s s e e e 848
46. REISTEr SUMMAIYeiiiiiiii ettt ettt b e st et e et e e e st et e nab et e e bt e e e aateeesaneee s 851
47. Electrical SPeCIfiCationS...........ooiiiiiiiiiii et aaa e 863
48. DC and AC Characteristics Graphs and Tables...........cocciiiiiiiiiiiii e 893
49. Packaging INfOrmMation......... ...ttt e et e e e e e e e e e e e e nnaeeaaeean 894
50. AppendixX A: REVISION HISTOMY.........uiiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e e ee e e e e s s e nnnnenenenes 912
The MICrOChID WEDSIE. ...t e e 913
Product Change Notification SEIVICE.oo i e e seeeeenee 913
L0y (o] 14 1=T g0 o] o o] o SRS 913
Product Identification SYSIemM....... ..o e a e e a e 914
Microchip Devices Code Protection FEAtUIE............c.uviiiiiiiiiiiiee et 914
LEGAI NOTICE. ...ttt et a et e et e e bttt s et e e b r e e e e e e e e e e an 915
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 8

and its subsidiaries

PIC18F04/05/14/15Q40

JLILEC (o =T 1 F= T T OO PP PP R OT PP TSPPPPP 915
Quality Management SYSTEM...........iiiiiiiiie ettt 916
Worldwide Sales @nd SEIVICE........coiuiiiiiiiiiiiee ettt et e e e 917
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 9

and its subsidiaries

PIC18F04/05/14/15Q40

Packages
1. Packages
Table 1-1. Packages
Device 14-Pin 14-Pin 20-Pin 20-Pin 20-Pin 20-Pin
TSSOP SOIC PDIP SOIC SSOP VQFN
PIC18F04Q40 ° o
PIC18F05Q40 ° c
PIC18F06Q40 ° o
PIC18F14Q40
PIC18F15Q40
PIC18F16Q40 N . . .

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 10

PIC18F04/05/14/15Q40

Pin Diagrams

2. Pin Diagrams
Figure 2-1.
14-Pin SOIC
14-Pin TSSOP
vop[|1 S 14 Jvss
RA5[|2 13 JRAO/ICSPDAT
rA4[|3 12] |RAL/ICSPCLK
MCLR/VPP/RA3[_|4 11]rRA2
Rcs[|5 10 |rCO
rRc4[|6 9 JrcC1
rca[|7 8 JrRC2
Figure 2-2.
20-Pin PDIP
20-Pin SOIC
20-Pin SSOP
voo[1 ~ odvss
RA5[]2 19 |RAO/ICSPDAT
rRA4]3 18 JRAL/ICSPCLK
MCLR/\VPP/RA3[]4 1711rRA2
RcsL5 16 JrRCO
rcalle 15 JrC1
rcal]7 14]RrRC2
rRcel|s 13 IRB4
rc7l]o 12/ IRB5
rRB7L]10 11/ 1RB6
Figure 2-3.
20-Pin VQFN
-
<
o
o
[7p]
O
I 2 38 3 %
X o > >
20 19 18 17 16
MCLR/VPP/RA3| 1 15] RAL/ICSPCLK
RC5] 2 14| RA2
RC4) 3 13| RCO
RC3]) 4 12l rRC1
RC6]s 11lRC2
L L .8 39 10
NN © W0 §
O O o m
r X o

Note: Itis recommended that the exposed bottom pad be connected to Vggs; however, it must not be the only Vgs

connection to the device.

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 11

seleIpISqns S)I pue

"ou] ABojouyosy dIyooIOIN 1Z0Z-020Z @

joayseje(UOIJBRULIOJU| 8OUBAPY

Z1 9bed-09¢zz000¥SA

Table 3-1. 14-Pin Allocation Table

16-Bit
i 2
i e P H - “

RA4

RA5

RCO

RC1

RC2

RC3
RC4
RC5

VbD
Vss

1

ANAO

ANA1

ANA2

ANA4

ANAS

ANCO
ANC1

ANC2
ADAcT(1)

ANC3
ANC4

ANC5

DAC10UT1

VREF+
(ADC)
VREF+
(DAC1)
VREF+
(DAC2)

VREF- (ADC)
VREF-
(DAC1)
VREF-
(DAC2)

DAC10UT2

C1INO+

C1INO-
C2INO-

C2INO+

C1IN1-
C2IN1-
C1IN2-
C2IN2-

C1IN3-
C2IN3-

ZCDIN

Tocki(1)

T1c(1)

T1cki()
T2iN(1)
sMTIWIN(T)

smT1sic(1)

T4IN(1)

T3c(1)

T3cki()

PwM1ERS(T)

PwM2ERS(1)

PWM3ERS(1)

PwMIN2(1)

ccp1N()
PWMIN1(1)

cwaIN(1)

cLciNa(1)

cLeinz(®)

cLciNo(®)

cLeint(M)

ss2(1)

sck1(1)

spi(1)

ss1(1)
sckz(1)

spi2(1)

scL1(34)

SDA1(3:4)

= MDSRc(1)

rRx3(1) =

crs3(1) =

rx2(1) _
cts2(1) | mpcarL(M)

cTs1(1) =

rx1(1) | mpcArRH()

IoC

IOCAO

I0CA1

I0CA2

IOCA3

I0CA4

IOCAS5

10CCO

10CC1

10CC2

10CC3

10CC4

10CC5

Interrupts

INTO(1)

INT1(1)

INT2(1)

ICDDAT
ICSPDAT

ICDCLK
ICSPCLK

MCLR
VPP
CLKOUT
SOSCO
0sC2

CLKIN
SOSCI
OscC1

VbD
Vss

€

sa|qeL uoNeso||y uld

sajqeL uoneso||y uld

0v0SL/V1LIS0/¥048101d

seleIpISqns S)I pue

"ou] ABojouyosy dIyooIOIN 1Z0Z-020Z @

joayseje(UOIJBRULIOJU| 8OUBAPY

€1 8bed-09¢zz000¥SA

........... continued

. 16-Bit

DTR1
PWM11 RTS1
PWM12 Sst TXS1
PWM21 CWG1A | CLC10UT | SCK1 DTR2
out _ ADCGRDA . CM10UT _ TMRO PWM22 CWG1B | CLC20UT | SDO1 SDA1 RTS2
ADCGRDB CM20UT PWM31 CWG1C | CLC30UT SS82 SCL1 Tx2
PWM32 CWG1D | CLC40UT :ggz DTR3
CCP1 RTS3
TX3
Notes:
1. This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTXx pins.
2. All digital output signals shown in these rows are PPS re-mappable. These signals may be mapped to output onto one of several PORTXx pin options.
3. This is a bidirectional signal. For normal module operation, the firmware must map this signal to the same pin in both the PPS input and PPS output registers.
4.

TTL/ST as selected by the INLVL register, instead of the 12c specific or SMBus input buffer thresholds.

5. A 0.1 uF bypass capacitor to Vsg is required on the Vpp pin.

“

DSM1 = = =

These pins are configured for 12c logic levels; The SCLx/SDAX signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard

sajqeL uoneso||y uld

0v0SL/V1LIS0/¥048101d

seleIpISqns S)I pue

"ou] ABojouyosy dIyooIOIN 1Z0Z-020Z @

joayseje(UOIJBRULIOJU| 8OUBAPY

¥1 8bed-09¢zz000¥SA

Table 3-2. 20-Pin Allocation Table

/0
RAO 19
RA1 18
RA2 17
RA3 4
RA4 3
RA5 2
RB4 13
RB5 12
RB6 11
RB7 10
RCO 16
RC1 15
RC2 14
RC3 7
RC4 6
RC5 5
RC6 8
RC7 9
VDD 1

20-Pin
VQFN
16

15

14

20

19

ANAQ

ANA1

ANA2

ANA4

ANA5

ANB4
ANB5
ANB6
ANB7
ANCO

ANC1

ANC2

ADACT(1)

ANC3

ANC4

ANC5

ANC6
ANC7

DAC10UT1

VREF+
(ADC)
VREF+
(DAC1)
VREF+
(DAC2)

VREF- (ADC)
VREF-
(DAC1)
VREF-
(DAC2)

DAC10UT2

C1INO+

C1INO-
C2INO-

C2INO+

C1IN1-
C2IN1-
C1IN2-
C2IN2-

C1IN3-
C2IN3-

CD | Timers/SMT

ZCDIN

T1c(1)
smT1siG(1)

T2IN(1)
sMT1WIN(T)

T4IN(1)

T3c(1)

T3cki(1)
Tocki(1)

T1cki(M)

16-Bit

PWM/CCP

PwWM1ERS(1)

PwM2ERS(1)

PWM3ERS(1)

PwWMIN2(1)

ccP1iN()
PWMIN1(1)

CWG CLC

cwaIN(| cLcino(M)

= cLcinz(M)
= cLcina(®)

= cLcint(®)

ss2(1)

spi1(1)
spi2(1)
sck1(1)
scka(1)

12c

sDA1(3.4)
scL1(34)

UART

= MDSRc(1)

rx1(1) _

cTs1(1) =

rRx2(1) =
cts2(1) | mpcarL()

rx3(1) _

cts3() | MpcARH(1)

10C

I0CAO

I0CA1

I0CA2

I0CA3

I0CA4

IOCA5

10CB4
10CB5
10CB6
10CB7
10CCOo

10CC1

10CC2

10CC3

10CC4

10CC5

10CC6
10CC7

INTo(1)

INT1(1)

INT2(1)

ICDDAT
ICSPDAT

ICDCLK
ICSPCLK

MCLR
VPP
CLKOUT
SOSCO
osc2

CLKIN
SOSCI
0oscC1

VbD

sajqeL uoneso||y uld

0v0SL/V1LIS0/¥048101d

seleIpISqns S)I pue

"ou] ABojouyosy dIyooIOIN 1Z0Z-020Z @

joayseje(UOIJBRULIOJU| 8OUBAPY

g1 ebed-09¢22000¥SA

ouT(2)

Notes:

s w D

: 16-Bit
| e

PWM11

PWM12

PWM21

ADCGRDA CcM10UT

- ~ | ADCGRDB - CM20UT - TMRO PWM22
PWM31

PWM32

ccP1

20 17 —

H

CWG1A
CWG1B
CWG1C
CWG1D

CLC10oUT
CLC20UT
CLC30UT
CLC40UT

881
SCK1
SDO1

S§82
SCK2
SDO2

This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTXx pins.

All digital output signals shown in these rows are PPS re-mappable. These signals may be mapped to output onto one of several PORTXx pin options.

This is a bidirectional signal. For normal module operation, the firmware must map this signal to the same pin in both the PPS input and PPS output registers.

SDA1
SCL1

DTR1
RTS1
X1
DTR2
RTS2
TX2
DTR3
RTS3
TX3

“

DSM1 — —

Vss

These pins are configured for 12c logic levels; The SCLx/SDAX signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as

selected by the INLVL register, instead of the 12c specific or SMBus input buffer thresholds.
A 0.1 uF bypass capacitor to Vg is required on the Vpp pin.

sajqeL uoneso||y uld

0v0SL/V1LIS0/¥048101d

41

4.2

4.2.1

PIC18F04/05/14/15Q40
Guidelines for Getting Started with PIC18-Q40 Micr...

Guidelines for Getting Started with PIC18-Q40 Microcontrollers

Basic Connection Requirements

Getting started with the PIC18-Q40 family of 8-bit microcontrollers requires attention to a minimal set of device pin
connections before proceeding with development.

The following pins must always be connected:

* All Vpp and Vgg pins (see the Power Supply Pins section)
* MCLR pin (see the Master Clear (MCLR) Pin section)

These pins must also be connected if they are being used in the end application:

+ ICSPCLK/ICSPDAT pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see the
In-Circuit Serial Programming (ICSP) Pins section)
* OSCI and OSCO pins when an external oscillator source is used (see the External Oscillator Pins section)

Additionally, the following pins may be required:
* Vgert/VRer- pins are used when external voltage reference for analog modules is implemented
The minimum mandatory connections are shown in the figure below.

Figure 4-1. Recommended Minimum Connections

Rev. 10-000249C
4/112019

VDD hczﬂ

R2

=

Vi

MCLR

PIC®MCU

Key:

C1: 0.1 uF, 20V ceramic (recommended)
R1: 10 kQ (recommended)

R2: 100Q to 470Q (recommended)

C2: 0.1 uF, 20V ceramic (required)

Power Supply Pins

Decoupling Capacitors
The use of decoupling capacitors on every pair of power supply pins (Vpp and Vgg) is required.
Consider the following criteria when using decoupling capacitors:

» Value and type of capacitor: A 0.1 yF (100 nF), 10-20V capacitor is recommended. The capacitor needs to be
a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are
recommended.

« Placement on the printed circuit board: The decoupling capacitors need to be placed as close to the pins as
possible. It is recommended to place the capacitors on the same side of the board as the device. If space is
constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace
length from the pin to the capacitor is no greater than 0.25 inch (6 mm).

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 16

and its subsidiaries

4.2.2

43

44

PIC18F04/05/14/15Q40
Guidelines for Getting Started with PIC18-Q40 Micr...

» Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz),
add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the
second capacitor can be in the range of 0.01 pF to 0.001 pF. Place this second capacitor next to each primary
decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as
close to the power and ground pins as possible (e.g., 0.1 yF in parallel with 0.001 pF).

» Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to
the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first
in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a
minimum, thereby reducing PCB trace inductance.

Tank Capacitors

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for
integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor will be
determined based on the trace resistance that connects the power supply source to the device, and the maximum
current drawn by the device in the application. In other words, select the tank capacitor that meets the acceptable
voltage sag at the device. Typical values range from 4.7 uF to 47 uF.

Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If
programming and debugging are not required in the end application, a direct connection to Vpp may be all that

is required. The addition of other components, to help increase the application’s resistance to spurious Resets
from voltage sags, may be beneficial. A typical configuration is shown in Figure 4-1. Other circuit designs may be
implemented, depending on the application’s requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be
considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (V|4
and V).) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need
to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor,
C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 4-2).
The jumper is replaced for normal run-time operations.

Any components associated with the MCLR pin need to be placed within 0.25 inch (6 mm) of the pin.

Figure 4-2. Example of MCLR Pin Connections

\obp e
R1
R2
MCLR
PIC® MCU
JP

C1

I o

Notes:
1. R1=10kQ is recommended. A suggested starting value is 10 kQ. Ensure that the MCLR pin V| and V.
specifications are met.
2. R2=470Q will limit any current flowing into MCLR from the extended capacitor, C1, in the event of MCLR pin

breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin
V|4 and V|_ specifications are met.

In-Circuit Serial Programmingm (ICSPTM) Pins

The ICSPCLK and ICSPDAT pins are used for ICSP and debugging purposes. It is recommended to keep the trace
length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is
expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of
ohms, not to exceed 100Q.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 17
and its subsidiaries

4.5

PIC18F04/05/14/15Q40
Guidelines for Getting Started with PIC18-Q40 Micr...

Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not recommended as they
can interfere with the programmer/debugger communications to the device. If such discrete components are an
application requirement, they need to be removed from the circuit during programming and debugging. Alternatively,
refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming
specification for information on capacitive loading limits, and pin input voltage high (V|4) and input low (V)
requirements.

For device emulation, ensure that the “Communication Channel Select” (i.e., ICSPCLK/ICSPDAT pins), programmed
into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

External Oscillator Pins

Many microcontrollers have options for at least two oscillators: A high-frequency primary oscillator and a low-
frequency secondary oscillator.

The oscillator circuit needs to be placed on the same side of the board as the device. Place the oscillator circuit close
to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins.
The load capacitors have to be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper
pour needs to be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground
pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in the following figure. In-line packages may be handled with a single-sided layout
that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely
surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer.
In all cases, the guard trace(s) must be returned to ground.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 18
and its subsidiaries

PIC18F04/05/14/15Q40
Guidelines for Getting Started with PIC18-Q40 Micr...

Figure 4-3. Suggested Placement of the Oscillator Circuit

Rev. 30-000059A
41612017

Single-Sided and In-Line Layouts:

Copper Pour Primary Oscillator
(tied to ground) Crystal

DEVICE PINS

Prima
Oscilla{gr

C1

Secondag Oscillator|
(SOsC)

Crystal

SOSC: C2

Fine-Pitch (Dual-Sided) Layouts:

Top Layer Copper Pour
(tied to ground)

Bottom Layer

Copper Pour — g
(tied to ground)

0sco

c2

Oscillator

GND Crystal

C1

OSCI

DEVICE PINS

In planning the application’s routing and 1/0O assignments, ensure that adjacent PORT pins, and other signals in close
proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, refer to these Microchip application notes,
available at the corporate website (www.microchip.com):

+ ANB826, “Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro® Devices”

« ANB849, “Basic PICmicro® Oscillator Design”

* AN943, “Practical PICmicro® Oscillator Analysis and Design”

» AN949, “Making Your Oscillator Work”

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 19
and its subsidiaries

PIC18F04/05/14/15Q40
Guidelines for Getting Started with PIC18-Q40 Micr...

4.6 Unused 1/Os

Unused 1/O pins need to be configured as outputs and driven to a Logic Low state. Alternatively, connect a 1 kQ to 10
kQ resistor to Vgg on unused pins to drive the output to logic low.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 20
and its subsidiaries

5.1

5.2

5.2.1

5.2.2

5.2.3

PIC18F04/05/14/15Q40

Register and Bit Naming Conventions

Register and Bit Naming Conventions

Register Names

When there are multiple instances of the same peripheral in a device, the Peripheral Control registers will be depicted
as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The Control registers section
will show just one instance of all the register names with an ‘x’ in the place of the peripheral instance number. This
naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device
to maintain compatibility with other devices in the family that contain more than one.

Bit Names
There are two variants for bit names:

» Short name: Bit function abbreviation
* Long name: Peripheral abbreviation + short name

Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit.
The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short
name is RegisterNamebits.ShortName. For example, the enable bit, ON, in the ADCONO register can be setin C
programs with the instruction ADCONObits.ON = 1.

Short names are generally not useful in assembly programs because the same name may be used by different
peripherals in different bit positions. When it occurs, during the include file generation, the short bit name instances
are appended with an underscore plus the name of the register where the bit resides, to avoid naming contentions.

Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique
to the peripheral, thereby making every long bit name unique. The long bit name for the ADC enable bit is the ADC
prefix, AD, appended with the enable bit short name, ON, resulting in the unique bit name ADON.

Long bit names are useful in both C and assembly programs. For example, in C the ADCONO enable bit can be set
with the ADON = 1 instruction. In assembly, this bit can be set with the BSF ADCONO, ADON instruction.

Bit Fields

Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention.
For example, the three Least Significant bits of the ADCONZ2 register contain the ADC Operating Mode Selection bit.
The short name for this field is MD and the long name is ADMD. Bit field access is only possible in C programs. The
following example demonstrates a C program instruction for setting the ADC to operate in Accumulate mode:

ADCON2bits.MD = 0b001;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended
with the number of the bit position within the field. For example, the Most Significant MODE bit has the short bit name
MD2 and the long bit name is ADMD2. The following two examples demonstrate assembly program sequences for
setting the ADC to operate in Accumulate mode:

MOVLW ~ (1<<MD2 | 1<<MD1
ANDWF ADCON2,F

MOVLW 1<<MDO

IORWF ADCON2,F

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 21
and its subsidiaries

PIC18F04/05/14/15Q40

Register and Bit Naming Conventions

BCF ADCON2 , ADMD2
BCF ADCON2 , ADMD1
BSF ADCON2 , ADMDO

5.3 Register and Bit Naming Exceptions

5.31 Status, Interrupt and Mirror Bits
Status, Interrupt enables, Interrupt flags and Mirror bits are contained in registers that span more than one peripheral.
In these cases, the bit name shown is unique so there is no prefix or short name variant.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 22

and its subsidiaries

PIC18F04/05/14/15Q40

Register Legend

Register Legend

Table 6-1. Register Legend

R
W
HS

Readable bit
Writable bit
Hardware settable bit
Hardware clearable bit
Set only bit
Clear only bit
Unimplemented bit, read as ‘0’
Bit value is set
Bit value is cleared
Bit value is unknown
Bit value is unchanged
Bit value depends on condition

Bit value is predefined

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 23

7.1

PIC18F04/05/14/15Q40

PIC18 CPU

PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture. The PIC18 CPU

supports:

» System arbitration which decides memory access allocation depending on user priorities
» Vectored interrupt capability with automatic two-level deep context saving

» 127-level deep hardware stack with overflow and underflow Reset capabilities

» Support Direct, Indirect, and Relative Addressing modes

» 8x8 hardware multiplier

Figure 7-1. Family Block Diagram

Table Pointer

Data Bus

inc/dec logic

PCLATU|PCLATH

Program Counter

Data Latch

Data Memory

127-Level Stack

Address Latch

I

Address Latch

Program Memory

Data Latch

Instruction Bus

System Arbitration

Table Latch

Data Address

FSRO
FSR1
FSR2

inc/dec
logic

Address
Decode

Instruction
Latch

PRODH| PRODL

8x8 Multipy

Instruction
Decode and
Control

State Machine
Control Signals

The system arbiter resolves memory access between the system level selections (i.e., Main, Interrupt Service
Routine) and peripheral selection (e.g., DMA and Scanner) based on user-assigned priorities. A block diagram of the
system arbiter can be found below. Each of the system level and peripheral selections has its own priority selection
registers. Memory access priority is resolved using the number written to the corresponding Priority registers, 0 being
the highest priority selection and the maximum value being the lowest priority. All system level and peripheral level

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 24

PIC18F04/05/14/15Q40
PIC18 CPU

selections default to the lowest priority configuration. If the same value is in two or more Priority registers, priority is
given to the higher-listed selection according to the following table.

Table 7-1. Default Priorities

System Level ISR 7
MAIN 7

Peripheral DMA1 7
DMA2 7

DMA3 7

DMA4 7

SCANNER 7

Figure 7-2. System Arbiter Block Diagram

Memory Program Flash
CPU Access Scanner Memo Data EEPROM

NVMCON Y

AA Al A AA A A

Y \4A 4 Y Y
Priority —» System Arbiter
Yivy vVivy vVivy Vi
SFR/GRP
DMA 1 DMA2 | DMAn SRAM Data

Legend
———— Program Flash Memory Data
» Data EEPROM Data

» SFR/GPR Data

711 Priority Lock
The system arbiter grants memory access to the peripheral selections (DMAX, Scanner) as long as the PRLOCKED
bit is set. Priority selections are locked by setting the PRLOCKED bit. Setting and clearing this bit requires a special
sequence as an extra precaution against inadvertent changes. The following code examples demonstrate the Priority
Lock and Priority Unlock sequences.

Example 7-1. Priority Lock Sequence

INTCONObits.GIE = 0; // Disable Interrupts;
PRLOCK = 0x55;
PRLOCK = OxAA;

PRLOCKbits.PRLOCKED = 1; // Grant memory access to peripherals;
INTCONObits.GIE = 1; // Enable Interrupts;
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 25

and its subsidiaries

7.2

7.21

7.2.2

7.2.3

7.24

7.3

PIC18F04/05/14/15Q40
PIC18 CPU

Example 7-2. Priority Unlock Sequence

INTCONObits.GIE = 0; // Disable Interrupts;

PRLOCK = 0x55;

PRLOCK = OxAA;

PRLOCKbits.PRLOCKED = 0; // Allow changing priority settings;
INTCONObits.GIE = 1; // Enable Interrupts;

Memory Access Scheme

The user can assign priorities to both system level and peripheral selections based on which the system arbiter
grants memory access. Consider the following priority scenarios between ISR, MAIN and peripherals.

ISR Priority > Main Priority > Peripheral Priority
When the peripheral priority (e.g., DMA, Scanner) is lower than ISR and MAIN priority, and the peripheral requires:

1. Access to the Program Flash Memory, then the peripheral waits for an instruction cycle in which the CPU does
not need to access the PFM (such as a branch instruction) and uses that cycle to do its own Program Flash
Memory access, unless a PFM Read/Write operation is in progress.

2. Access to the SFR/GPR, then the peripheral waits for an instruction cycle in which the CPU does not need to
access the SFR/GPR (such as MOVLW, CALL, NOP) and uses that cycle to do its own SFR/GPR access.

3. Access to the Data EEPROM, then the peripheral has access to Data EEPROM unless a Data EEPROM
Read/Write operation is being performed.

This results in the lowest throughput for the peripheral to access the memory, and does so without any impact on
execution times.

Peripheral Priority > ISR Priority > Main Priority

When the peripheral priority (DMA, Scanner) is higher than ISR and MAIN priority, the CPU operation is stalled when
the peripheral requests memory. The CPU is held in its current state until the peripheral completes its operation. This
results in the highest throughput for the peripheral to access the memory, but has the cost of stalling other execution
while it occurs.

ISR Priority > Peripheral Priority > Main Priority

In this case, interrupt routines and peripheral operation (DMAXx, Scanner) will stall the Main loop. Interrupt will
preempt peripheral operation, which results in lowest interrupt latency.

Peripheral 1 Priority > ISR Priority > Main Priority > Peripheral 2 Priority

In this case, the Peripheral 1 will stall the execution of the CPU. However, Peripheral 2 can access the memory in
cycles unused by Peripheral 1, ISR and the Main Routine.

8x8 Hardware Multiplier

This device includes an 8x8 hardware multiplier as part of the ALU within the CPU. The multiplier performs an
unsigned operation and yields a 16-bit result that is stored in the product register, PROD. The multiplier's operation
does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the
advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the
device to be used in many applications previously reserved for digital signal processors. A comparison of various
hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table
7-2.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 26
and its subsidiaries

7.31

7.3.2

PIC18F04/05/14/15Q40
PIC18 CPU

Table 7-2. Performance Comparison for Various Multiply Operations

Multiply Method Memory (I)\,nax)

Without hardware multiply 13 4.3 us 6.9 us 27.6 us 69 us
8x8 unsigned

Hardware multiply 1 1 62.5 ns 100 ns 400 ns 1 us

Without hardware multiply 33 91 5.7 us 9.1 us 36.4 us 91 us
8x8 signed

Hardware multiply 6 6 375 ns 600 ns 2.4 us 6 us

Without hardware multiply 21 242 15.1 us 24.2 us 96.8 us 242 us
16x16 unsigned

Hardware multiply 28 28 1.8 us 2.8 us 11.2 us 28 us

Without hardware multiply 52 254 15.9 ys 25.4 us 102.6 ps 254 ps
16x16 signed

Hardware multiply 35 40 2.5 us 4.0 us 16.0 ps 40 us

Operation

Example 7-3 shows the instruction sequence for an 8x8 unsigned multiplication. Only one instruction is required
when one of the arguments is already loaded in the WREG register. Example 7-4 shows the sequence to do an 8x8
signed multiplication. To account for the sign bits of the arguments, each argument’s Most Significant bit (MSb) is
tested and the appropriate subtractions are done.
Example 7-3. 8x8 Unsigned Multiply Routine
MOVF ARGl, W

MULWF ARG2 ; ARGl * ARG2 -> PRODH:PRODL

Example 7-4. 8x8 Signed Multiply Routine

MOVF ARGLl, W

MULWF ARG2 ; ARGl * ARG2 -> PRODH:PRODL
BTFSC ARG2, SB ; Test Sign Bit

SUBWF PRODH, F ; PRODH = PRODH - ARGl

MOVF ARG2, W

BTFSC ARGl, SB ; Test Sign Bit

SUBWF PRODH, F ; PRODH = PRODH - ARG2

16x16 Unsigned Multiplication Algorithm

Example 7-6 shows the sequence to do a 16x16 unsigned multiplication. Example 7-5 shows the algorithm that is
used. The 32-bit result is stored in four registers.

Example 7-5. 16x16 Unsigned Multiply Algorithm

RES3:RESO = ARG1H:ARG1L » ARG2H: ARG2L = (ARGlH « ARG2H o 216) + (ARGlH « ARG2L o 28)
+ (ARGlL « ARG2H o 28) + (ARGlL . ARGZL)

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 27
and its subsidiaries

7.3.3

PIC18F04/05/14/15Q40
PIC18 CPU

Example 7-6. 16x16 Unsigned Multiply Routine

MOVF

MULWF
MOVFF
MOVFF

MOVF

MULWF
MOVFF
MOVFF

MOVF
MULWF
MOVF
ADDWF
MOVF
ADDWFC
CLRF
ADDWFC

MOVF
MULWF
MOVF
ADDWF
MOVF
ADDWFC
CLRF
ADDWFC

16x16 Signed Multiplication Algorithm

ARG1L
ARG2L
PRODH
PRODL

ARG1H
ARG2H
PRODH
PRODL

ARGIL
ARG2H
PRODL
RES1
PRODH
RES2
WREG
RES3

ARG1H
ARG2L
PRODL
RES1
PRODH
RES2
WREG
RES3

RES1
RESO

RES3
RES2

W
F

W
F

F

ARG1L * ARG2L - PRODH:PRODL

ARG1H * ARG2H - PRODH:PRODL

ARGIL * ARG2H - PRODH:PRODL

Add cross products

ARG1H * ARG2L - PRODH:PRODL

Add cross products

Example 7-8 shows the sequence to do a 16x16 signed multiply. Example 7-7 shows the algorithm used. The 32-bit
result is stored in four registers. To account for the sign bits of the arguments, the MSb for each argument pair is
tested and the appropriate subtractions are done.

Example 7-7. 16x16 Signed Multiply Algorithm

RES3:RESO = ARG1H:ARG1L » ARG2H: ARG2L = (ARGlH « ARG2H o 216) + (ARGlH « ARG2L o 28)
+ (ARGlL « ARG2H o 28) + (ARGlL . ARGZL) + (—1eARG2H <7 > » ARG1H: ARG1L 216) + (
—1eARGIH <7 > « ARG2H:ARG2L » 216)

Example 7-8. 16x16 Signed Multiply Routine

MOVF
MULW
MOVF
MOVFF

MOVF

MULWF
MOVFF
MOVFF

MOVF
MULWF
MOVF
ADDWF
MOVF
ADDWFC
CLRF
ADDWFC

MOVF
MULWF

ARG1L
ARG2L
PRODH
PRODL

ARG1H
ARG2H
PRODH
PRODL

ARG1L
ARG2H
PRODL
RES1
PRODH
RES2

RES3

ARG1H
ARG2L

RES1
RESO

RES3
RES2

ARGIL * ARG2L — PRODH:PRODL

ARG1H * ARG2H - PRODH:PRODL

ARGIL * ARG2H - PRODH:PRODL

Add cross products

ARG1H * ARG2L - PRODH:PRODL

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet DS40002236C-page 28

PIC18F04/05/14/15Q40
PIC18 CPU

MOVF PRODL, W

ADDWF RES1, F Add cross products
MOVF PRODH, W

ADDWFC RES2, F

CLRF WREG

ADDWFC RES3, F

BTFSS ARG2H, 7 ARG2H:ARG2L neg?
BRA SIGN_ARGl no, check ARGl
MOVF ARGIL, W

SUBWF RES2

MOVF ARGlH, W

SUBWFB RES3

SIGN_ARGl:
BTFSS ARG1H, 7 ARG1H:ARG1L neg?
BRA CONT_CODE no, done

MOVF ARG2L, W
SUBWF RES2
MOVF ARG2H, W
SUBWFB RES3

CONT_CODE:

7.4 PIC18 Instruction Cycle

741 Instruction Flow/Pipelining
An “Instruction Cycle” consists of four cycles of the oscillator clock. The instruction fetch and execute are pipelined
in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction
cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the
Program Counter (PC) to change (e.g., GOTO), then two cycles are required to complete the instruction (Figure 7-3).

A fetch cycle begins with the Program Counter (PC) incrementing followed by the execution cycle. In the execution
cycle, the fetched instruction is latched onto the Instruction Register (IR). This instruction is then decoded and
executed during the next few oscillator clock cycles. Data memory is read (operand read) and written (destination
write) during the execution cycle as well.

Figure 7-3. Instruction Pipeline Flow

P

’ Tcvo Tevl Tev2 Tcvs ’ Teva ’ Tevs ’
1. MOVLW 55h | Fetch 1 Execute 1
2. MOVWF PORTB Fetch 2 Execute 2
3. BRA Sub_1 Fetch 3 Execute 3
4. BSF PORTA, BITS (Forced NOP) Fetch 4 Flush (NOP)
5. Instruction @ address Sub 1 Fetch Sub_1 |Execute Sub_1

Note: There are some instructions that take multiple cycles to execute. Refer to the “Instruction Set Summary”
section for details.

7.4.2 Instructions in Program Memory
The program memory is addressed in bytes. Instructions are stored as either two bytes, four bytes, or six bytes in
program memory. The Least Significant Byte of an instruction word is always stored in a program memory location
with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of
two and the LSb will always read ‘0’. See the “Program Counter” section in the “Memory Organization” chapter
for more details. The instructions in the Program Memory figure below shows how instruction words are stored in the
program memory.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 29
and its subsidiaries

7.4.3

PIC18F04/05/14/15Q40
PIC18 CPU

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since
instructions are always stored on word boundaries, the data contained in the instruction is a word address. The

word address is written to the corresponding bits of the Program Counter register, which accesses the desired byte
address in program memory. Instruction #2 in the example shows how the instruction GOTO 0006h is encoded in the
program memory. Program branch instructions, which encode a relative address offset, operate in the same manner.
The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be
offset by.

Figure 7-4. Instructions in Program Memory

Word Address

LSB=1 LSB=0
Program Memory 000000h
Byte Locations 000002h
000004h
000006h
Instruction 1: MOVLW 055h OFh 55h 000008h
Instruction 2: GOTO 0006h EFh 03h 00000Ah
FOh 00h 00000Ch
Instruction 3: MOVFF 123h, 456h C1h 23h 00000Eh
F4h 56h 000010h
Instruction 4: MOVFFL 123h, 456h 00h 60h 000012h
F4h 8Ch 000014h
F4h 56h 000016h
000018h
00001Ah

Multi-Word Instructions

The standard PIC18 instruction set has six two-word instructions: CALL, MOVFF, GOTO, LFSR, MOVSF and MOVSS
and two three-word instructions: MOVFFL and MOVSFL. In all cases, the second and the third word of the instruction
always has 1111 as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of 1111 in the four MSbs of an instruction specifies a special form of NOP. If the instruction is executed

in proper sequence, immediately after the first word, the data in the second word is accessed and used by the
instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is
executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction
that changes the PC.

Table 7-3 and Table 7-4 show more details of how two-word instructions work. Table 7-5 and Table 7-6 show more
details of how three-word instructions work.

Important: See the “PIC18 Instruction Execution and the Extended Instruction Set” section for
information on two-word instructions in the extended instruction set.

Table 7-3. Two-Word Instructions (Case 1)

0110 0110 0000 0000 TSTFSZ REGL ; is RAM location 07?
1100 0001 0101 0011 MOVFF REG1,REG2 ; No, skip this word
1111 0100 0101 0110 ; Execute this word as NOP
0010 0100 0000 0000 ADDWEF REG3 ; continue code
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 30

and its subsidiaries

7.5

7.6

PIC18F04/05/14/15Q40
PIC18 CPU

Table 7-4. Two-Word Instructions (Case 2)

0110 0110 0000 0000 TSTFSZ REG1 ; 1s RAM location 07

1100 0001 0101 0011 MOVFF REG1,REG2 ; Yes, execute this word
1111 0100 0101 0110 ; 2nd word of instruction
0010 0100 0000 0000 ADDWF REG3 ; continue code

Table 7-5. Three-Word Instructions (Case 1)

0110 0110 0000 0000 TSTFSZ REG1 ; 1s RAM location 07

0000 0000 0110 0000 MOVFFL REG1,REG2 ; Yes, skip this word

1111 0100 1000 1100 ; Execute this word as NOP
1111 0100 0101 0110 ; Execute this word as NOP
0010 0100 0000 0000 ADDWF REG3 ; continue code

Table 7-6. Three-Word Instructions (Case 2)

0110 0110 0000 0000 TSTFSZ REG1 ; 1is RAM location 07

0000 0000 0110 000O0 MOVFFL REG1,REG2 ; No, execute this word
1111 0100 1000 1100 ; 2nd word of instruction
1111 0100 0101 0110 ; 3rd word of instruction
0010 0100 0000 0000 ADDWF REG3 ; continue code

STATUS Register

The STATUS register contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for
any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits,
the results of the instruction are not written; instead, the STATUS register is updated according to the instruction
performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than
intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged (‘000u
uluu’).

It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register,
because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register. For other instructions that
do not affect Status bits, see the instruction set summaries.

Important: The C and DC bits operate as the Borrow and Digit Borrow bits, respectively, in subtraction.

Call Shadow Register

When CALL instruction is used, the WREG, BSR and STATUS are automatically saved in hardware and can be
accessed using the WREG_CSHAD, BSR_CSHAD and STATUS_CSHAD registers.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 31
and its subsidiaries

PIC18F04/05/14/15Q40
PIC18 CPU

Important:
The contents of these registers need to be handled correctly to avoid erroneous code execution.

7.7 Register Definitions: System Arbiter

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 32
and its subsidiaries

PIC18F04/05/14/15Q40

PIC18 CPU
7.71 ISRPR

Name: ISRPR

Address: 0x0BF

Interrupt Service Routine Priority Register

Bit 7 6 5 4 3 2 1 0
| | | PR[2:0]
Access R/W R/W R/W

Reset 1 1 1

Bits 2:0 — PR[2:0] Interrupt Service Routine Priority Selection

111
110
101
100
011
010
001
000

System Arbiter Priority Level: 7 (Lowest Priority)
System Arbiter Priority Level: 6
System Arbiter Priority Level: 5
System Arbiter Priority Level: 4
System Arbiter Priority Level: 3
System Arbiter Priority Level: 2
System Arbiter Priority Level: 1
System Arbiter Priority Level: 0 (Highest Priority)

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet DS40002236C-page 33

PIC18F04/05/14/15Q40

PIC18 CPU
7.7.2 MAINPR

Name: MAINPR

Address: 0x0BE

Main Routine Priority Register

Bit 7 6 4 3 2 1 0
| | | PR12:0]
Access R/W R/W R/W

Reset 1 1 1

Bits 2:0 — PR[2:0] Main Routine Priority Selection

111
110
101
100
011
010
001
000

System Arbiter Priority Level: 7 (Lowest Priority)
System Arbiter Priority Level: 6
System Arbiter Priority Level: 5
System Arbiter Priority Level: 4
System Arbiter Priority Level: 3
System Arbiter Priority Level: 2
System Arbiter Priority Level: 1
System Arbiter Priority Level: 0 (Highest Priority)

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet DS40002236C-page 34

PIC18F04/05/14/15Q40

PIC18 CPU
7.7.3 DMAxPR

Name: DMAxPR

Address: 0x0B6,0x0B7,0x0B8,0x0B9

DMAX Priority Register

Bit 7 6 4 3 2 1 0
| | PR[2:0]
Access R/W R/W R/W

Reset 1 1 1

Bits 2:0 — PR[2:0] DMAX Priority Selection

111
110
101
100
011
010
001
000

System Arbiter Priority Level: 7 (Lowest Priority)
System Arbiter Priority Level: 6
System Arbiter Priority Level: 5
System Arbiter Priority Level: 4
System Arbiter Priority Level: 3
System Arbiter Priority Level: 2
System Arbiter Priority Level: 1
System Arbiter Priority Level: 0 (Highest Priority)

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet DS40002236C-page 35

PIC18F04/05/14/15Q40

PIC18 CPU
7.7.4 SCANPR

Name: SCANPR

Address: 0x0B5

Scanner Priority Register

Bit 7 6 4 3 2 1 0
| | | PR[2:0]
Access R/W R/W R/W

Reset 1 1 1

Bits 2:0 — PR[2:0] Scanner Priority Selection

111
110
101
100
011
010
001
000

System Arbiter Priority Level: 7 (Lowest Priority)
System Arbiter Priority Level: 6
System Arbiter Priority Level: 5
System Arbiter Priority Level: 4
System Arbiter Priority Level: 3
System Arbiter Priority Level: 2
System Arbiter Priority Level: 1
System Arbiter Priority Level: 0 (Highest Priority)

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet DS40002236C-page 36

PIC18F04/05/14/15Q40

PIC18 CPU
7.7.5 PRLOCK

Name: PRLOCK

Address: 0x0B4

Priority Lock Register

Bit 7 6 5 4 3 2 1 0
| | PRLOCKED
Access R/W

Reset 0

Bit 0 - PRLOCKED PR Register Lock

Value Description

1 Priority registers are locked and cannot be written; Peripherals do not have access to the memory
0 Priority registers can be modified by write operations; Peripherals do not have access to the memory

Important:
1. The PRLOCKED bit can only be set or cleared after the unlock sequence.
2. If the Configuration Bit PR1WAY = 1, the PRLOCKED bit cannot be cleared after it has been set. A
device Reset will clear the bit and allow one more set.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 37

and its subsidiaries

PIC18F04/05/14/15Q40

PIC18 CPU
7.7.6 PROD
Name: PROD
Address: 0x4F3
Timer Register
Product Register Pair
Bit 15 14 13 12 11 10 9 8
| PROD[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
PRODI7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 15:0 — PROD[15:0] PROD Most Significant

Notes: The individual bytes in this multibyte register can be accessed with the following register names:
* PRODH: Accesses the high byte PROD[15:8]
* PRODL: Accesses the low byte PRODI[7:0]

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 38

PIC18F04/05/14/15Q40

PIC18 CPU
7.7.7 STATUS

Name: STATUS

Address: 0x4D8

STATUS Register

7 6 5 4 3 2 1 0
| | TO PD N oV z DC c
Access R R R/W R/W R/W R/W R/W

Reset 1 1 0 0 0 0 0

Bit 6 — TO Time-Out
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 Set at power-up or by execution of the CLRWDT or SLEEP instruction
0 A WDT time-out occurred

Bit 5 - PD Power-Down
Reset States: POR/BOR =1
All Other Resets = q

Value Description
1 Set at power-up or by execution of the CLRWDT instruction
0 Cleared by execution of the SLEEP instruction

Bit 4 — N Negative
Used for signed arithmetic (two’s complement); indicates if the result is negative (ALU MSb = 1).
Reset States: POR/BOR =0

All Other Resets = u

Value Description
1 The result is negative
0 The result is positive

Bit 3 — OV Overflow
Used for signed arithmetic (two’s complement); indicates an overflow of the 7-bit magnitude, which causes the sign
bit (bit 7) to change state.
Reset States: POR/BOR =0
All Other Resets = u

Value Description

1 Overflow occurred for current signed arithmetic operation

0 No overflow occurred

Bit2-2Z Zero
Reset States: POR/BOR =0
All Other Resets = u

Value Description
1 The result of an arithmetic or logic operation is zero
0 The result of an arithmetic or logic operation is not zero

Bit 1 — DC Digit Carry / Borrow
ADDWF, ADDLW, SUBLW, SUBWF instructions(")
Reset States: POR/BOR =0

All Other Resets = u

Value Description
1 A carry-out from the 4th low-order bit of the result occurred
0 No carry-out from the 4th low-order bit of the result
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 39

and its subsidiaries

PIC18F04/05/14/15Q40
PIC18 CPU

Bit 0 — C Carry / Borrow
ADDWF, ADDLW, SUBLW, SUBWF instructions(1:2)
Reset States: POR/BOR =0

All Other Resets = u

Value Description

1 A carry-out from the Most Significant bit of the result occurred
0 No carry-out from the Most Significant bit of the result occurred
Notes:
1. For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the second
operand.
2. For Rotate (RRCF, RLCF) instructions, this bit is loaded with either the high or low-order bit of the Source
register.
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 40

and its subsidiaries

7.8

PIC18F04/05/14/15Q40
PIC18 CPU

Register Summary - System Arbiter Control

I e A N N N N N BN

0x00
0xB3
0xB4
0xB5
0xB6
0xB7
0xB8
0xB9
0xBA
0xBD
O0xBE

OxBF

0xCO
0x0372
0x0373
0x0374
0x0375
0x0376
0x0377
0x0378
0x0379

0x037A
0x037C
0x037E
0x0380

0x0382
0x0384
0x04D7
0x04D8
0x04D9

0x04F2

0x04F3

Reserved
PRLOCK 7:0
SCANPR 7:0
DMA1PR 7:0
DMA2PR 7:0
DMA3PR 7:0
DMA4PR 7:0
Reserved
MAINPR 7:0
ISRPR 7:0
Reserved
STATUS_CSHAD 7:0 TO PD
WREG_CSHAD 7:0
BSR_CSHAD 7:0
Reserved
STATUS_SHAD 7:0 TO PD
WREG_SHAD 7:0
BSR_SHAD 7:0
PCLAT_SHAD 70
- 15:8
7:0
FSRO_SHAD
- 15:8
FSR1_SHAD 70
- 15:8
7:0
FSR2_SHAD
- 15:8
PROD_SHAD 70
- 15:8
Reserved
STATUS 7:0 TO PD
Reserved
7:0
PROD
15:8

PRLOCKED
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
PR[2:0]
ov z DC c
WREG[7:0]
BSR[5:0]
ov z DC c
WREG[7:0]
BSR[5:0]
PCLATH[7:0]
PCLATU[4:0]
FSRL[7:0]
FSRH[5:0]
FSRL[7:0]
FSRH[5:0]
FSRL[7:0]
FSRH[5:0]
PROD[7:0]
PROD[15:8]
ov z DC c
PRODI[7:0]
PROD[15:8]

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 41

8.1

8.2

8.3

8.4

8.5

PIC18F04/05/14/15Q40

Device Configuration

Device Configuration

Configuration Settings

The Configuration settings allow the user to set up the device with several choices of oscillators, Resets and memory
protection options. These are implemented at 0x300000 - 0x300009.

Important: The DEBUG Configuration bit is managed automatically by device development tools
including debuggers and programmers. For normal device operation, this bit needs to be maintained as a
‘1.

Code Protection

Code protection allows the device to be protected from unauthorized access. Internal access to the program memory
is unaffected by any code protection setting. A single code-protect bit controls the access for both program memory
and data EEPROM memory.

The entire program memory and Data EEPROM space is protected from external reads and writes by the CP bit.
When CP = 0, external reads and writes are inhibited and a read will return all ‘0’s. The CPU can continue to read
the memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write
protection setting.

User ID

32 words in the memory space (0x200000 - 0x20003F) are designated as ID locations where the user can store
checksum or other code identification numbers. These locations are readable and writable during normal execution.
See the “User ID, Device ID and Configuration Settings Access, DIA and DCI” section for more information

on accessing these memory locations. For more information on checksum calculation, see the “PIC18-Q40 Family
Programming Specification” (DS40002143).

Device ID and Revision ID
The 16-bit device ID word is located at Ox3FFFFE and the 16-bit revision ID is located at Ox3FFFFC. These locations
are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID, Revision
ID and Configuration bits. Refer to the “NVM - Nonvolatile Memory Module” section for more information on
accessing these locations.

Register Definitions: Configuration Settings

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 42
and its subsidiaries

PIC18F04/05/14/15Q40

Device Configuration

8.5.1 CONFIG1

Name: CONFIG1
Address: 0x300000

Configuration Byte 1

Bit 7 6 5 4 3 2 1 0
| | RSTOSC[2:0] FEXTOSC[2:0]
Access R/W R/W R/W R/W R/W R/W

Reset 1 1 1 1 1 1

Bits 6:4 — RSTOSC[2:0] Power-Up Default Value for COSC
This value is the Reset default value for COSC and selects the oscillator first used by user software. Refer to COSC

operation.

Value Description

111 EXTOSC operating per FEXTOSC bits

110 HFINTOSC with HFFRQ = 4 MHz and CDIV = 4:1. Resets COSC/NOSC tob'110"'.
101 LFINTOSC

100 SOSC

011 Reserved

010 EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits

001 Reserved

000 HFINTOSC with HFFRQ = 64 MHz and CDIV = 1:1. Resets COSC/NOSCtob'110".

Bits 2:0 — FEXTOSC[2:0] External Oscillator Mode Selection

Value Description

111 ECH (external clock) above 8 MHz
110 ECM (external clock) for 500 kHz to 8 MHz
101 ECL (external clock) below 500 kHz
100 Oscillator not enabled
011 Reserved (do not use)
010 HS (crystal oscillator) above 4 MHz
001 XT (crystal oscillator) above 500 kHz, below 4 MHz
000 LP (crystal oscillator) optimized for 32.768 kHz
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 43

and its subsidiaries

PIC18F04/05/14/15Q40

Device Configuration

8.5.2 CONFIG2

Name: CONFIG2
Address: 0x300001

Configuration Byte 2

Bit 7 6 5 4 3 2 1 0
| FCMENS | FCMENP FCMEN CSWEN PR1WAY | CLKOUTEN
Access RIW RIW RIW RIW RIW RIW
Reset 1 1 1 1 1 1

Bit 7 - FCMENS Fail-Safe Clock Monitor Enable - Secondary XTAL Enable

Value Description
1 Fail-Safe Clock Monitor enabled; the timer will flag the FSCMS bit and OSFIF interrupt on SOSC failure
0 Fail-Safe Clock Monitor disabled

Bit 6 — FCMENP Fail-Safe Clock Monitor Enable - Primary XTAL Enable

1 Fail-Safe Clock Monitor enabled; the timer will flag the FSCMP bit and OSFIF interrupt on EXTOSC
failure
0 Fail-Safe Clock Monitor disabled

Bit 5— FCMEN Fail-Safe Clock Monitor Enable

Value Description
1 Fail-Safe Clock Monitor enabled
0 Fail-Safe Clock Monitor disabled

Bit 3 — CSWEN Clock Switch Enable

Value Description
1 Writing to NOSC and NDIV is allowed
0 The NOSC and NDIV bits cannot be changed by user software

Bit 1 - PR1WAY PRLOCKED One-Way Set Enable
Value Description

1 The PRLOCKED bit can be cleared and set only once; Priority registers remain locked after one
clear/set cycle
0 The PRLOCKED bit can be set and cleared repeatedly (subject to the unlock sequence)

Bit 0 —- CLKOUTEN Clock Out Enable
If FEXTOSC = HS, XT, LP, then this bit is ignored.

Otherwise:
Value Description
1 CLKOUT function is disabled; I/O function on OSC2
0 CLKOUT function is enabled; Fosc/4 clock appears at OSC2
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 44

and its subsidiaries

PIC18F04/05/14/15Q40

Device Configuration

8.5.3 CONFIG3
Name: CONFIG3
Address: 0x300002
Configuration Byte 3
Bit 7 6 5 4 3 2 1 0
| BOREN[1:0] LPBOREN IVT1WAY MVECEN PWRTS[1:0] MCLRE
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 1 1 1 1 1 1 1

Bits 7:6 — BOREN[1:0] Brown-out Reset Enable
When enabled, Brown-out Reset Voltage (VgoR) is set by the BORV bit.
Value Description

11 Brown-out Reset enabled, the SBOREN bit is ignored

10 Brown-out Reset enabled while running, disabled in Sleep; SBOREN is ignored
01 Brown-out Reset enabled according to SBOREN

00 Brown-out Reset disabled

Bit 5 - LPBOREN Low-Power BOR Enable

Value Description
1 Low-Power Brown-out Reset is disabled
0 Low-Power Brown-out Reset is enabled

Bit 4 — IVT1IWAY IVTLOCK One-Way Set Enable
Value Description

1 The IVTLOCK bit can be cleared and set only once; IVT registers remain locked after one clear/set
cycle
0 The IVTLOCK bit can be set and cleared repeatedly (subject to the unlock sequence)

Bit 3 - MVECEN Multivector Enable

Value Description
1 Multivector is enabled; vector table used for interrupts
0 Legacy interrupt behavior

Bits 2:1 — PWRTS[1:0] Power-up Timer Selection

11 PWRT is disabled

10 PWRT is set at 64 ms
01 PWRT is set at 16 ms
00 PWRT is set at 1 ms

Bit 0 - MCLRE Master Clear (MCLR) Enable

Value Condition Description
x IfLVP =1 RA3 pin function is MCLR
1 If LVP =0 RAS3 pin function is MCLR
0 If LVP =0 RAZ3 pin function is a port-defined function
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 45

and its subsidiaries

PIC18F04/05/14/15Q40

Device Configuration

8.54

Bit

Access
Reset

Name: CONFIG4
Address: 0x300003

Configuration Byte 4

7 6 5 4 3 2 1 0
[XINST | LVP STVREN PPS1WAY ZCD BORV[1:0]
R/W RIW R/W RIW R/W RIW R/W

1 1 1 1 1 1 1

Bit 7 — XINST Extended Instruction Set Enable

Value Description
1 Extended Instruction Set and Indexed Addressing mode disabled (Legacy mode)
0 Extended Instruction Set and Indexed Addressing mode enabled

Bit 5 — LVP Low-Voltage Programming Enable

The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The purpose of this rule
is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating
LVP mode from the Configuration state.

1 Low-Voltage Programming enabled. MCLR/Vpp pin function is MCLR. The MCLRE Configuration bit is
ignored.
0 HV on MCLR/Vpp must be used for programming

Bit 4 — STVREN Stack Overflow/Underflow Reset Enable

Value Description

1 Stack Overflow or Underflow will cause a Reset

0 Stack Overflow or Underflow will not cause a Reset

Bit 3 - PPS1WAY PPSLOCKED One-Way Set Enable
Value Description

1 The PPSLOCKED bit can only be set once after an unlocking sequence is executed; once PPSLOCK
is set, all future changes to PPS registers are prevented
0 The PPSLOCKED bit can be set and cleared as needed (unlocking sequence is required)

Bit 2 - ZCD ZCD Disable

Value Description
1 ZCD disabled, ZCD can be enabled by setting the ZCDSEN bit of ZCDCON
0 ZCD always enabled, PMDx[ZCDMD] bit is ignored

Bits 1:0 — BORV[1:0] Brown-out Reset Voltage Selection(!)
Value Description

11 Brown-out Reset Voltage (VgoRr) set to 1.90V

10 Brown-out Reset Voltage (VgoRr) set to 2.45V

01 Brown-out Reset Voltage (VgoRr) set to 2.7V

00 Brown-out Reset Voltage (VgoRr) set to 2.85V
Note:

1. The higher voltage setting is recommended for an operation at or above 16 MHz.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 46
and its subsidiaries

PIC18F04/05/14/15Q40

Device Configuration

8.5.5 CONFIG5

Name:
Address:

CONFIG5
0x300004

Configuration Byte 5

Bit 7 6 5 4 3 2 1 0
| | WDTE[1:0] WDTCPS[4:0]
Access R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1

Bits 6:5 — WDTE[1:0] WDT Operating Mode
Value

11
10
01
00

Description
WDT enabled regardless of Sleep; the SEN bit in WDTCONO is ignored

WDT enabled while Sleep = 0, suspended when Sleep = 1; the SEN bit in WDTCONO is ignored
WDT enabled/disabled by the SEN bit in WDTCONO
WDT disabled, the SEN bit in WDTCONO is ignored

Bits 4:0 - WDTCPS[4:0] WDT Period Select

WDTCONO[WDTPS] at POR

WDTCPS

11110to 10011

11111

10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

" . Typical Time-Out | Software Control of WDTPS?
Value Divider Ratio (Fin = 31 kHz2)

01011
11110to 10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

1:65536
1:32
1:8388608
1:4194304
1:2097152
1:1048576
1:524288
1:262144
1:131072
1:65536
1:32768
1:16384
1:8192
1:4096
1:2048
1:1024
1:512
1:256
1:128
1:64
1:32

2%
25

2s
1ms
256s
128s
64s
32s
16s
8s
4s
2s
1s
512 ms
256 ms
128 ms
64 ms
32ms
16 ms
8 ms
4 ms
2ms
1ms

Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 47

PIC18F04/05/14/15Q40

Device Configuration

8.5.6 CONFIG6

Name: CONFIG6
Address: 0x300005

Configuration Byte 6

Bit 7 6 5 4 3 2 1 0
| | WDTCCS[2:0] WDTCWS[2:0]
Access R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1

Bits 5:3 - WDTCCS[2:0] WDT Input Clock Selector

Value Condition Description

x WDTE =00 These bits have no effect

111 WDTE # 00 Software control

110 to WDTE # 00 Reserved

011

010 WDTE # 00 WDT reference clock is the SOSC

001 WDTE # 00 WDT reference clock is the 31.25 kHz MFINTOSC
000 WDTE # 00 WDT reference clock is the 31.0 kHz LFINTOSC

Bits 2:0 - WDTCWS[2:0] WDT Window Select

WDTCWS
Value

WDTCON1 [WINDOW] at POR

Software Control of Keyed Access
Window Delay Window Opening WINDOW Required?
Percent of Time Percent of Time

111 111 100 Yes No
110 110 n/a 100

101 101 25 75

100 100 37.5 62.5

011 011 50 50 No Yes
010 010 62.5 37.5

001 001 75 25

000 000 87.5 12.5

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 48

and its subsidiaries

8.5.7

Access
Reset

PIC18F04/05/14/15Q40

Device Configuration

CONFIG7

Name: CONFIG7
Address: 0x300006

Configuration Byte 7

7 6 5 4 3 2 1 0
| | DEBUG SAFEN BBEN BBSIZE[2:0]
RIW R/W RIW R/W RIW R/W

1 1 1 1 1 1

Bit 5 - DEBUG Debugger Enable

Value Description

1 Background debugger disabled
0 Background debugger enabled
Bit 4 - SAFEN Storage Area Flash (SAF) Enable(!)
Value Description

1 SAF is disabled

0 SAF is enabled
Bit 3 — BBEN Boot Block Enable(")

Value Description

1 Boot Block is disabled

0 Boot Block is enabled

Bits 2:0 —- BBSIZE[2:0] Boot Block Size Selection(?
Table 8-1. Boot Block Size

Boot Block Size (words)

BBEN
1 XXX — —
0 111 00 03FFh 512
0 110 00 07FFh 1024
0 101 00 OFFFh 2048
0 100 00 1FFFh 4096
0 011 00 3FFFh — 8192
0 010 00 7FFFh — 16384
0 001 00 FFFFh —
0 000 01 FFFFh —

Notes:
1. Once protection is enabled through ICSP™ or a self-write, it can only be reset through a Bulk Erase.
2. BBSIZE[2:0] bits can only be changed when BBEN = 1. Once BBEN = 0, BBSIZE[2:0] can only be changed
through a Bulk Erase.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 49
and its subsidiaries

8.5.8

Access
Reset

PIC18F04/05/14/15Q40

Device Configuration

CONFIG8

Name: CONFIG8
Address: 0x300007

Configuration Byte 8

7 6 5 4 3 2 1 0
| WRTAPP | WRTSAF WRTD WRTC WRTB
RIW RIW RIW RIW RIW

1 1 1 1 1

Bit 7 - WRTAPP Application Block Write Protection(!)

Value Description
1 Application Block is not write-protected
0 Application Block is write-protected

Bit 3 - WRTSAF Storage Area Flash (SAF) Write Protection(!:2)

Value Description
1 SAF is not write-protected
0 SAF is write-protected

Bit 2—- WRTD Data EEPROM Write Protection(!)

Value Description
1 Data EEPROM is not write-protected
0 Data EEPROM is write-protected

Bit 1 - WRTC Configuration Register Write Protection(")

Value Description
1 Configuration registers are not write-protected
0 Configuration registers are write-protected

Bit 0 - WRTB Boot Block Write Protection(!:3)

Value Description

1 Boot Block is not write-protected
0 Boot Block is write-protected
Notes:

1. Once protection is enabled through ICSP™ or a self-write, it can only be reset through a Bulk Erase.
2. Applicable only if SAFEN = 0.
3. Applicable only if BBEN = 0.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 50

and its subsidiaries

PIC18F04/05/14/15Q40

Device Configuration

8.5.9 CONFIGY

Name: CONFIG9
Address: 0x300008

Configuration Byte 9

Bit 7 6 5 4 3 2 0
| | cpP
Access R/W
Reset 1

Bit 0 — CP User Program Flash Memory and Data EEPROM Code Protection

Value Description
1 User Program Flash Memory and Data EEPROM code protection are disabled
0 User Program Flash Memory and Data EEPROM code protection are enabled

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet
and its subsidiaries

DS40002236C-page 51

8.6

PIC18F04/05/14/15Q40

Device Configuration

Register Summary - Configuration Settings

I e A N N N N N BN

0x00

Ox2FFFFF
0x300000
0x300001

0x300002
0x300003
0x300004
0x300005
0x300006
0x300007
0x300008

8.7

Reserved

CONFIG1
CONFIG2
CONFIG3
CONFIG4
CONFIG5
CONFIG6
CONFIG7
CONFIG8
CONFIG9

7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0

RSTOSC[2:0] FEXTOSC[2:0]
FCMENS | FCMENP FCMEN CSWEN PR1WAY | CLKOUTEN

BOREN([1:0] LPBOREN | IVT1WAY | MVECEN PWRTS[1:0] MCLRE

XINST LVP STVREN | PPS1WAY ZCD BORV[1:0]
WDTE[1:0] WDTCPS[4:0]
WDTCCS[2:0] WDTCWS[2:0]
DEBUG SAFEN BBEN BBSIZE[2:0]
WRTAPP WRTSAF WRTD WRTC WRTB
CP

Register Definitions: Device ID and Revision ID

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 52

PIC18F04/05/14/15Q40

Device Configuration

8.7.1 Device ID

Name: DEVICEID
Address: Ox3FFFFE

Device ID Register

Bit 15 14 13 12 11 10 9 8
| DEV[15:8]
Access R R R R R R
Reset q q q q q q q q
Bit 7 6 5 4 3 2 1 0
DEVI[7:0]
Access R R R R R
Reset q q q q q q q q

Bits 15:0 — DEV[15:0] Device ID

PIC18F04Q40
PIC18F05Q40
PIC18F06Q40
PIC18F14Q40
PIC18F15Q40
PIC18F16Q40

7640h
7600h
75C0h
7620h
75E0h
75A0h

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 53

PIC18F04/05/14/15Q40

Device Configuration

8.7.2 Revision ID

Name: REVISIONID
Address: Ox3FFFFC

Revision ID Register

Bit 15 14 13 12 11 10 9 8
| 1010[3:0] MJRREV[5:2]
Access R R R R R R R R
Reset 1 0 1 0 q q q q
Bit 7 6 5 4 3 2 1 0
MJRREV[1:0] MNRREV[5:0]

Access R

Reset q q q q q q q q

Bits 15:12 - 1010[3:0] Read as ‘b1010
These bits are fixed with value ‘1010 for all devices in this family.

Bits 11:6 — MURREV[5:0] Major Revision ID

These bits are used to identify a major revision (A0, BO, CO, etc.).
Revision A= ‘b00 0000

Revision B = *‘b00 0001

Bits 5:0 - MNRREV[5:0] Minor Revision ID
These bits are used to identify a minor revision.
Revision A0 = *b00 0000

Revision BO = ‘b00 0000

Revision B1 = *‘b00 0001

Tip: For example, the REVISIONID register value for revision B1 will be 0xA041.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 54
and its subsidiaries

PIC18F04/05/14/15Q40

Device Configuration

8.8 Register Summary - DEVID/REVID

I e A N N N N N BN

0x00
Reserved

Ox3FFFFB
7:0 MJRREV[1:0] MNRREV[5:0]

Ox3FFFFC| REVISIONID
15:8 1010[3:0] MJRREV[5:2]

OX3FFFFE| DEVICEID 70 DEV[7:0]
15:8 DEV[15:8]

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 55

and its subsidiaries

9.1

PIC18F04/05/14/15Q40

Memory Organization

Memory Organization

There are three types of memory in PIC18 microcontroller devices:

* Program Memory
+ Data RAM
» Data EEPROM

In Harvard architecture devices, the data and program memories use separate buses that allow for concurrent
access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral
device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Program Flash Memory and data EEPROM memory is
provided in the “NVM - Nonvolatile Memory Module” section.

Program Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter, which is capable of addressing a 2 Mbyte program
memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2
Mbyte address will return all ‘0’s (a NOP instruction).

Refer to the following tables for device memory maps and code protection Configuration bits associated with the
various sections of PFM.

The Reset vector address is at 000000h. The PIC18-Q40 devices feature a vectored interrupt controller with a
dedicated interrupt vector table stored in the program memory. Refer to the “VIC - Vectored Interrupt Controller
Module” chapter for more details.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 56
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

Figure 9-1. Program and Data Memory Map

Device
PIC18Fx4Q40 PIC18Fx5Q40 PIC18Fx6Q40

Address

00 0000h
to
00 3FFFh

Program Flash Memory
(8KW)® Program Flash

00 4000h Memory P Flash
(e rogram Flas|
to (A6 Kw) Memory

00 7FFFh B2 Kw)®

00 8000h
to
00 FFFFh Not

@
01 0000h Present Not

to Present®
01 FFFFh Not

02 0000h Present®
to
1F FFFFh
20 0000h
to User IDs (32 Words)®
20 003Fh
20 0040h
to Reserved
2B FFFFh
2C 0000h
to Device Information Area (DIA)(S'S)
2C 00FFh
2C 0100h
to Reserved
2F FFFFh
30 0000h
to Configuration Bytes®
30 0009h
30 000Ah
to Reserved
37 FFFFh
38 0000h
to Data EEPROM (512 Bytes)
38 01FFh
38 0200h
to Reserved
3B FFFFh
3C 0000h
to Device Configuration Information®*®
3C 0009h
3C 000Ah
to Reserved
3F FFFBh
3F FFFCh
to Revision ID (1 Word)®+9
3F FFFDh
3F FFFEh
to Device ID (1 Word)®4®
3F FFFFh

Storage Area Flash is implemented as the last 128 Words of User Flash, if enabled.
The addresses do not roll over. The region is read as ‘0’.

Notes: 1
2
3. Not code-protected.
4
5,

Hard-coded in silicon.
This region cannot be written by the user and it is not affected by a Bulk Erase.

9.1.1 Memory Access Partition
In the PIC18-Q40 devices, the program memory can be further partitioned into the following sub-blocks:
» Application block
+ Boot block
» Storage Area Flash (SAF) block

Refer to the Program Flash Memory Partition table for more details.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 57
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.1.1.1 Application Block

Application block is where the user’s firmware resides by default. Default settings of the Configuration bits (BBEN
= 1 and SAFEN = 1) assign all memory in the program Flash memory area to the application block. The WRTAPP

Configuration bit is used to write-protect the application block.

9.1.1.2 Boot Block

Boot block is an area in program memory that is ideal for storing bootloader code. Code placed in this area can be
executed by the CPU. The boot block can be write-protected, independent of the main application block. The Boot
Block is enabled by the BBEN Configuration bit and size is based on the value of the BBSIZE Configuration bits. The

WRTB Configuration bit is used to write-protect the Boot Block.

9.1.1.3 Storage Area Flash

Storage Area Flash (SAF) is the area in program memory that can be used as data storage. SAF is enabled by the
SAFEN Configuration bit. If enabled, the code placed in this area cannot be executed by the CPU. The SAF block
is placed at the end of memory and spans 128 Words. The WRTSAF Configuration bit is used to write-protect the

Storage Area Flash.

Important: If write-protected locations are written to, memory is not changed and the WRERR bit is set.

Table 9-1. Program Flash Memory Partition

Partition®

Address

Region

SAFEN =1

00 0000h

Last Boot Block
Memory Address

Last Boot Block
Memory
Address(!) + 1

Last Program
Memory
Address®@ - 100n

Program Flash

Memory Application Block

Last Program
Memory
Address(?) -

4
FER() Storage Area

Flash Block
Last Program
Memory
Address(®

Application Block

Boot Block Boot Block

Application Block

Application Block

Storage Area
Flash Block

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 58

9.1.3

9.1.31

PIC18F04/05/14/15Q40

Memory Organization

Notes:

1. Last Boot Block address is based on BBSIZE bits. Refer to the “Device Configuration” chapter for more
details.

2. For Last Program Memory address refer the table above.
3. Refer to the “Device Configuration” chapter for BBEN and SAFEN bit definitions.
4. Storage Area Flash is implemented as the last 128 Words of user Flash memory.

Program Counter

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide
and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and
writable. The high byte, or PCH register, contains the PC[15:8] bits; it is not directly readable or writable. Updates to
the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains
the PC[20:16] bits; it is also not directly readable or writable. Updates to the PCU register are performed through the
PCLATU register.

The contents of PCLATH and PCLATU are transferred to the Program Counter by any operation that writes PCL.
Similarly, the upper two bytes of the Program Counter are transferred to PCLATH and PCLATU by an operation that
reads PCL. This is useful for computed offsets to the PC (see the Computed GOTO section).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word
instructions, the Least Significant bit of PCL is fixed to a value of ‘0’. The PC increments by two to address sequential
instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the Program Counter directly. For these
instructions, the contents of PCLATH and PCLATU are not transferred to the Program Counter.

Return Address Stack

The return address stack allows any combination of up to 127 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value
is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of
the RETURN or CALL instructions.

The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through
the Top-of-Stack (TOS) Special File registers. Data can also be pushed to, or popped from the stack, using these
registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed
to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL).
A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are
transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to 0x00 after all Resets.

Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL,
hold the contents of the stack location pointed to by the STKPTR register (see Figure 9-2). This allows users to
implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value
by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user defined software stack. At return
time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE) bits while accessing the stack to prevent inadvertent stack
corruption.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 59
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

Figure 9-2. Return Address Stack and Associated Registers

Return Address Stack <20:0>

1111111
1111110
1111101
[] []

Top-of-Stack Registers : : Sﬂgzgsgfoz 0>

TOSU TOSH TOSL . : [0000010]
[ooh | [1An | [34h || o o
0000011

——» Top-of-Stack 001A34h 0000010 -——

000D58h 0000001

0000000

9.1.3.2 Return Stack Pointer

The STKPTR register contains the Stack Pointer value. The STKOVF (Stack Overflow) Status bit and the STKUNF
(Stack Underflow) Status bit can be accessed using the PCONO register. The value of the Stack Pointer can be
zero through 127. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer
value. After the PC is pushed onto the stack 128 times (without popping any values off the stack), the STKOVF bit is
set. The STKOVF bit is cleared by software or by a POR. The action that takes place when the stack becomes full
depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit.

If STVREN is set (default), a Reset will be generated and a Stack Overflow will be indicated by the STKOVF bit.
This includes CALL and CALLW instructions, as well as stacking the return address during an interrupt response. The
STKOVF bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKOVF bit will be set on the 128™ push and the Stack Pointer will remain at 127 but no
Reset will occur. Any additional pushes will overwrite the 1275t push but the STKPTR will remain unchanged.

Setting STKOVF = 1 in software will change the bit, but will not generate a Reset.

The STKUNF bit is set when a stack pop returns a value of ‘0’. The STKUNF bit is cleared by software or by POR.
The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset
Enable) Configuration bit.

If STVREN is set (default) and the stack has been popped enough times to unload the stack, the next pop will return
a value of ‘0’ to the PC, it will set the STKUNF bit and a Reset will be generated. This condition can be generated by
the RETURN, RETLW and RETFIE instructions.

If STVREN is cleared, the STKUNF bit will be set, but no Reset will occur.

Important: Returning a value of ‘0’ to the PC on an underflow has the effect of vectoring the program to
the Reset vector, where the stack conditions can be verified and appropriate actions can be taken. This is
not the same as a Reset, as the contents of the SFRs are not affected.

9.1.3.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the
stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two
instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL
can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the
current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto
the stack then becomes the TOS value.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 60
and its subsidiaries

9.1.34

9.1.4.1

9.1.4.2

PIC18F04/05/14/15Q40

Memory Organization

Fast Register Stack

There are three levels of fast stack registers available - one for CALL type instructions and two for interrupts. A fast
register stack is provided for the STATUS, WREG and BSR registers, to provide a “fast return” option for interrupts.
It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All
interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their
associated registers if the RETFIE, FAST instruction is used to return from the interrupt. Refer to the “Call Shadow
Register” section for interrupt call shadow registers.

The following example shows a source code example that uses the Fast Register Stack during a subroutine call and
return.

Example 9-1. Fast Register Stack Code Example

CALL SUB1l, FAST STATUS, WREG, BSR SAVED IN FAST REGISTER STACK

SUBL:

RETURN, FAST RESTORE VALUES SAVED IN FAST REGISTER STACK

Look-up Tables in Program Memory

There may be programming situations that require the creation of data structures, or Look-up Tables, in program
memory. For PIC18 devices, Look-up Tables can be implemented in two ways:

* Computed GOTO
* Table reads

Computed GOTO
A computed GOTO is accomplished by adding an offset to the Program Counter. An example is shown in the following
code example.

A Look-up Table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W
register is loaded with an offset into the table before executing a call to that table. The first instruction of the called
routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that
returns the value ‘nn’ to the calling function.

The offset value (in WREG) specifies the number of bytes that the Program Counter will advance and must be
multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is
required.

Example 9-2. Computed GOTO Using an Offset Value

RLNCF OFFSET, W W must be an even number, Max OFFSET = 127

CALL TABLE

ORG nn00Oh 00 in LSByte ensures no addition overflow
TABLE :

ADDWF PCL Add OFFSET to program counter

RETLW A Value @ OFFSET=0

RETLW B Value @ OFFSET=1

RETLW C Value Q@ OFFSET=2

Program Flash Memory Access

A more compact method of storing data in program memory allows two bytes of data to be stored in each instruction
location.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 61
and its subsidiaries

9.2

PIC18F04/05/14/15Q40

Memory Organization

Look-up Table data may be stored two bytes per program word by using table reads and writes. The Table Pointer
(TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read
from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in the “Table Read Operations” and “Table Write
Operations” sections in the “NVM - Nonvolatile Memory Module” chapter.

Device Information Area

The Device Information Area (DIA) is a dedicated region in the program memory space. The DIA contains the
calibration data for the internal temperature indicator module, the Microchip Unique Identifier words, and the Fixed
Voltage Reference voltage readings measured in mV.

The complete DIA table is shown below, followed by a description of each region and its functionality. The data is
mapped from 2C0000h to 2C003Fh. These locations are read-only and cannot be erased or modified. The data is
programmed into the device during manufacturing.

Table 9-2. Device Information Area

Address Range Name of Region Standard Device Information

MUIO
MUl
MUI2
MUI3
2C0000h-2C0011h MUI4 Microchip Unique Identifier (9 Words)
MUI5
MuUl6
Mul7
MUI8
2C0012h-2C0013h MUI9 Reserved (1 Word)
EUIO
EUN
EUI2
EUI3
2C0014h-2C0023h EUla Optional External Unique Identifier (8 Words)
EUI5
EUI6
EUI7

0.1C x 256

1 in —
2C0024h-2C0025h TSLR1(M Gain = COUnt

(low range setting)
Temperature indicator ADC reading at 90°C (low

2C0026h-2C0027h TSLR2() !
range setting)

2C0028h-2C0029h TSLR3(M Offset (low range setting)

0.1C x 256

2 n =
2C002Ah-2C002Bh TSHR1(? Gain = COUnt

(high range setting)

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 62
and its subsidiaries

9.21

9.2.2

PIC18F04/05/14/15Q40

Memory Organization

........... continued

Address Range Name of Region Standard Device Information

Temperature indicator ADC reading at 90°C (high

2C002Ch-2C002Dh TSHR2(2) .
range setting)

2C002Eh-2C002Fh TSHR3@ Offset (high range setting)
2C0030h-2C0031h FVRA1X ADC FVR1 Output voltage for 1x setting (in mV)
2C0032h-2C0033h FVRA2X ADC FVR1 Output Voltage for 2x setting (in mV)
2C0034h-2C0035h FVRA4X ADC FVR1 Output Voltage for 4x setting (in mV)
2C0036h-2C0037h FVRC1X rCT‘;c\)/r;parator FVR2 output voltage for 1x setting (in
2C0038h-2C0039h FVRC2X r(]31<\)/r;1parator FVR2 output voltage for 2x setting (in
2C003Ah-2C003Bh FVRC4X gc\)/r;wparator FVR2 output voltage for 4x setting (in
2C003Ch-2C003Fh Unassigned (2 Words)

Notes:

1. TSLR: Address 2C0024h-2C0029h store the measurements for the low range setting of the temperature
sensor at Vpp = 3V, Vrert = 2.048V from FVR1.

2. TSHR: Address 2C002Ah-2C002Fh store the measurements for the high range setting of the temperature
sensor at Vpp = 3V, Vrert = 2.048V from FVR1.

Microchip Unique Identifier (MUI)

This family of devices is individually encoded during final manufacturing with a Microchip Unique Identifier (MUI). The
MUI cannot be user-erased. This feature allows for manufacturing traceability of Microchip Technology devices in
applications where this is required. It may also be used by the application manufacturer for a number of functions that
require unverified unique identification, such as:

» Tracking the device

» Unique serial number

The MUI is stored in read-only locations, located between 2C0000h to 2C0013h in the DIA space. The DIA table lists
the addresses of the identifier words.

Important: For applications that require verified unique identification, contact the Microchip Technology
sales office to create a Serialized Quick Turn Programming option.

External Unique Identifier (EUI)

The EUI data is stored at locations 2C0014h-2C0023h in the program memory region. This region is an
optional space for placing application specific information. The data is coded per customer requirements during
manufacturing. The EUI cannot be erased by a Bulk Erase command.

Important: Data is stored in this address range on receiving a request from the customer. The customer
may contact the local sales representative or Field Applications Engineer, and provide them the unique
identifier information that is required to be stored in this region.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 63
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.2.3 Standard Parameters for the Temperature Sensor

The purpose of the temperature indicator module is to provide a temperature-dependent voltage that can be
measured by an analog module. The DIA table contains standard parameters for the temperature sensor for low
and high range. The values are measured during test and are unique to each device. The calibration data can be
used to plot the approximate sensor output voltage, Vtsense Vs. Temperature curve. The “Temperature Indicator
Module” chapter explains the operation of the Temperature Indicator module and defines terms such as the low

range and high range settings of the sensor.

9.24 Fixed Voltage Reference Data

The DIA stores measured FVR voltages for this device in mV for different buffer settings of 1x, 2x or 4x at program
memory locations. For more information on the FVR, refer to the “FVR - Fixed Voltage Reference” chapter.

9.3 Device Configuration Information

The Device Configuration Information (DCI) is a dedicated region in the program memory mapped from 3C0000h
to 3C0009h. The data stored in these location is read-only and cannot be erased. Refer to the table below for
the complete DCI table address and description. The DCI holds information about the device, which is useful for

programming and Bootloader applications.

The erase size is the minimum erasable unit in the PFM, expressed as rows. The total device Flash memory capacity
is (Erase size * Number of user-erasable pages).

Table 9-3. Device Configuration Information for PIC18-Q40 Devices

VALUE
ADDRESS S N p—
PIC18F04/14Q40 PIC18F05/15Q40 PIC18F06/16Q40

3C0000h-3C0001h

3C0002h-3C0003h

3C0004h-3C0005h

3C0006h-3C0007h

3C0008h-3C0009N

ERSIZ

WLSIZ

URSIZ

EESIZ

PCNT

Erase page size

Number of write
latches per row

Number of user-
erasable pages

Data EEPROM
memory size

Pin count

9.4 Data Memory Organization

128 128 128 Words
0 0 0 Words
64 128 256 Pages
512 512 512 Bytes
14/20 14/20 14/20 Pins

Important: The operation of some aspects of data memory are changed when the PIC18 extended
instruction set is enabled. See the PIC18 Instruction Execution and the Extended Instruction Set section
for more information.

The data memory in PIC18 devices is implemented as static RAM. The memory space is divided into as many as 64
banks with 256 bytes each. Figure 9-3 shows the data memory organization for all devices in the device family.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs
are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and
scratchpad operations in the user’s application. Any read of an unimplemented location will read as ‘0’.

The value in the Bank Select Register (BSR) determines which bank is being accessed. The instruction set and
architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or
Indexed Addressing modes. Addressing modes are discussed later in this subsection.

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet DS40002236C-page 64

PIC18F04/05/14/15Q40

Memory Organization

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices
implement an Access Bank. This is a virtual 256-byte memory space that provides fast access to SFRs and the top

half of GPR Bank 5 without using the Bank Select Register. The Access Bank section provides a detailed description
of the Access RAM.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 65
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

Figure 9-3. Data Memory Map

Bank | _ BSR | addr7:0] PIC18F

addr[13:8] x4Q40 | x5Q40 | x6Q40

0 'b00 0000 | Ox00-0x5F

1 'pb00 0001 | OxO0-OxFF

2 'b00 0010 | Ox00-OxFF

3 'p00 0011 | OxO00-OxFF

4 'b00 0100 | OX00-Ox5F Virtual Access Bank
'pb00 0100 | Ox60-OxFF Access RAM 0x00-0x5F

5 'b00 0101 | Ox00-Ox5F 0x60-0xFF
'pb00 0101 | Ox60-OxFF

6 'b00 0110 | Ox00-OxFF

7 'p00 0111 | OxO00-OxFF

8 'b00 1000 | Ox00-OxFF

9 'pb00 1001 | Ox00-OxFF

10 'b00 1010 | Ox00-OxFF

11 'p00 1011 | Ox00-OxFF

12 'b00 1100 | Ox00-OxFF

13 'pb00 1101 | OX00-OxFF

14 'b00 1110 | Ox00-OxFF

15 'b00 1111 | OX00-OXFF

16 'b01 0000 | Ox00-OxFF

17 'b01 0001 | OX00-OxFF

18 'b01 0010 | Ox00-OxFF

19 'pb01 0011 | OX00-OxFF

20 'b01 0100 | OX00-OXFF

21 'b01 0101 | Ox00-OxFF

22 'b01 0110 | OX00-OXFF

23 'b01 0111 | Ox0O0-OxFF

24 'b01 1000 | OX00-OxFF

25 'b01 1001 | OxO0-OxFF

26 'b01 1010 | OX00-OXFF

27 'b01 1011 | OxO0-OxFF

28 'b01 1100 | OX00-OXFF

29 'b01 1101 | Ox00-OxFF

30 'b01 1110 | OX00-OxFF

31 'p01 1111 | Ox00-OxFF

32 '10 0000 | OX00-OxFF

33 'p10 0001 | Ox00-OxFF

34 'p10 0010 | OX00-OxFF

35 'p10 0011 | Ox00-OxFF

36 'p10 0100 | OX00-OxFF

37 'bl0 0101 | Ox00-OxFF GPR

38 | 'b10 0110 | 0x00-0xFF SR

to - - Buffer RAM

63 'b11l 1111 | Ox00-OxFF Unimplemented

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 66

9.4.1

9.4.2

PIC18F04/05/14/15Q40

Memory Organization

Bank Select Register

To rapidly access the RAM space in PIC18 devices, the memory is split using the banking scheme. This divides
the memory space into contiguous banks of 256 bytes each. Depending on the instruction, each location can be
addressed directly by its full address, or an 8-bit low-order address and a bank pointer.

Most instructions in the PIC18 instruction set make use of the bank pointer known as the Bank Select Register
(BSR). This SFR holds the Most Significant bits of a location’s address; the instruction itself includes the eight Least
Significant bits. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory being accessed; the eight bits in the instruction show the
location in the bank and can be thought of as an offset from the bank’s lower boundary. The relationship between the
BSR’s value and the bank division in data memory is shown in Figure 9-4.

When writing the firmware in assembly, the user must always be careful to ensure that the proper bank is selected
before performing a data read or write. When using the C compiler to write the firmware, the BSR is tracked and
maintained by the compiler.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to
unimplemented banks are ignored, while reads from unimplemented banks will return ‘0’. Refer Figure 9-3 for a list of
implemented banks.

Figure 9-4. Use of the Bank Select Register (Direct Addressing)

Rev. 300001088
02/28/2019

BsRM Data Memory From Opcode
’ 0 0000h 00h 7
Bank 0
[ofofofofofo]1]0] een (2] 2[2[2]2]2]2]2]
0100h 00h
Bank 1 ~
Bank Select FFh
0200h 00h
Bank 2
FFh <
0300h
Bank 3
through J
A Bank61 A
3EQ0Oh 00h
Bank 62
FFh
3F00h 00h
Bank 63
3FFFh FFh

Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR value) to
the registers of the Access Bank.

Access Bank

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it
also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or
written to the wrong location. Verifying and/or changing the BSR for each read or write to data memory can become
very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with a
virtual Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access
Bank consists of the first 96 bytes of memory in Bank 5 (0500h-055Fh) and the last 160 bytes of memory in Bank 4
(0460h-04FFh). The upper half is known as the “Access RAM” and is composed of GPRs. The lower half is where
the device’s SFRs are mapped. These two areas are mapped contiguously as the virtual Access Bank and can be
addressed in a linear fashion by an 8-bit address (see the Data Memory Map section).

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 67
and its subsidiaries

9.5

9.5.1

9.5.2

PIC18F04/05/14/15Q40

Memory Organization

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the ‘a’ parameter in the
instruction). When ‘a’ is equal to ‘1’, the instruction uses the BSR and the 8-bit address included in the opcode for the
data memory address. When ‘a’ is ‘0’, the instruction ignores the BSR and uses the Access Bank address map.

Using this “forced” addressing allows the instruction to operate on a data address in a single cycle, without updating
the BSR first. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail in the Mapping the Access Bank in Indexed Liberal Offset
Mode section.

Data Addressing Modes

Important: The execution of some instructions in the core PIC18 instruction set are changed when the
PIC18 extended instruction set is enabled. See the Data Memory and the Extended Instruction Set section
for more information.

Information in the data memory space can be addressed in several ways. For most instructions, the Addressing
mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or
not the extended instruction set is enabled.

The Addressing modes are:

* Inherent
» Literal

* Direct

* Indirect

An additional Addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled
(XINST Configuration bit = 1). Its operation is discussed in greater detail in the Indexed Addressing with Literal Offset
section.

Inherent and Literal Addressing

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally
affects the device or they operate implicitly on one register. This Addressing mode is known as Inherent Addressing.
Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known

as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and
MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO,
which include a program memory address.

Direct Addressing

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode
itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing
by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address
specifies either a register address in one of the banks of data RAM (see the Data Memory Organization section) or a
location in the Access Bank (see the Access Bank section) as the data source for the instruction.

The Access RAM bit ‘a’ determines how the address is interpreted. When ‘a’ is ‘1’, the contents of the BSR (see the
Bank Select Register section) are used with the address to determine the complete 12-bit address of the register.
When ‘@’ is ‘0’, the address is interpreted as being a register in the Access Bank.

The destination of the operation’s results is determined by the destination bit ‘d’. When ‘d’ is ‘1’, the results are stored
back in the source register, overwriting its original contents. When ‘d’ is ‘0’, the results are stored in the W register.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 68
and its subsidiaries

9.5.3

9.5.3.1

9.5.3.2

PIC18F04/05/14/15Q40

Memory Organization

Instructions without the ‘d’ argument have a destination that is implicit in the instruction; their destination is either the
target register being operated on or the W register.

Indirect Addressing

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers (FSRs) as pointers to the locations which are to be read

or written. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly
manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables
and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic
manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This
allows for efficient code, using loops, such as the following example of clearing an entire RAM bank.

Example 9-3. How to Clear RAM (Bank 1) Using Indirect Addressing

LFSR FSRO,100h Set FSRO to beginning of Bankl

NEXT:
CLRF POSTINCO Clear location in Bankl then increment FSRO
BTFSS FSROH, 1 Has high FSRO byte incremented to next bank?
BRA NEXT NO, clear next byte in Bankl

CONTINUE: YES, continue

FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSRO, FSR1 and FSR2. Each represent a pair of 8-bit
registers, FSRnH and FSRnL. Each FSR pair holds the full address of the RAM location. The FSR value can address
the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data
memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDFO through INDF2. These can be
thought of as “virtual” registers; they are mapped in the SFR space but are not physically implemented. Reading
or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1,
for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as
operands actually use the contents of their corresponding FSR as a pointer to the instruction’s target. The INDF
operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full address, the FSR value can target any location in any bank regardless of
the BSR value. However, the Access RAM bit must be cleared to zero to ensure that the INDF register in Access
space is the object of the operation instead of a register in one of the other banks. The assembler default value for
the Access RAM bit is zero when targeting any of the indirect operands.

FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these
are “virtual” registers that cannot be directly read or written. Accessing these registers actually accesses the location
to which the associated FSR register pair points, and also performs a specific action on the FSR value. They are:

» POSTDEC: Accesses the location to which the FSR points, then automatically decrements the FSR by 1

afterwards

* POSTINC: Accesses the location to which the FSR points, then automatically increments the FSR by 1
afterwards

* PREINC: Automatically increments the FSR by one, then uses the location to which the FSR points in the
operation

* PLUSW: Adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the location
to which the result points in the operation.

In this context, accessing an INDF register uses the value in the associated FSR register without changing it.
Similarly, accessing a PLUSW register gives the FSR value an offset in the W register; however, neither W nor the
FSR is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR register.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 69

and its subsidiaries

9.5.3.3

9.6

PIC18F04/05/14/15Q40

Memory Organization

Figure 9-5. Indirect Addressing

Rev. 30-000109A
471812017

Data Memory
00h
Using an instruction with one of the ADDWE, INDF1, O 0000 Bank 0
indirect addressing registers as the 0100h Sgﬁ
operand.... Bank 1
FFh
0200h 00h
...uses the 14-bit address stored in FSR1H:FSRAIL Bank 2 FEh <
the FSR pair associated with that 0300h
register.... 7 0 7 0
[[=|3[x[2[2]2]o] [1] 1] o[0]1[2]0]o] trougt
through
- J A Bank61 T
...to determine the data memory
location to be used in that operation.
In this case, the FSR1 pair contains
3ECCh. This means the contents of
location 3EC_Ch will be added to th_at 3E00h 00h
of the W register and stored back in - Bank 62
3ECCh. FFh
3F00h 00h
Bank 63
3FFFh FFh

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of
the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations
do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By
manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In
some applications, this can be used to implement some powerful program control structure, such as software stacks,
inside of data memory.

Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using
an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that
FSROH:FSROL contains the address of INDF1. Attempts to read the value of the INDF1 using INDFO as an operand
will return 00h. Attempts to write to INDF1 using INDFO as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the
value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2
or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct
operations. Users need to proceed cautiously when working on these registers, particularly if their code uses Indirect
Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users need to exercise the
appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of
data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is
different; this is due to the introduction of a new Addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear
addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 70
and its subsidiaries

9.6.1

9.6.2

PIC18F04/05/14/15Q40

Memory Organization

Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSRO and FSR1 also
remain unchanged.

Indexed Addressing with Literal Offset

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register
pair within Access RAM. Under the proper conditions, instructions that use the Access Bank — that is, most
bit-oriented and byte-oriented instructions — can invoke a form of Indexed Addressing using an offset specified in
the instruction. This special Addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal
Offset mode.

When using the extended instruction set, this Addressing mode requires the following:

* The use of the Access Bank is forced (‘a’ = 0) and
* The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used
with the BSR in Direct Addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an
offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the
target address of the operation.

Instructions Affected by Indexed Literal Offset Mode

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal
Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the
standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access
RAM bit is ‘1’), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute
as before. A comparison of the different possible Addressing modes when the extended instruction set is enabled is
shown in the following figure.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode need to note the
changes to assembler syntax for this mode. This is described in more detail in the “Extended Instruction Syntax”
section.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 71
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

Figure 9-6. Comparing Addressing Options for Bit-Oriented and Byte-Oriented Instructions (Extended

Instruction Set Enabled)

EXAMPLE INSTRUCTION: ADDWF,

When ‘@’ = 0 and f 2 60h

The instruction executes in
Direct Forced mode. ' is inter-
preted as a location in the
Access RAM between 060h
and OFFh. This is the same as
locations 460h to 4FFh
(Bank4) of data memory.
Locations below 60h are not
available in this Addressing
mode.

When ‘a’=0and f<5Fh

The instruction executes in
Indexed Literal Offset mode. f’
is interpreted as an offset to the
address value in FSR2. The
two are added together to
obtain the address of the target
register for the instruction. The
address can be anywhere in
the data memory space.

Note that in this mode, the
correct syntax is now:

ADDWF [k], d
where ‘K’ is the same as f.

When ‘a’ = 1 (all values of f)

The instruction executes in
Direct mode (also known as
Direct Long mode). ‘f’ is inter-
preted as a location in one of
the 63 banks of the data
memory space. The bank is
designated by the Bank
Select Register (BSR). The
address can be in any
implemented bank in the data
memory space.

9.6.3

f! d!

0000h

0400h

0460h

04FFh

3FFFh

0000h

0400h

0460h

04FFh
0500h

0560h

3FFFh

0000h

0400h

0460h

04FFh

3FFFh

a (Opcode: 0010 0lda ffff ffff)
Bank0-3
Bank 4 00h
Access 60h
SFRs
FFh
Bank 5-63

Access RAM

Data Memory

Bank 0-3

Bank 4

Access
SFRs

Access
GPR

Bank 5-63

[0010 olda [££ff ffff |

[Fsrei | Fsr2L |

Data Memory

Bank0-3

Bank 4

Access
SFRs

Bank 5-63

BSR

0000 1010
[€«——Bank 10

[0010 0lda [££ff £fff |

Data Memory

Mapping the Access Bank in Indexed Literal Offset Mode

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM
(00h to 5Fh) are mapped. Rather than containing just the contents of the top section of Bank 5, this mode maps the
contents from a user defined “window” that can be located anywhere in the data memory space. The value of FSR2
establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by
FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see the Access
Bank section). An example of Access Bank remapping in this Addressing mode is shown in the following figure.

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 72

PIC18F04/05/14/15Q40

Memory Organization

Figure 9-7. Remapping the Access Bank with Indexed Literal Offset Addressing

EXAMPLE: PR Banko-3
ADDWF, f, d, a 0400h
FSR2H:FSR2L = 0x0A20 Bank 4
0460h
Locations in the region Agggsss
from the FSR2 pointer 0500 : 00h
(A20h) to the pointer plus Bank 10 Window
05Fh (A7Fh) are mapped Bank 5-9 60h
to the Access RAM SFRs
(000h-05Fh). 0A20h. - ----Bank10____| :
Special File Registers at S Window | Access RAM FFh
460h through 4FFh are Bank 10
mapped to 60h through
FFh, as usual.
Bank 4 addresses below Bank 11 - 63
5Fh can still be addressed
by using the BSR.
3FFFh
Data Memory

Remapping of the Access Bank applies only to operations using the Indexed Literal Offset mode. Operations that use
the BSR (Access RAM bit is ‘1°) will continue to use Direct Addressing as before.

9.6.4 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds additional commands to the existing PIC18 instruction set. These
instructions are executed as described in the “Extended Instruction Set” section.

9.7 Register Definitions: Memory Organization

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 73

and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.71 PCL

Name: PCL
Address: 0x4F9

Low byte of the Program Counter Register

Bit 7 6 5 4 3 2 1 0
| PCL[7:0]
Access R/W R/W RIW R/W RIW R/W RIW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — PCL[7:0] Provides direct read and write access to the Program Counter

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 74

and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.7.2 PCLAT

Name: PCLAT
Address: Ox4FA

Program Counter Latches

Holding register for bits [21:9] of the Program Counter (PC). Reads of the PCL register transfer the upper PC bits to
the PCLAT register. Writes to PCL register transfer the PCLAT value to the PC.

Bit 15 14 13 12 1 10 9 8
| | | | PCLATU[4:0]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
PCLATH[7:0]
Access RIW RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 12:8 — PCLATU[4:0] Upper PC Latch Register
Holding register for Program Counter [21:17]

Bits 7:0 — PCLATH[7:0] High PC Latch Register
Holding register for Program Counter [16:8]

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 75

and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.7.3 TOS
Name: TOS
Address: 0x4FD
Top-of-Stack Register
Contents of the stack pointed to by the STKPTR register. This is the value that will be loaded into the Program
Counter upon a RETURN or RETFIE instruction.
Bit 23 22 21 20 19 18 17 16
| | | TOS[20:16]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 1" 10 9 8
TOS[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
TOS[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 20:0 — TOS[20:0] Top-of-Stack

Notes: The individual bytes in this multibyte register can be accessed with the following register names:

* TOSU: Accesses the upper byte TOS[20:16]
* TOSH: Accesses the high byte TOS[15:8]
» TOSL: Accesses the low byte TOS[7:0]

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 76

PIC18F04/05/14/15Q40

Memory Organization

9.7.4 STKPTR

Name: STKPTR
Address: 0x4FC

Stack Pointer Register

Bit 7 6 5 4 3 2 1 0
| | STKPTRI6:0]
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bits 6:0 - STKPTR[6:0] Stack Pointer Location
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 77

and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.7.5 WREG

Name: WREG
Address: Ox4E8

Working Data Register

Bit 7 6 5 4 3 2 1 0
| WREG[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 7:0 — WREG[7:0]

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 78

PIC18F04/05/14/15Q40

Memory Organization

9.7.6 INDF

Name: INDFx
Address: Ox4EF,0x4E7,0x4DF

Indirect Data Register

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all operations
involving the INDFx register.

Bit 7 6 5 4 3 2 1 0
| INDF[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — INDF[7:0] Indirect data pointed to by the FSRXx register

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 79
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.7.7 POSTDEC

Name: POSTDECXx
Address: 0x4ED,0x4E5,0x4DD

Indirect Data Register with post decrement

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all operations
involving the POSTDECKx register. FSRx is decrememted after the read or write operation.

Bit 7 6 5 4 3 2 1 0
| POSTDEC[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - POSTDEC[7:0]

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 80
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.7.8 POSTINC
Name: POSTINCx
Address: Ox4EE,0x4E6,0x4DE
Indirect Data Register with post increment

This is a virtual register. The GPR/SFR register addressed by the FSRx register is the target for all operations
involving the POSTINCXx register. FSRx is incremented after the read or write operation.

Bit 7 6 5 4 3 2 1 0
| POSTINC[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — POSTINC[7:0]

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 81
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.7.9 PREINC

Name: PREINCx
Address: 0x4EC,0x4E4,0x4DC

Indirect Data Register with pre-increment

This is a virtual register. The GPR/SFR register addressed by the FSRXx register plus 1 is the target for all operations
involving the PREINCXx register. FSRXx is incremented before the read or write operation.

Bit 7 6 5 4 3 2 1 0
| PREINC[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — PREINCJ[7:0]

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 82
and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.710 PLUSW

Name: PLUSWx
Address: 0x4EB,0x4E3,0x4DB

Indirect Data Register with WREG offset

This is a virtual register. The GPR/SFR register addressed by the sum of the FSRx register plus the signed value of
the W register is the target for all operations involving the PLUSW(x register.

Bit 7 6 5 4 3 2 1 0
| PLUSW[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — PLUSWI[7:0]

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 83

and its subsidiaries

PIC18F04/05/14/15Q40

Memory Organization

9.7.11 FSR
Name: FSRx
Address: 0x4E9,0x4E1,0x4D9
Indirect Address Register
The FSR value is the address of the data to which the INDF register points.

Bit 15 14 13 12 1 10 9 8
| | | FSRH[5:0]
Access R/W RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
FSRL[7:0]
Access RIW RW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 13:8 — FSRH[5:0] Most Significant address of INDF data

Bits 7:0 — FSRL[7:0] Least Significant address of INDF data

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet

and its subsidiaries

DS40002236C-page 84

PIC18F04/05/14/15Q40

Memory Organization

9.712 BSR
Name: BSR
Address: O0x4EO
Bank Select Register
The BSR indicates the data memory bank of the GPR address.

Bit 7 6 5 4 3 2 1 0
| | | BSR[5:0]
Access RIW RW RIW RIW RW RIW
Reset 0 0 0 0 0 0

Bits 5:0 — BSR[5:0] Most Significant bits of the data memory address

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet

and its subsidiaries

DS40002236C-page 85

9.8

PIC18F04/05/14/15Q40

Memory Organization

Register Summary - Memory Organization

I e A N N N N N BN

0x00
0x04D8
0x04D9

0x04DB
0x04DC
0x04DD
0x04DE
0x04DF
0x04E0

0x04E1

0x04E3
0x04E4
0x04E5
0x04E6
0x04E7
0x04E8

0x04E9

0x04EB
0x04EC
0x04ED
0x04EE
Ox04EF
0x04F0

0x04F8
0x04F9
0x04FA

0x04FC

0x04FD

Reserved
FSR2 70
15:8
PLUSW2 7:0
PREINC2 7.0
POSTDEC2 7.0
POSTINC2 7:0
INDF2 7:0
BSR 7.0
FSR1 70
15:8
PLUSWA 7:0
PREINC1 7.0
POSTDECH 7.0
POSTINCA 7:0
INDF1 7:0
WREG 7.0
FSRO 70
15:8
PLUSWO 7:0
PREINCO 7.0
POSTDECO 7.0
POSTINCO 7:0
INDFO 7:0
Reserved
PCL 7.0
PCLAT 70
15:8
STKPTR 7:0
7:0
TOS 15:8
2316

FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINCI[7:0]
POSTDEC(7:0]
POSTINCI[7:0]

INDF[7:0]
BSR[5:0]
FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINCI[7:0]
POSTDEC(7:0]
POSTINCI[7:0]

INDF[7:0]
WREG[7:0]
FSRL[7:0]
FSRH[5:0]

PLUSW[7:0]

PREINCI[7:0]
POSTDEC(7:0]
POSTINCI[7:0]

INDF[7:0]

PCL[7:0]
PCLATH[7:0]
PCLATU[4:0]
STKPTR[6:0]
TOS[7:0]
TOS[15:8]
TOS[20:16]

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 86

10.

10.1

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

NVM - Nonvolatile Memory Module

The Nonvolatile Memory (NVM) module provides run-time read and write access to the Program Flash Memory
(PFM), Data Flash Memory (DFM) and Configuration bits. PFM includes the program memory and user ID space.
DFM is also referred to as EEPROM which is accessed one byte at a time and the erase before write is automatic.

The Table Pointer provides read-only access to the PFM, DFM and Configuration bits. The NVM controls provide
both read and write access to PFM, DFM and Configuration bits.

Reads and writes to and from the DFM are limited to single byte operations, whereas those for PFM are 16-bit word
or 128-word page operations. The page buffer memory occupies one full bank of RAM space located in the RAM
bank following the last occupied GPR bank. Refer to the “Memory Organization” chapter for more details about the
buffer RAM.

The registers used for control, address and data are as follows:
* NVMCONO - Operation start and active status
* NVMCONT1 - Operation type and error status
* NVMLOCK - Write-only register to guard against accidental writes
* NVMADR - Read/write target address (multibyte register)
* NVMDAT - Read/write target data (multibyte register)
+ TBLPTR - Table Pointer PFM target address for reads and buffer RAM address for writes (multibyte register)
» TABLAT - Table Pointer read/write target data (single byte register)

The write and erase times are controlled by an on-chip timer. The write and erase voltages are generated by an
on-chip charge pump rated to function over the operating voltage range of the device.

PFM and DFM can be protected in two ways: code protection and write protection. Code protection (Configuration bit
CP) disables read and write access through an external device programmer. Write protection prevents user software
writes to NVM areas tagged for protection by the WRTn Configuration bits. Code protection does not affect the
self-write and erase functionality, whereas write protection does. Attempts to write a protected location will set the
WRERR bit. Code protection and write protection can only be reset on a Bulk Erase performed by an external
programmer.

The Bulk Erase command is used to completely erase different memory regions. The area to be erased is selected
using a bit field combination. The Bulk Erase command can only be issued through an external programmer. There is
no run time access for this command.

If the device is code-protected and a Bulk Erase command for the configuration memory is issued; all other memory
regions are also erased. Refer to the ”Programming Specifications” for more details.

Operations

NVM write operations are controlled by selecting the desired action with the NVMCMD bits and then starting the
operation by executing the unlock sequence. NVM read operations are started by setting the GO bit after setting the
read operation. Available NVM operations are shown in the following table.

Table 10-1. NVM Operations

000 Read byte | word NVM to NVMDAT

001 No Read and Post Increment byte = word NVM to NVMDAT No No

010 No Read Page — page NVM to Buffer RAM No No

011 Yes Write byte = word NVMDAT to NVM Yes Yes

100 Yes Write and Post Increment byte = word NVMDAT to NVM Yes Yes

101 Yes Write Page — page Buffer RAM to NVM Yes Yes
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 87

and its subsidiaries

10.2

10.3

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

........... continued
110 Yes Erase Page — page n/a Yes Yes
111 No Reserved (No Operation) — — — No No

Important: When the GO bit is set, writes operations are blocked on all NVM registers. The GO bit is
cleared by hardware when the operation is complete. The GO bit cannot be cleared by software.

Unlock Sequence

As an additional layer of protection against memory corruption, a specific code execution unlock sequence is required
to initiate a write or erase operation. All interrupts need to be disabled before starting the unlock sequence to ensure
proper execution.

Example 10-1. Unlock Sequence in C

NVMLOCK 0x55;
NVMLOCK OxAA;
NVMCONObits.GO = 1;

Program Flash Memory (PFM)

The Program Flash Memory is readable, writable and erasable over the entire Vpp range.

A 128-word PFM page is the only size that can be erased by user software. A Bulk Erase operation cannot be issued
from user code. A read from program memory is executed either one byte, one word or a 128-word page at a time. A
write to program memory can be executed as either 1 or 128 words at a time.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program
memory cannot be accessed during the write or erase, so code cannot execute. An internal programming timer
controls the write time of program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location
that forms an invalid instruction results in a NOP.

It is important to understand the PFM memory structure for erase and programming operations. Program memory
word size is 16 bits wide.

After a page has been erased, all or a portion of this page can be programmed. Data can be written directly into PFM
one 16-bit word at a time using the NVMADR, NVMDAT and NVMCON1 controls or as a full page from the buffer
RAM. The buffer RAM is directly accessible as any other SFR/GPR register and also may be loaded via sequential
writes using the TABLAT and TBLPTR registers.

Important: To modify only a portion of a previously programmed page, the contents of the entire page
must be read and saved in the buffer RAM prior to the page erase. The Read Page operation is the
easiest way to do this. The page needs to be erased so that the new data can be written into the buffer
RAM to reprogram the page of PFM. However, any unprogrammed locations can be written using the
single word Write operation without first erasing the page.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 88
and its subsidiaries

10.3.1

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

Page Erase
The erase size is always 128 words. Only through the use of an external programmer can larger areas of program
memory be Bulk Erased. Word erase in the program memory is not supported.

When initiating an erase sequence from user code, a page of 128 words of program memory is erased. The
NVMADRJ[21:8] bits point to the page being erased. The NVMADR[7:0] bits are ignored. The NVMCONO and
NVMCONH1 registers command the erase operation. The NVMCMD bits are set to select the erase operation. The GO
bit is set to initiate the erase operation as the last step in the unlock sequence.

The NVM unlock sequence described in the Unlock Sequence section must be used; this guards against accidental
writes. Instruction execution is halted during the erase cycle. The erase cycle is terminated by the internal
programming timer.

The sequence of events for erasing a page of PFM is:

Set the NVMADR registers to an address within the intended page.

Set the NVMCMD control bits to *b110 (Page Erase).

Disable all interrupts.

Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the PFM page erase.

Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
Interrupts can be enabled after the GO bit is clear.

8. Set the NVMCMD control bits to ‘b000.

N ok owh-=

If the PFM address is write-protected, the GO bit will be cleared, the erase operation will not take place, and the
WRERR bit will be set.

While erasing the PFM page, the CPU operation is suspended and then resumes when the operation is complete.
Upon erase completion, the GO bit is cleared in hardware, the NVMIF is set, and an interrupt will occur (if the NVMIE
bit is set and interrupts are enabled).

The buffer RAM data are not affected by erase operations and the NVMCMD bits will remain unchanged throughout

the erase opeation.

Load the NVMADR register with
address in the page to be erased

!

Set NVM Command to erase
(NVMCMD = ‘b110)

!

Disable interrupts
(GIE=0)

!

Execute unlock sequence
including setting the GO bit

!

CPU stalls while erase executes

!

Enable interrupts
(GIE=1)

!

Clear NVM Command
(NVMCMD = *b000)

End Erase Operation

Figure 10-1. PFM Page Erase Flowchart

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 89
and its subsidiaries

10.3.2

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

Example 10-2. Erasing a Page of Program Flash Memory in C

// Code sequence to erase one page of PFM
// PFM target address is specified by PAGE_ADDR

// Save interrupt enable bit value
uint8_t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the base address of the memory page
NVMADR = PAGE_ADDR;

NVMCON1lbits.CMD = 0x06; // Set the page erase command
INTCONObits.GIE = 0; // Disable interrupts
[//———————- Required Unlock Sequence ————————-—

NVMLOCK = 0x55;
NVMLOCK = OxAA;

NVMCONObits.GO = 1; // Start page erase
//
while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE_FAULT_RECOVERY () ;
}

GIEBitValue; // Restore interrupt enable bit value
0x00 ; // Disable writes to memory

INTCONObits.GIE
NVMCON1bits.CMD

Important:
» If a write or erase operation is terminated by an unexpected Reset, the WRERR bit will be set and the
user can check to decide whether a rewrite of the location(s) is needed.

» If a write or erase operation is attempted on a write-protected area, the WRERR bit will be set.

» If a write or erase operation is attempted on an invalid address location, the WRERR bit is set. (Refer
to the Program and Data Memory Map in the “Memory Organization” chapter for more information
on valid address locations.)

Page Read

PFM can be read one word or 128-word page at a time. A page is read by setting the NVMADR registers to an
address within the target page and setting the NVMCMD bits to *b010. The page content is then transferred from

PFM to the buffer RAM by starting the read operation by setting the GO bit.
The sequence of events for reading a 128-word page of PFM is:

Set the NVMADR registers to an address within the intended page.
Set the NVMCMD control bits to *‘b010 (Page Read).

Set the GO bit to start the PFM page read.
Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.

PO bh =

Example 10-3. Reading a Page of Program Flash Memory in C

// Code sequence to read one page of PFM to Buffer Ram
// PFM target address is specified by PAGE_ADDR

// Load NVMADR with the base address of the memory page
NVMADR = PAGE_ADDR;

NVMCON1lbits.CMD = 0x02; // Set the page read command
NVMCONObits.GO = 1; // Start page read
while (NVMCONObits.GO) ; // Wait for the read operation to complete

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 90

and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

10.3.3 Word Read

A single 16-bit word is read by setting the NVMADR registers to the target address and setting the NVMCMD bits to
‘b000. The word is then transferred from PFM to the NVMDAT registers by starting the read operation by setting the
GO bit.

The sequence of events for reading a word of PFM is:

1. Setthe NVMADR registers to the target address.

2. Setthe NVMCMD control bits to *b000 (Word Read).

3. Setthe GO bit to start the PFM word read.

4. Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.

Example 10-4. Reading a Word from Program Flash Memory in C

// Code sequence to read one word from PFM
// PFM target address is specified by WORD_ADDR

// Variable to store the word value from desired location in PFM
uintl6é_t WordvValue;

// Load NVMADR with the desired word address
NVMADR = WORD_ADDR;

NVMCON1bits.CMD = 0x00; // Set the word read command
NVMCONObits.GO = 1; // Start word read

while (NVMCONObits.GO) ; // Wait for the read operation to complete
WordValue = NVMDAT; // Store the read value to a variable

10.3.4 Page Write

A page is written by first loading the buffer registers in the buffer RAM. All buffer registers are then written to PFM by
setting the NVMADR to an address within the intended address range of the target PFM page, setting the NVMCMD
bits to *b101, and then executing the unlock sequence and setting the GO bit.

If the PFM address in the NVMADR is write-protected, or if NVMADR points to an invalid location, the GO bit is
cleared without any effect and the WRERR bit is set.

CPU operation is suspended during a page write cycle and resumes when the operation is complete. The page
write operation completes in one extended instruction cycle. When complete, the GO bit is cleared by hardware and
NVMIF is set. An interrupt will occur if NVMIE is also set. The buffer registers and NVMCMD bits are not changed
throughout the write operation.

The internal programming timer controls the write time. The write/erase voltages are generated by an on-chip charge
pump and rated to operate over the voltage range of the device.

Important: Individual bytes of program memory may be modified, provided that the modification does

not attempt to change any NVM bit from a ‘0’ to a ‘1’. When modifying individual bytes with a page write
operation, it is necessary to load all buffer registers with either OxFF or the existing contents of memory
before executing a page write operation. The fastest way to do this is by performing a page read operation.

In this device a PFM page is 128 words (256 bytes). This is the same size as one bank of general purpose RAM
(GPR). This area of GPR space is dedicated as a buffer area for NVM page operations. The buffer areas for each
device in the family are shown in the following table:

Table 10-2. NVM Buffer Banks

PIC18Fx6Q40 21
PIC18Fx5Q40 13
PIC18Fx4Q40 9
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 91

and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

There are several ways to address the data in the GPR buffer space:
» Using the TBLRD and TBLWT instructions
* Using the indirect FSR registers
» Direct read and writes to specific GPR locations
Neglecting the bank select bits, the 8 address bits of the GPR buffer space correspond to the 8 LSbs of each PFM

page. In other words, there is a one-to-one correspondence between the NVMADRL register and the FSRxL register,
where the x in FSRx is 0, 1 or 2.

The sequence of events for programming a page of PFM is:

1. Setthe NVMADR registers to an address within the intended page.

2. Setthe NVMCMD to ‘b110 (Erase Page).

3. Disable all interrupts.

4. Perform the unlock sequence as described in the Unlock Sequence section.

5. Setthe GO bit to start the PFM page erase.

6. Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
7. SetNVMCMD to ‘b101 (Page Write).

8. Perform the unlock sequence.

9. Set the GO bit to start the PFM page write.

10. Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.
11. Interrupts can be enabled after the GO bit is clear.

12. Set the NVMCMD control bits to *b000.

Example 10-5. Writing a Page of Program Flash Memory in C

// Code sequence to write a page of PFM
// Input[] is the user data that needs to be written to PFM
// PFM target address is specified by PAGE_ADDR

#define PAGESIZE 128 // PEFM page size

// Save Interrupt Enable bit Value
uint8_t GIEBitValue = INTCONObits.GIE;

// The BufferRAMStartAddr will be changed based on the device, refer
// to the "Memory Organization" chapter for more details
uintl6_t bufferRAM _ at (BufferRAMStartAddr) ;

// Defining a pointer to the first location of the Buffer RAM
uintl6_t *bufferRamPtr = (uintl6_t*) & bufferRAM;

//Copy application buffer contents to the Buffer RAM

for (uint8 t i = 0; i < PAGESIZE; i++) |
*bufferRamPtr++ = Input[i];

}

// Load NVMADR with the base address of the memory page
NVMADR = PAGE_ADDR;

NVMCON1bits.CMD = 0x06; // Set the page erase command
INTCONObits.GIE = 0; // Disable interrupts
[[Required Unlock Sequence ————————-—

NVMLOCK = 0x55;
NVMLOCK = OxAA;

NVMCONObits.GO = 1; // Start page erase
//
while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCON1lbits.WRERR) {

ERASE FAULT RECOVERY () ;
}

// NVMADR is already pointing to target page

NVMCON1lbits.CMD = 0x05; // Set the page write command
[[mmmmmm——= Required Unlock Sequence ————————-
NVMLOCK 0x55;

NVMLOCK = OxAA;

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 92
and its subsidiaries

10.3.5

10.3.6

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

NVMCONObits.GO = 1; // Start page write
//
while (NVMCONObits.GO) ; // Wait for the write operation to complete

// Verify write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE_FAULT RECOVERY () ;
}

INTCONObits.GIE
NVMCON1bits.CMD

GIEBitValue; // Restore interrupt enable bit value
0x00; // Disable writes to memory

Word Write

PFM can be written one word at a time to a pre-erased memory location. Refer to the “Word Modify” section for
more information on writing to a prewritten memory location.

A single word is written by setting the NVMADR to the target address and loading NVMDAT with the desired word.
The word is then transferred to PFM by setting the NVMCMD bits to ‘011 then executing the unlock sequence and
setting the GO bit.

The sequence of events for programming single word to a pre-erased location of PFM is:

1. Setthe NVMADR registers to the target address.
2. Load the NVMDAT with desired word.
3. Set the NVMCMD control bits to ‘b011 (Word Write).
4. Disable all interrupts.
5. Perform the unlock sequence as described in the Unlock Sequence section.
6. Setthe GO bit to start the PFM word write.
7. Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.
8. Interrupts can be enabled after the GO bit is clear.
9. Setthe NVMCMD control bits to *b000.
Example 10-6. Writing a Word of Program Flash Memory in C
// Code sequence to program one word to a pre-erased location in PFM
// PFM target address is specified by WORD_ADDR
// Target data is specified by WordValue
// Save interrupt enable bit value
uint8 t GIEBitValue = INTCONObits.GIE;
// Load NVMADR with the target address of the word
NVMADR = WORD_ADDR;
NVMDAT = WordValue; // Load NVMDAT with the desired value
NVMCON1lbits.CMD = 0x03; // Set the word write command
INTCONObits.GIE = 0; // Disable interrupts
[[Required Unlock Sequence ————————-—
NVMLOCK = 0x55;
NVMLOCK = OxAA;
NVMCONObits.GO = 1; // Start word write
//
while (NVMCONObits.GO) ; // Wait for the write operation to complete
// Verify word write operation success and call the recovery function if needed
if (NVMCON1lbits.WRERR) {
WRITE_FAULT RECOVERY () ;
}
INTCONObits.GIE = GIEBitValue; // Restore interrupt enable bit value
NVMCON1bits.CMD = 0x00; // Disable writes to memory
Word Modify

Changing a word in PFM requires erasing the word before it is rewritten. However, the PFM cannot be erased by less
than a page at a time. Changing a single word requires reading the page, erasing the page, and then rewriting the
page with the modified word. The NVM command set includes page operations to simplify this task.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 93
and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

The steps necessary to change one or more words in PFM space are as follows:
1. Setthe NVMADR registers to the target address.
2. Setthe NVMCMD to ‘b010 (Page Read).
3. Setthe GO bit to start the PFM read into the GPR buffer.
4. Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.
5. Make the desired changes to the GPR buffer data.
6. Set NVMCMD to ‘b110 (Page Erase).
7. Disable all interrupts.
8. Perform the unlock sequence as described in the Unlock Sequence section.
9. Set the GO bit to start the PFM page erase.
10. Monitor the GO bit or NVMIF interrupt flag to determine when the erase has completed.
11. Set NVMCMD to ‘b101 (Page Write).
12. Perform the unlock sequence.
13. Set the GO bit to start the PFM page write.
14. Monitor the GO bit or NVMIF interrupt flag to determine when the write has completed.
15. Interrupts can be enabled after the GO bit is clear.
16. Set the NVMCMD control bits to *b000.

Example 10-7. Modifying a Word in Program Flash Memory in C

// Code sequence to modify one word in a programmed page of PFM

// The variable with desired value is specified by ModifiedWord

// PFM target address is specified by WORD_ADDR

// PFM page size is specified by PAGESIZE

// The Buffer RAM start address is specified by BufferRAMStartAddr. This value
// will be changed based on the device, refer to the "Memory Organization"

//chapter for more details.

// Save Interrupt Enable bit Value
uint8_t GIEBitValue = INTCONObits.GIE;

uintl6_t bufferRAM _ at (BufferRAMStartAddr) ;

// Defining a pointer to the first location of the Buffer RAM
uintl6_t *bufferRamPtr = (uintl6_t*) & bufferRAM;

// Load NVMADR with the base address of the memory page
NVMADR = WORD ADDR;

NVMCON1bits.CMD = 0x02; // Set the page read command
INTCONObits.GIE = 0; // Disable interrupts

NVMCONObits.GO = 1; // Start page read

while (NVMCONObits.GO) ; // Wait for the read operation to complete
// NVMADR is already pointing to target page

NVMCON1lbits.CMD = 0x06; // Set the page erase command

//——————— Required Unlock Sequence ————————-—

NVMLOCK = 0x55;
NVMLOCK = OxAA;

NVMCONObits.GO = 1; // Start page erase
//
while (NVMCONObits.GO) ; // Wait for the erase operation to complete

// Verify erase operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

ERASE FAULT RECOVERY () ;
}

//Modify Buffer RAM for the given word to be written to PFM

uint8 t offset = (uint8 t) ((WORD_ADDR & ((PAGESIZE * 2) - 1)) / 2);
bufferRamPtr += offset;

*bufferRamPtr = ModifiedWord;

// NVMADR is already pointing to target page

NVMCON1lbits.CMD = 0x05; // Set the page write command
(/=== Required Unlock Sequence ————————-
NVMLOCK = 0x55;
NVMLOCK = OxAA;
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 94

and its subsidiaries

10.3.7

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

NVMCONObits.GO = 1 // Start page write
//
while (NVMCONObits.GO // Wait for the write operation to complete

// Verify write operation success and call the recovery function if needed
if (NVMCON1lbits.WRERR
WRITE_FAULT RECOVERY

INTCONObits.GIE

GIEBitValue // Restore interrupt enable bit value
NVMCON1bits.CMD

0x00 // Disable writes to memory

Write Verify

Depending on the application, good programming practice can dictate that the value written to the memory shall
be verified against the original value. This can be used in applications where excessive writes can stress bits near
the specification limit. Since program memory is stored as a full page, the stored program memory contents are
compared with the intended data stored in the buffer RAM after the last write is complete.

Figure 10-2. Program Flash Memory Write Verify Flowchart

Rev. 10-000051=
1130/2019

Start
Verify Operation

i

This routine assumes that the last
page of data written was from the
buffer RAM. This image will be
used to verify the data currently
stored in PFM

Set NVMCMD to Read and Post
Increment

h J

Set GO bit

.

NVMDAT =
RAM image ?

Y

Fail
Verify Operation

End
Verify Operation

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 95
and its subsidiaries

10.3.8

10.3.9

10.3.10

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

Unexpected Termination of Write Operation

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location
just programmed needs to be verified and reprogrammed, if needed. If the write operation is interrupted by a MCLR
Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set, which the user can check to
decide whether a rewrite of the location(s) is needed.

User ID, Device ID, Configuration Settings Access, DIA and DCI

The NVMADR value determines which NVM address space is accessed. The User IDs and Configuration areas allow
read and write access, whereas Device and Revision IDs are limited to read-only.

Reading and writing User ID space is identical to reading and writing PFM space as described in the preceding
paragraphs.

Writing to the Configuration bits is performed in the same manner as writing to the Data Flash Memory (DFM).
Configuration settings are modified one byte at a time with the NVM Read and Write operations. When a Write
operation is performed on a Configuration byte, an erase byte is performed automatically before the new byte is
written. Any code protection settings that are not enabled will remain not enabled after the Write operation, unless the
new values enable them. However, any code protection settings that are enabled cannot be disabled by a self-write
of the configuration space. The user can modify the configuration space by the following steps:

Read the target Configuration byte by setting the NVMADR with the target address.

Retrieve the Configuration byte with the Read operation (NVMCMD = *b000).

Modify the Configuration byte in NVMDAT register.

Write the NVMDAT register to the Configuration byte using the Write operation (NVMCMD = ‘b011) and
unlock sequence.

b=

Table Pointer Operations

To read and write program memory, there are two operations that allow the processor to move bytes between the
program memory space and the data RAM:

* Table Read (TBLRD*)
» Table Write (TBLWT*)

The SFR registers associated with these operations include:
* TABLAT register
* TBLPTR registers

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. The TBLPTR registers
determine the address of one byte of the NVM memory. Table reads move one byte of data from NVM space to the
TABLAT register, and table writes move the TABLAT data to the buffer RAM ready for a subsequent write to NVM
space with the NVM controls.

10.3.10.1 Table Pointer Register

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR comprises

three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte
(TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer (bits 0 through 21). The
bits 0 through 20 allow the device to address up to 2 Mbytes of program memory space. Bit 21 allows access to the
Device ID, the User ID, Configuration bits as well as the DIA and DCI.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can increment
and decrement TBLPTR, depending on specific appended characters shown in the following table. The increment
and decrement operations on the TBLPTR affect only bits 0 through 20.

Table 10-3. Table Pointer Operations with TBLRD and TBLWT Instructions

Example Operation on Table Pointer
TBLRD* .)
TBLWT* TBLPTR is not modified

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 96
and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

TBLRD* + o _
TBLWT*+ TBLPTR is incremented after the read/write
TBLRD* - . .
TBLWT* - TBLPTR is decremented after the read/write
TBLRD+*

TBLWT+* TBLPTR is incremented before the read/write

10.3.10.2 Table Latch Register
The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register receives one
byte of NVM data resulting from a TBLRD* instruction and is the source of the 8-bit data sent to the holding register
space as a result of a TBLWT* instruction.

10.3.10.3 Table Read Operations
The table read operation retrieves one byte of data directly from program memory pointed to by the TBLPTR
registers and places it into the TABLAT register. The following figure shows the operation of a table read.

Figure 10-3. Table Read Operation

Instruction: TBLRD*

Table Pointer" Program Memory Table Latch (8-bit)
TBLPTRU | TBLPTRH | TBLPTRL TABLAT
N J

Program Memory
(TBLPTR)

Note: 1. The Table Pointer register points to a byte in program memory.

10.3.10.4 Table Write Operations
The table write operation stores one byte of data from the TABLAT register into a buffer RAM register. The following
figure shows the operation of a table write from the TABLAT register to the buffer RAM space. The procedure to write
the contents of the buffer RAM into program memory is detailed in the “Page Write” section.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 97
and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

Figure 10-4. Table Write Operation

Instruction: TBLWT *

GPR Space
Table Pointer" Program Memory Table Latch (8-bit)
TBLPTRU | TBLPTRH | TBLPTRL TABLAT
N A J
| BufferRAN |
Program Memory \//'_“_K;___,
(TBLPTR[MSbs])

Note 1: During table writes the Table Pointer does not point directly to program memory. TBLPTRL
actually points to an address within the buffer registers. TBLPTRU:TBLPTRH points to program memory
where the entire buffer space will eventually be written with the NVM commands.

Table operations work with byte entities. Tables containing data, rather than program instructions, are not required
to be word-aligned. Therefore, a table can start and end at any byte address. If a table write is being used to write
executable code into program memory, program instructions will need to be word-aligned.

10.3.10.5 Table Pointer Boundaries
The TBLPTR register is used in reads of the Program Flash Memory. Writes using the TBLPTR register go into a
buffer RAM from which the data can eventually be transferred to Program Flash Memory using the NVMADR register
and NVM commands.

When a TBLRD instruction is executed, all 22 bits of the TBLPTR determine which byte is read from program memory
directly into the TABLAT register.

When a TBLWT instruction is executed, the byte in the TABLAT register is written not to Flash memory but to a buffer
register in preparation for a program memory write. All the buffer registers form a write block of size 128 words/256
bytes. The LSbs of the TBLPTR register determine to which specific address within the buffer register block the write
affects. The size of the write block determines the number of LSbs that are affected. The MSbs of the TBLPTR
register have no effect during TBLWT operations.

When a program memory page write is executed, the entire buffer register block is written to the Flash memory at the
address determined by the MSbs of the NVMADR register. The LSbs are ignored during Flash memory writes.

The following figure illustrates the relevant boundaries of the TBLPTR register based on NVM operations.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 98
and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

Figure 10-5. Table Pointer Boundaries Based on Operation

21 TBLPTRU 16 15 TBLPTRH 8 7 TBLPTRL 0
A NVMADRU NVMADRH TBLPTRL A
Page Erase/Write Table Write

NVMADR[21:8]

TBLPTR[7:0]

Table Read - TBLPTR[21:0]

Note:

1. Refer to the “Memory Organization” chapter for more details about the size of the buffer registers block.

10.3.10.6 Reading the Program Flash Memory
The TBLRD instruction retrieves data from program memory at the location to which the TBLPTR register points and

places it into the TABLAT SFR register. Table reads from program memory are performed one byte at a time. The
instruction set includes incrementing the TBLPTR register automatically for the next table read operation.

The CPU operation is suspended during the read, and resumes operation immediately after. From the user point of
view, the value in the TABLAT register is valid in the next instruction cycle.

The internal program memory is typically organized by words. The Least Significant bit of the address selects
between the high and low bytes of the word. The following figure illustrates the interface between the internal

program memory and the TABLAT

register.

Figure 10-6. Reads from Program Flash Memory

Program Flash Memory

(Even Byte Address) (Odd Byte Address)

Instruction
Register (IR)

TBLPTR = xxxxx1

TBLPTR = xxxxx0

FETCH TBLRD

TABLAT
Read Register

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 99

10.4

10.4.1

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

Figure 10-7. Program Flash Memory Read Flowchart

<Start Read Operation>

Select Byte Address
(TBLPTR Register)

v

Initiate Read Operation
(TBLRD)

v

Data read now
in TABLAT register

<End Read Operation>

Example 10-8. Reading a Program Flash Memory Word

MOVLW CODE_ADDR UPPER Load TBLPTR with the base
MOVWF TBLPTRU address of the word
MOVLW CODE_ADDR_ HIGH

MOVWF TBLPTRH

MOVLW CODE_ADDR_LOW

MOVWF TBLPTRL

READ_WORD:
TBLRD*+ read into TABLAT and increment
MOVF TABLAT, W get data
MOVWF WORD_EVEN
TBLRD*+ read into TABLAT and increment
MOVFEW TABLAT, W get data

MOVF WORD_ODD

Data Flash Memory (DFM)

The Data Flash Memory is a nonvolatile memory array, also referred to as EEPROM. The DFM is mapped above
program memory space. The DFM can be accessed using the Table Pointer or NVM Special Function Registers
(SFRs). The DFM is readable and writable during normal operation over the entire Vpp range.

The DFM can only be read and written one byte at a time. When interfacing to the data memory block, the NVMDATL
register holds the 8-bit data for read/write and the NVMADR register holds the address of the DFM location being
accessed.

The DFM is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the
new data (erase-before-write). The write time is controlled by an internal programming timer; it will vary with voltage
and temperature as well as from device-to-device. Refer to the data EEPROM memory parameters in the “Electrical
Specifications” chapter for the limits.

Reading the DFM

To read a DFM location, the user must write the address to the NVMADR register, set the NVMCMD bits for a

single read operation (NVMCMD = ‘b000), and then set the GO control bit. The data is available on the very next
instruction cycle. Therefore, the NVMDATL register can be read by the next instruction. NVMDATL will hold this value
until another read operation, or until it is written to by the user (during a write operation).

Note: Only byte reads are supported for DFM. Reading DFM with the Read Page operation is not supported.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 100
and its subsidiaries

10.4.2

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

The sequence of events for reading a byte of DFM is:
1. Setthe NVMADR registers to an address within the intended page.
2. Set the NVMCMD control bits to *‘b000 (Byte Read).
3. Set the GO bit to start the DFM byte read.
4. Monitor the GO bit or NVMIF interrupt flag to determine when the read has completed.

This process is also shown in the following flowchart.

Start Read Operation

\

Set DFM Byte Address
(NVMADR = Address)

Figure 10-8. DFM Read Flowchart

\

Set NVM Read Command
(NVMCMD = 'b000)

\

Initiate Read
(GO =1)

\ 4
Data read now in NVMDATL

\

End Read Operation

Example 10-9. Reading a Byte from Data Flash Memory in C

// Code sequence to read one byte from DFM
// DFM target address is specified by DFM ADDR

// Variable to store the byte value from desired location in DFM
uint8_ t ByteValue

// Load NVMADR with the desired byte address
NVMADR = DFM ADDR

NVMCON1bits.CMD = 0x00 // Set the byte read command
NVMCONObits.GO = 1 // Start byte read

while (NVMCONObits.GO // Wait for the read operation to complete
ByteValue = NVMDATL // Store the read value to a variable

Writing to DFM

To write a DFM location, the address must first be written to the NVMADR register, the data written to the NVMDATL
register, and the Write operation command set in the NVMCMD bits. The sequence shown in Unlock Sequence must

be followed to initiate the write cycle. Multibyte Page writes are not supported for the DFM.

The write will not begin if the NVM unlock sequence is not exactly followed for each byte. It is strongly recommended

to disable interrupts during this code segment.

When not actively writing to the DFM, the NVMCMD bits need to be kept clear at all times as an extra precaution

against accidental writes. The NVMCMD bits are not cleared by hardware.

After a write sequence has been initiated, NVMCONO, NVMCON1, NVMADR and NVMDAT cannot be modified.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet

and its subsidiaries

DS40002236C-page 101

10.4.3

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

Each DFM write operation includes an implicit erase cycle for that byte. CPU execution continues in parallel and at
the completion of the write cycle, the GO bit is cleared in hardware and the NVM Interrupt Flag (NVMIF) bit is set.
The user can either enable the interrupt or poll the bit. NVMIF must be cleared by software.

The sequence of events for programming one byte of DFM is:

Set NVMADR registers with the target byte address.

Load NVMDATL register with desired byte.

Set the NVMCMD control bits to *b011 (Byte Write).

Disable all interrupts.

Perform the unlock sequence as described in the Unlock Sequence section.

Set the GO bit to start the DFM byte write.

Monitor the GO bit or NVMIF interrupt flag to determine when the write has been completed.
Interrupts can be enabled after the GO bit is clear.

Set the NVMCMD control bits to *b000.

N

© ® N O WN

Example 10-10. Writing a Byte to Data Flash Memory in C

// Code sequence to write one byte to a DFM
// DFM target address is specified by DFM_ADDR
// Target data is specified by ByteValue

// Save interrupt enable bit value
uint8_t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the target address of the byte
NVMADR = DFM ADDR;

NVMDATL = ByteValue; // Load NVMDAT with the desired value
NVMCON1lbits.CMD = 0x03; // Set the byte write command
INTCONObits .GIE = 0; // Disable interrupts

//——————— Required Unlock Sequence —————————

NVMLOCK = 0x55;
NVMLOCK = OxAA;

NVMCONObits.GO = 1; // Start byte write
//
while (NVMCONObits.GO) ; // Wait for the write operation to complete

// Verify byte write operation success and call the recovery function if needed
if (NVMCONlbits.WRERR) {

WRITE_FAULT RECOVERY () ;
}

INTCONObits.GIE
NVMCON1bits.CMD

GIEBitValue; // Restore interrupt enable bit value
0; // Disable writes to memory

Erasing the DFM

The DFM does not support the Page Erase operation. However, the DFM can be erased by writing OxFF to all
locations in the memory that need to be erased. The simple code example bellow shows how to erase ‘n’ number of
bytes in DFM. Refer to the “Memory Organization” chapter for more details about the DFM size and valid address
locations.

Example 10-11. Erasing n Bytes of Data Flash Memory in C

// Code sequence to erase n bytes of DFM
// DFM target start address is specified by PAGE_ADDR
// Number of bytes to be eares is specified by n

// Save interrupt enable bit value
uint8 t GIEBitValue = INTCONObits.GIE;

// Load NVMADR with the target address of the byte
NVMADR = DFM ADDR;

NVMDATL = OxFF; // Load NVMDATL with OxFF
NVMCON1lbits.CMD = 0x04; // Set the write and post increment command
INTCONObits.GIE = 0; // Disable interrupts

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 102

and its subsidiaries

10.4.4

10.4.5

10.4.6

10.5

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

for (uint8 t i = 0; i < n; i++
NVMLOCK = 0x55
NVMLOCK = OxAA
NVMCONObits.GO = 1

// Verify byte erase operation success and call the recovery function if needed
if (NVMCON1lbits.WRERR
ERASE_FAULT_ RECOVERY

INTCONObits.GIE
NVMCON1bits.CMD

GIEBitValue // Restore interrupt enable bit value
0 // Disable writes to memory

DFM Write Verify

Depending on the application, good programming practice can dictate that the value written to the memory shall be
verified against the original value. This can be used in applications where excessive writes can stress bits near the
specification limit to ensure that the intended values are written correctly to the specified memory locations.

Operation During Code-Protect and Write-Protect

The DFM can be code-protected using the CP Configuration bit. In-Circuit Serial Programming read and write
operations are disabled when code protection is enabled. However, internal reads operate normally. Internal writes
operate normally, provided that write protection is not enabled.

If the DFM is write-protected or if NVMADR points at an invalid address location, attempts to set the GO bit will fail
and the WRERR bit will be set.

Protection Against Spurious Writes

A write sequence is valid only when both the following conditions are met. This prevents spurious writes that might
lead to data corruption.

1. All NVM read, write and erase operations are enabled with the NVMCMD control bits. It is suggested to have
the NVMCMD bits cleared at all times except during memory writes. This prevents memory operations if any of
the control bits are set accidentally.

2. The NVM unlock sequence must be performed each time before all operations except the memory read
operation.

Register Definitions: NVM

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 103
and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

10.5.1 NVMCONO

Name: NVMCONO
Address: 0x040

Nonvolatile Memory Control Register O

Bit 7 6 5 4 3 2 1 0
| | | | G0
Access R/S/HC
Reset 0

Bit 0 — GO Start Operation Control
Start the operation specified by the NVMCMD bits

Value Description

1 Start operation (must be set after UNLOCK sequence for all operations except READ)
0 Operation is complete

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 104

and its subsidiaries

10.5.2

Access
Reset

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

NVMCON1

Name: NVMCON1
Address: 0x041

Nonvolatile Memory Control Register 1

7 6 5 4 3 2 1 0
[WRERR | | | NVMCMD[2:0]
RIC/HS RIW RIW RIW
0 0 0 0

Bit 7 - WRERR NVM Write Error
Reset States: POR =0
All other Resets = u
1 A write operation was interrupted by a Reset,
or a write or erase operation was attempted on a write-protected area,
or a write or erase operation was attempted on an unimplemented area,
or a write or erase operation was attempted while locked,
or a page operation was directed to a DFM area
0 All write/erase operations have completed successfully

Bits 2:0 - NVMCMD[2:0] NVM Command
Table 10-4. NVM Operations

000 Read byte | word NVM to NVMDAT

001 No Read and Post Increment byte = word NVM to NVMDAT No No
010 No Read Page — | page NVM to Buffer RAM No No
011 Yes Write byte = word NVMDAT to NVM Yes Yes
100 Yes Write and Post Increment byte | word NVMDAT to NVM Yes Yes
101 Yes Write Page — | page Buffer RAM to NVM Yes Yes
110 Yes Erase Page — page n/a Yes Yes
111 No Reserved (No Operation) — — — No No

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 105

and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

10.5.3 NVMLOCK
Name: NVMLOCK
Address: 0x042
Nonvolatile Memory Write Restriction Control Register

NVM write and erase operations require writing 0x55 then 0xAA to this register immediately before the operation

execution.
Bit 7 6 5 4 3 2 1 0
| NVMLOCK[7:0]
Access WO WO WO WO WO WO WO WO

Reset 0 0 0 0 0 0 0 0
Bits 7:0 - NVMLOCK]|7:0]
Reading this register always returns ‘0’.
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 106

and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

10.54 NVMADR

Name: NVMADR
Address: 0x043

Nonvolatile Memory Address Register

Bit 23 22 21 20 19 18 17 16
| | | NVMADR[21:16]
Access RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0
Bit 15 14 13 12 1 10 9 8
NVMADR(15:8]
Access R/W RIW R/W RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
NVMADRI7:0]
Access RIW RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 21:0 - NVMADR[21:0] NVM Address

Notes: The individual bytes in this multibyte register can be accessed with the following register names:
* NVMADRU: Accesses the upper byte NVMADR[21:16]
* NVMADRH: Accesses the high byte NVMADR[15:8]
* NVMADRL: Accesses the low byte NVMADR][7:0]

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet

DS40002236C-page 107

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

10.5.5 NVMDAT

Name: NVMDAT
Address: 0x046

Nonvolatile Memory Data Register

Bit 15 14 13 12 11 10 9 8
| NVMDAT([15:8]
Access RIW RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
NVMDAT[7:0]
Access R/W RIW R/W RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - NVMDAT[15:0] NVM Data

Notes: The individual bytes in this multibyte register can be accessed with the following register names:
* NVMDATH: Accesses the high byte NVMDAT[15:8]
* NVMDATL: Accesses the low byte NVMDAT[7:0]

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 108

and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

10.5.6 TBLPTR

Name: TBLPTR
Address: 0x4F6

Table Pointer Register

Bit 23 22 21 20 19 18 17 16
| | TBLPTR21 TBLPTR[20:16]
Access RIW R/W RIW R/W RIW R/W
Reset 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
TBLPTR[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
TBLPTR[7:0]
Access R/W R/W RIW R/W RIW R/W RIW R/W
Reset 0 0 0 0 0 0 0 0

Bit 21 — TBLPTR21 NVM Most Significant Address bit

Value Description

1 Access Configuration, User ID, Device ID, and Revision ID spaces
0 Access Program Flash Memory space

Bits 20:0 - TBLPTR[20:0] NVM Address bits

Notes: The individual bytes in this multibyte register can be accessed with the following register names:
* TBLPTRU: Accesses the upper byte TBLPTR[21:16]
+ TBLPTRH: Accesses the high byte TBLPTR[15:8]
+ TBLPTRL: Accesses the low byte TBLPTR[7:0]

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 109

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

10.5.7 TABLAT

Name: TABLAT
Address: 0x4F5

Table Latch Register

Bit 7 6 5 4 3 2 1 0
| TABLAT[7:0]
Access RIW RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — TABLAT[7:0] The value of the NVM memory byte returned from the address contained in TBLPTR after a
TBLRD command, or the data written to the latch by a TBLWT command.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 110
and its subsidiaries

PIC18F04/05/14/15Q40
NVM - Nonvolatile Memory Module

10.6 Register Summary - NVM

I e A N N N N N BN

0x00
Reserved
0x3F
0x40 NVMCONO 7:0 GO
0x41 NVMCON/1 7:0 WRERR NVMCMD[2:0]
0x42 NVMLOCK 7:0 NVMLOCK]7:0]
7:0 NVMADR([7:0]
0x43 NVMADR 15:8 NVMADR[15:8]
23:16 NVMADR[21:16]
Oxd6 NVMDAT 7:0 NVMDAT(7:0]
15:8 NVMDAT[15:8]
0x48
Reserved
0x04F4
0x04F5 TABLAT 7:0 TABLATI[7:0]
7:0 TBLPTR[7:0]
0x04F6 TBLPTR 15:8 TBLPTR[15:8]
23:16 TBLPTR21 TBLPTR[20:16]
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 111

and its subsidiaries

1.

1.1

11.2

1.3

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

VIC - Vectored Interrupt Controller Module

Overview
The Vectored Interrupt Controller (VIC) module reduces the numerous peripheral interrupt request signals to a single
interrupt request signal to the CPU. This module includes the following major features:
» Interrupt Vector Table (IVT) with a unique vector for each interrupt source
» Fixed and ensured interrupt latency
» Programmable base address for IVT with lock
» Two user-selectable priority levels - High priority and low priority
» Two levels of context saving
» Interrupt state Status bits to indicate the current execution status of the CPU
The VIC module assembles all of the interrupt request signals and resolves the interrupts based on both a fixed

natural order priority (i.e., determined by the IVT), and a user-assigned priority (i.e., determined by the IPRx
registers), thereby eliminating scanning of interrupt sources.

Interrupt Control and Status Registers
The devices in this family implement the following registers for the interrupt controller:

* INTCONO, INTCON1 Control Registers

* PIRXx - Peripheral Interrupt Status Registers
* PIEx - Peripheral Interrupt Enable Registers
* IPRx - Peripheral Interrupt Priority Registers
» |IVTBASE Address Registers

* |IVTLOCK Register

Global interrupt control functions and external interrupts are controlled from the INTCONO register. The INTCON1
register contains the status flags for the interrupt controller.

The PIRX registers contain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set
by the respective peripherals or an external signal, and is either cleared via software or automatically cleared by
hardware upon clearing of the interrupt condition, depending on the peripheral and bit.

The PIEX registers contain all of the interrupt enable bits. These control bits are used to individually enable interrupts
from the peripherals or external signals.

The IPRX registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source
can be assigned to either a high or low priority.

The IVTBASE register is user-programmable and is used to determine the start address of the IVT and the IVTLOCK
register is used to prevent any unintended writes to the IVTBASE register.

There are two other Configuration bits that control the way the interrupt controller can be configured: The MVECEN
and the IVT1WAY bits.

The MVECEN bit determines whether the IVT is used to determine the interrupt priorities. The IVT1WAY bit
determines the number of times the IVTLOCKED bit can be cleared and set after a device Reset. See the Interrupt
Vector Table Address Calculation section for details.

Interrupt Vector Table
The interrupt controller supports an IVT that contains the vector address location for each interrupt request source.
The IVT resides in program memory, starting at the address location determined by IVTBASE. The IVT contains one

vector for each source of interrupt. Each interrupt vector location contains the starting address of the associated
Interrupt Service Routine (ISR). The MVECEN Configuration bit controls the availability of the vector table.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 112
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.3.1 Interrupt Vector Table Base Address (IVTBASE)
The start address of the vector table is user-programmable through the IVTBASE. The user must ensure the start
address is such that it can encompass the entire vector table inside the program memory.

Each vector address is a 16-bit word (or two address locations on PIC18 devices). For ‘n’ interrupt sources, there
are ‘2n’ address locations necessary to hold the table, starting from IVTBASE as the first location. Thus, the starting
address needs to be chosen such that the address range from IVTBASE to “IVTBASE+2n-1”" can be encompassed
within the program Flash memory.

For example, if the highest vector number was 81, IVTBASE needs to be chosen such that “IVTBASE+0xA1” is less
than the last memory location in program Flash memory.

A programmable vector table base address is useful in situations to switch between different sets of vector tables,
depending on the application. It can also be used when the application program needs to update the existing vector
table (vector address values).

Important: It is required that the user assign an even address to IVTBASE for correct operation.

11.3.2 Interrupt Vector Table Contents
MVECEN = 0

When MVECEN = 0, the address location pointed to by IVTBASE has a GOTO instruction for a high-priority interrupt.
Similarly, the corresponding low-priority vector also has a GOTO instruction, which is executed in case of a low-priority
interrupt.

MVECEN =1

When MVECEN = 1, the value in the vector table of each interrupt points to the address location of the first
instruction of the Interrupt Service Routine, hence: ISR Location = Interrupt Vector Table entry << 2.

11.3.3 Interrupt Vector Table Address Calculation
MVECEN = 0

When the MVECEN Configuration bit is cleared, the address pointed to by IVTBASE is used as the high-priority
interrupt vector address. The low-priority interrupt vector address is offset eight instruction words from the address in
IVTBASE.

For PIC18 devices, IVTBASE defaults to 000008h, hence the high-priority interrupt vector address will be 000008h
and the low-priority interrupt vector address will be 000018h.

MVECEN =1

Each interrupt has a unique vector number associated with it, as defined in the IVT. This vector number is used for
calculating the location of the interrupt vector for a particular interrupt source.

Interrupt Vector Address = IVTBASE + (2*Vector Number). This calculated interrupt vector address value is stored in
the IVTAD register when an interrupt is received.

User-assigned software priority, when assigned using the IPRXx registers, does not affect address calculation and is
only used to resolve concurrent interrupts.

Important: If for any reason the address of the ISR cannot be fetched from the vector table, it will cause
the system to reset and clear the Memory Execution Violation flag in the Power Control register. This can
occur due to any one of the following:

» The entry for the interrupt in the vector table lies outside the executable program memory area
» ISR pointed by the vector table lies outside the executable program memory area

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 113
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

Table 11-1. IVT Calculations Summary

IVT Address Calculation

Multivector Enable,
MVECEN Configuration bit

11.3.4 Access Control for IV'TBASE Registers

Interrupt Priority INTCONO Register, IPEN Bit

0 1
IVTBASE High Priority IVTBASE
Low Priority IVTBASE + 8
words

IVTBASE + 2*(Vector Number)

The interrupt controller has an IVTLOCKED bit, which can be set to avoid inadvertent changes to the contents
of IVTBASE. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent

changes.

To allow writes to IVTBASE, the interrupts must be disabled (GIEH = 0) and the IVTLOCKED bit must be cleared.
The user must follow the sequence shown below to clear the IVTLOCKED bit.

Example 11-1. IVT Unlock Sequence

Disable Interrupts:
BCF INTCONO, GIE

Bank to IVTLOCK register

BANKSEL IVTLOCK
MOVLW 55h

Required sequence
MOVWF IVTLOCK
MOVLW AAh
MOVWF IVTLOCK

Clear IVTLOCKED bit to enable writes
BCF IVTLOCK, IVTLOCKED

Enable Interrupts
BSF INTCONO, GIE

next 4 instructions

The user must follow the following sequence to set the IVTLOCKED bit.

Example 11-2. IVT Lock Sequence

Disable Interrupts:
BCF INTCONO, GIE

Bank to IVTLOCK register

BANKSEL IVTLOCK
MOVLW 55h

Required sequence
MOVWF IVTLOCK
MOVLW AAh
MOVWF IVTLOCK

Set IVTLOCKED bit to enable writes
BSF IVTLOCK, IVTLOCKED

Enable Interrupts
BSF INTCONO, GIE

next 4 instructions

When the IVT1WAY Configuration bit is set, the IVTLOCKED bit can be cleared and set only once after a device
Reset. The unlock operation will have no effect after the lock sequence is used to set the IVTLOCKED bit. Unlocking

is inhibited until a system Reset occurs.

© 2020-2021 Microchip Technology Inc.
and its subsidiaries

Advance Information Datasheet DS40002236C-page 114

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.4 Interrupt Priority

The final priority level for any pending source of interrupt is determined first by the user-assigned priority of that
source in the IPRx register, then by the natural order priority within the IVT. The sections below detail the operation of
interrupt priorities.

11.41 User (Software) Priority

User-assigned interrupt priority is enabled by setting IPEN. Each peripheral interrupt source can be assigned a high-
or low-priority level by the user. The user-assignable interrupt priority control bits for each interrupt are located in the
IPRXx registers, which are device-specific and can be found in the respective data sheet for each device.

The interrupts are serviced based on a predefined interrupt priority scheme detailed below.

1. Interrupts set by the user as a high-priority interrupt have higher precedence of execution. High-priority
interrupts will override a low-priority request when:

a. A low-priority interrupt has been requested or its request is already pending.

b. A low and high-priority interrupt are triggered concurrently (i.e., on the same instruction cycle).()

c. Alow-priority interrupt was requested and the corresponding Interrupt Service Routine is currently
executing. In this case, the lower priority interrupt routine will be interrupted then complete executing
after the high-priority interrupt has been serviced.(®)

2. Interrupts set by the user as low priority have a lower priority of execution and are preempted by any
high-priority interrupt.

3. Interrupts defined with the same software priority cannot preempt or interrupt each other. Concurrent pending
interrupts with the same user priority are resolved using the natural order priority (when vectored interrupts are
enabled) or in the order the interrupt flag bits are polled in the ISR (when vectored interrupts are disabled).

Important:

1. When a high-priority interrupt preempts a concurrent low-priority interrupt, GIEL may be cleared in
the high-priority Interrupt Service Routine. If GIEL is cleared, the low-priority interrupt will NOT be
serviced, even if it was originally requested. The corresponding interrupt flag needs to be cleared in
user code.

2. When a high-priority interrupt is requested while a low-priority Interrupt Service Routine is
executing, GIEL may be cleared in the high-priority Interrupt Service Routine. The pending low-
priority interrupt will resume, even if GIEL is cleared.

11.4.2 Natural Order (Hardware) Priority
When vectored interrupts are enabled and more than one interrupt with the same user specified priority level is
requested, the priority conflict is resolved by using a method called “Natural Order Priority”. Natural order priority is a
fixed priority scheme that is based on the IVT.

Table 11-2. Interrupt Vector Priority Table

Vector Interrupt
Vector Interrupt Number source
Number source
(cont.) (cont.)
0x0 Software Interrupt 0x2D CLC2
0x1 HLVD (High/Low-Voltage Detect) 0x2E PWM2PR
0x2 OSF (Oscillator Fail) O0x2F PWM2
0x3 CSW (Clock Switching) 0x30 INTA1
0x4 NVM 0x31 -
0x5 CLC1 (Configurable Logic Cell) 0x32 CWG1 (Complementary Waveform Generator)
0x6 CRC (Cyclic Redundancy Check) 0x33 NCO1 (Numerically Controlled Oscillator)
0x7 I0C (Interrupt-On-Change) 0x34 DMA2SCNT
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 115

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

........... continued
Interrupt
Vector Interrupt source
Number source
(cont.)
0x8 INTO 0x35 DMA2DCNT
0x9 ZCD (Zero-Cross Detection) 0x36 DMA20R
OxA AD (ADC Conversion Complete) 0x37 DMA2A
0xB ACT (Active Clock Tuning) 0x38 I2C1RX
0xC CM1 (Comparator) 0x39 12C1TX
0xD SMT1 (Signal Measurement Timer) 0x3A 12C1
OxE - 0x3B I2C1E
OxF SMT1PWA 0x3C -
0x10 ADT 0x3D CLC3
0x11 - Ox13 - O0x3E PWM3PR
0x14 DMA1SCNT (Direct Memory Access) O0x3F PWM3
0x15 DMA1DCNT 0x40 U2RX
0x16 DMA10OR 0x41 u2TXx
0x17 DMA1A 0x42 U2E
0x18 SPI1RX (Serial Peripheral Interface) 0x43 U2
0x19 SPIMTX 0x44 -
Ox1A SPI1 0x45 CLC4
0x1B TMR2 0x46 -
0x1C TMR1 0x47 SCAN
0x1D TMR1G 0x48 U3RX
Ox1E CCP1 (Capture/Compare/PWM) 0x49 U3TX
Ox1F TMRO O0x4A U3E
0x20 U1RX 0x4B u3
0x21 U1TX 0x4C DMA3SCNT
0x22 U1E 0x4D DMA3DCNT
0x23 U1 Ox4E DMA3OR
0x24 TMR3 Ox4F DMA3A
0x25 TMR3G 0x50 INT2
0x26 PWM1PR 0x51 -
0x27 PWM1 0x52 -
0x28 SPI2RX 0x53 TMR4
0x29 SPI2TX 0x54 DMA4SCNT
0x2A SPI2 0x55 DMA4DCNT
0x2B - 0x56 DMA4OR
0x2C CM2 (Comparator) 0x57 DMA4A

The natural order priority scheme goes from high-to-low with increasing vector numbers, with 0 being the highest
priority and decreasing from there.

For example, when two concurrently occurring interrupt sources that are both designated high priority, using the IPRx
register will be resolved using the natural order priority (i.e., the interrupt with a lower corresponding vector number
will preempt the interrupt with the higher vector number).

The ability for the user to assign every interrupt source to high- or low-priority levels means that the user program can
give an interrupt with a low natural priority, a higher overall priority level.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 116
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.5 Interrupt Operation

All pending interrupts are indicated by their respective flag bit being equal to a ‘1’ in the PIRx register. All pending
interrupts are resolved using the priority scheme explained in Interrupt Priority section.

Once the interrupt source to be serviced is resolved, the program execution vectors to the resolved interrupt vector
addresses, as explained in Interrupt Vector Table section. The vector number is also stored in the WREG register.
Most of the flag bits are required to be cleared by the application software, but in some cases, device hardware
clears the interrupt automatically. Some flag bits are read-only in the PIRx registers. These flags are a summary of
the source interrupts and the corresponding interrupt flags of the source must be cleared.

A valid interrupt can be either a high- or low-priority interrupt when in the main routine or a high-priority interrupt when
in a low priority Interrupt Service Routine. Depending on the order of interrupt requests received and their relative
timing, the CPU will be in a state of execution indicated by the STAT bit

The state machine shown in Figure 11-1 and the subsequent sections detail the execution of interrupts when
received in different orders.

Important: The state of GIEH/L is not changed by the hardware when servicing an interrupt. The internal
state machine is used to keep track of execution states. These bits can be manipulated in the user code,
resulting in transferring execution to the main routine and ignoring existing interrupts.

Figure 11-1. Vectored Interrupts State Transition Diagram

High Interrupt addressed,
Low Interrupt pending

HIGH
INTSTAT = 10

Low
INTSTAT =01

High Interrupt Low Interrupt
requested requested

Low Interrupt addressed, —

High Interrupt pending
kel he)
g 22
2 £ g .S
o O o T
5 < s c
IS T @
o o T o
[[
85 85
2= 2t
52 52
= O = C
< <3
-y ey
» 39 ® 39
T T

r |
HIGH High Interrupt
INTSTAT = 11 requested

11.5.1 Serving a High- or Low-Priority Interrupt While the Main Routine Code Is Executing
When a high- or low-priority interrupt is requested while the main routine code is executing, the main routine
execution is halted and the ISR is addressed. Upon a return from the ISR (by executing the RETFIE instruction), the
main routine resumes execution.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 117
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

Figure 11-2. Interrupt Execution: High/Low-Priority Interrupt While Executing Main Routine

Rov. 10002674
arr2208

ISR Code Executing

(>RETFIE Executed

Main Code Main Code Executing X Main Code Execution Halted >< Main Code Executing

Interrupt

Interrupt Interrupt
received cleared

11.5.2 Serving a High-Priority Interrupt While a Low-Priority Interrupt Is Pending

A high priority interrupt request will always take precedence over any interrupt of a lower priority. The high-priority
interrupt is acknowledged first, then the low-priority interrupt is acknowledged. Upon a return from the high-priority
ISR (by executing the RETFIE instruction), the low-priority interrupt is serviced.

If any other high-priority interrupts are pending and enabled, they are serviced before servicing the pending low-
priority interrupt. If no other high-priority interrupt requests are active, the low-priority interrupt is serviced.

Figure 11-3. Interrupt Execution: High-Priority Interrupt with a Low-Priority Interrupt Pending

Rav. 1000267C
ait220%

High ISR High ISR

\
=
Q‘ RETFIE Executed

\
f / \
Low ISR Low ISR
\) RETFIE Executed

Main Code Main routine ____ _Main Code Execution Halted :>< Main routine
High Priority

Int t

nierrup High Interrupt High Interrupt

received cleared

Low Priority |

Interrupt Low Interrupt Low Interrupt

received cleared

11.5.3 Preempting Low-Priority Interrupts
Low-priority interrupts can be preempted by high-priority interrupts. While in the low-priority ISR, if a high-priority
interrupt arrives, the high-priority interrupt request is generated and the low-priority ISR is suspended, while the
high-priority ISR is executed.

After the high-priority ISR is complete and if any other high-priority interrupt requests are not active, the execution
returns to the preempted low-priority ISR.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 118

and its subsidiaries

11.5.4

11.6

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

Figure 11-4. Interrupt Execution: High-Priority Interrupt Preempting Low-Priority Interrupts

art220

; [\
High ISR { High ISR)
Low Interrupt pending, RETEIE Executed

High Interrupt received

Low ISR < Low ISR XLOW|_SREX_eCl£On_Ha|t€_d Low ISR
(' RETFIE Executed

\ - - -
Main Code Main routine x __ __ _Main Code Execution Halted __ __ :>< Main routine
High Priority

Int t

nterrupf High Interrupt High Interrupt

received cleared

Low Priority

Interrupt Low Interrupt Low Interrupt

received cleared

Simultaneous High- and Low-Priority Interrupts
When both high- and low-priority interrupts are active in the same instruction cycle (i.e., simultaneous interrupt
events), both the high- and low-priority requests are generated. The high-priority ISR is serviced first before servicing

the low-priority interrupt.
Figure 11-5. Interrupt Execution: Simultaneous High- and Low-Priority Interrupts

Rav. 10002670
2208

High ISR High ISR

\
—
Q‘ RETFIE Executed

\
/‘ [\
Low ISR Low ISR
\) RETFIE Executed

Main Code Main routine __ __ _Main Code Execution Halted __ __ :>< Main routine
High Priority

Int t n

nterrup High Interrupt High Interrupt

received cleared

Low Priority |

Interrupt Low Interrupt Low Interrupt

received cleared

Context Saving
The interrupt controller supports a two-level deep context saving system (main routine context and low ISR context).

Refer to the state machine shown in Figure 11-6 for details.

The Program Counter (PC) is saved on the dedicated device PC stack. The CPU registers saved include STATUS,
WREG, BSR, FSR0/1/2, PRODL/H and PCLATH/U.

After WREG has been saved to the context registers, the resolved vector number of the interrupt source to be
serviced is copied into WREG. Context save and restore operation is completed by the interrupt controller based on
the current state of the interrupts and the order in which they were sent to the CPU.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 119

and its subsidiaries

11.6.1

1.7

11.8

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

Context save/restore works the same way in both states of MVECEN. When IPEN = 0, there is only one level of
interrupt active. Hence, only the main context is saved when an interrupt is received.

Accessing Shadow Registers

The interrupt controller automatically saves the context information in the shadow registers. Both the saved context
values (i.e., main routine and low ISR) can be accessed using the same set of shadow registers. By clearing
SHADLO, the CPU register values saved for main routine context can be accessed. Low ISR context is automatically
restored to the CPU registers upon exiting the high ISR. Similarly, the main context is automatically restored to the
CPU registers upon exiting the low ISR.

The shadow registers are readable and writable, so if the user desires to modify the context, then the corresponding
shadow register needs to be modified and the value will be restored when exiting the ISR. Depending on the user’s
application, other registers may also need to be saved.

Figure 11-6. Context Save State Machine Diagram

MAIN
INTSTAT = 00

No Context Save/Restore

LOW
INTSTAT =01
No Context Save/Restore —

INTSTAT = 10

No Context No Context
Save/Restore Save/Restore

Save Low context
Restore Low context

A

HIGH No Context
INTSTAT =11 Save/Restore

Returning from Interrupt Service Routine (ISR)
The Return from Interrupt (RETFIE) instruction is used to mark the end of an ISR.

When the RETFIE 1 instruction is executed, the PC is loaded with the saved PC value from the top of the PC stack.
Saved context is also restored with the execution of this instruction. Thus, execution returns to the state of operation
that existed before the interrupt occurred.

When the RETFIE 0 instruction is executed, the saved context is not restored back to the registers.

Interrupt Latency

When MVECEN = 1, there is a fixed latency of three instruction cycles between the completion of the instruction
active when the interrupt occurred, and the first instruction of the Interrupt Service Routine. Figure 11-7, Figure 11-8

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 120
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

and Figure 11-9 illustrate the sequence of events when a peripheral interrupt is asserted, when the last executed
instruction is one-cycle, two-cycle and three-cycle, respectively.

After the Interrupt Flag Status bit is set, the current instruction completes executing. In the first latency cycle, the
contents of the PC, STATUS, WREG, BSR, FSR0/1/2, PRODL/H and PCLATH/U registers are context saved, and
the IVTBASE + Vector number is calculated. In the second latency cycle, the PC is loaded with the calculated vector
table address for the interrupt source, and the starting address of the ISR is fetched. In the third latency cycle, the PC
is loaded with the ISR address. All the latency cycles are executed as NOP instructions.

When MVECEN = 0, the interrupt controller requires two clock cycles to vector to the ISR from the main routine. Note
that, as this mode requires additional software to determine which interrupt source caused the interrupt, the actual
latency between the trigger and the beginning of the specific ISR for each individual interrupt will be longer than two
clock cycles and will vary, when not using vectored interrupts.

Figure 11-7. Interrupt Timing Diagram: One-Cycle Instruction

® ©) ® ® ©) ® ©) ©)
Geo TUUUTU U U uuL
Clock

Erggr’:‘er'r‘(X [x2 | x2 | oxe2 | o8 J oA J oeic | x«2 | xe) xe6)

”";;g’igg’r” ([nst@x® | FNoP | FNOP | FNOP Jinst %C(l):x218XInstR§”(:):E21AX FNOP | Inst@X+2 | Inst@ X+4
ntemupt | |
Routine (MAIN X FNOP X ISR X FNOP X MAIN)
IVTBASE | 0x80 |
Numbor | 1 |
Pf°9"“&8"gem°'y| 0x86 |

Interrupt Location = Interrupt vector table entry << 2
=0x86 << 2 =0x218

Note: 1. Instruction @ X is a One-cycle Instruction.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 121
and its subsidiaries

PIC18F04/05/14/15Q40

VIC - Vectored Interrupt Controller Module

Figure 11-8. Interrupt Timing Diagram: Two-Cycle Instruction

Rov. 10-000 2698
2019

® ® ©) ® ©) ©® ©) ©) @)

oo [UUUTUUUTUUUU U e
Clock

Fgggr:?e’:‘ vy [w2 f ove2 | ve2) oxe2 | ox@ts | ox1a | ox@1c [ve2 | v« | v)
";f;;“i;‘g” [nst@Y nst@ v Fnop | Fnop | FNoP XlnszB@chsz1sX|ns;c;;rzlez1AX FNOP [inst @ Y+2) Inst @ Y+4)
Interrupt |
Routine MAIN X ENOP X ISR J_nor | MAIN)
IVTBASE | 0x80 |
Nomor | 1 |
Prograomxsl\élema'yl 0x86 |

Interrupt Location = Interrupt vector table entry << 2
=0x86 << 2 =0x218

Note: 1. Instruction @ Y is a Two-cycle Instruction.

Figure 11-9. Interrupt Timing Diagram: Three-Cycle Instruction

Rev. 10-000266C
2015

Q ©) Q ©) ©] @ ©) ©) @) @
oo [TUULTTUUTUUTIT UL U i g i e
Clock

Program z 742 742 742 7+2 0x82 0x218 | O0x21A | ox21C Z+2 Z+4 7+6
(| I I | I I I I I I |)

Counter
";fgg“igg’r”([inst @z inst @ 2| inst @ 2" FnoP | FnoP | FnoP | ';g%? | é)’gﬁ [FrnoP Jinst @ z+2finst @ 2+4)
|nterrupt4 |
Routine MAIN X ENOP X ISR _enoe | MAIN)
IVTBASE | 0x80 |
Number | 1 |

Interrupt Location = Interrupt vector table entry << 2
=0x86 << 2 =0x218

Note: 1. Instruction @ Z is a Three-cycle Instruction.

11.8.1 Aborting Interrupts

If the last instruction before the interrupt controller vectors to the ISR from the main routine clears the GIE, PIE, or
PIR bit associated with the interrupt, the controller executes one forced NOP instruction cycle before it returns to the

main routine.
Figure 11-10 illustrates the sequence of events when a peripheral interrupt is asserted and then cleared on the last
executed instruction cycle.

If the GIE, PIE or PIR bit associated with the interrupt is cleared prior to vectoring to the ISR, then the controller
continues executing the main routine.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 122

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

Figure 11-10. Interrupt Timing Diagram: Aborting Interrupts

Rev. 10-000 269D
11412019

® ©) ® ® ®
e TUU UL UUU U UU UL
Clock

e (X e e) v | we]
ol BN Y- ST) L)

Interrupt

Routine ~(MAIN X mor X MAIN)

Note: 1. Inst @ X clears the interrupt flag, Example BCF INTCONO, GIE.

11.9 Interrupt Setup Procedure

1. When using interrupt priority levels, set IPEN and then select the user-assigned priority level for the interrupt
source by writing the control bits in the appropriate IPRx control register.

Important: At a device Reset, the IPRx registers are initialized such that all user interrupt sources
are assigned to high priority.

2. Clear the Interrupt Flag Status bit associated with the peripheral in the associated PIRx STATUS register.

3. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the
appropriate PIEx register.

4. If the vector table is used (MVECEN = 1), then set up the start address for the Interrupt Vector Table using
IVTBASE. See the Interrupt Vector Table Contents section for more details.

5. Once IVTBASE is written to, set the interrupt enable bits in INTCONO.

6. An example of setting up interrupts and ISRs using assembly and C can be found in Example 11-3 and
Example 11-4.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 123
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

Example 11-3. Set

ting Up Vectored Interrupts Using MPASM "™

Each ISR routine must have a predetermined origin otherwise there will be
an assembly error because the address is not determined until link time

which is too late to do the divide by 4 math on the address

Predetermined

ISRSW CODE Ox3E
SW interrupt
BANKSEL

BCF
RETFIE

ISRHLVD CODE
HLVD interrup
BANKSEL
BCF
RETFIE

ISROSF CODE
OSF interrupt
BANKSEL
BCF
RETFIE

IntInit:
Disable a
BCF

addresses must be evenly divisible by 4.
00

service code here
PIRO

PIR0, SWIF
FAST

0x3E40

t service code here
PIRO

PIR0, HLVDIF
FAST

0x3E60

service code here
PIRO

PIR0, OSFIF
FAST

11 interrupts
INTCONO, GIE, ACCESS

Set IVTBASE (optional - default is 0x000008

CLRF
MOVLW
MOVWF
CLRF

Clear any
BANKSEL
BCF
BCF
BCF

Enable in
BANKSEL
BSF
BSF
BSF

Set inter
BANKSEL
BSF
BCF

Enable in
BSF
BSF

RETURN 1

Save SWISR in
ISR1 CODE 0Ox
DW

Save HLVDISR
ISR2 CODE 0x
DW

Save CLC2ISR
ISR3 CODE 0x
DW

IVTBASEU, ACCESS
0x3F

IVTBASEH, ACCESS
IVTBASEL, ACCESS

interrupt flags before enabling interrupts
PIRO

PIRO, SWIF

PIRO, HLVDIF

PIRO, OSFIF

terrupts
PIEO
PIEO, SWIE

PIEO, HLVDIE
PIEO, OSFIE

rupt priorities if necessary
IPRO

INTCONO, IPEN_ INTCONO, ACCESS
IPRO, HLVDIP

terrupts
INTCONO, GIEH, ACCESS
INTCONO, GIEL, ACCESS

vector table (IVTBASE+0*2
3F00
0x3E40>>2 SWISR/4
in vector table (IVTBASE+1%*2
3F02
0x3E60>>2 HLVDISR/4
in vector table (IVTBASE+2*2
3F04

0x3E00>>2 OSFISR/4

Enable interrupt priority
Make HLVD interrupt low priority

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 124

11.10

1.1

11.12

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

Example 11-4. Setting Up Vectored Interrupts Using XC8

// NOTE 1: If IVTBASE is changed from its default value of 0x000008, then the
// "base(...)" argument must be provided in the ISR. Otherwise the vector
// table will be placed at 0x0008 by default regardless of the IVTBASE value.

// NOTE 2: When MVECEN=0 and IPEN=1, a separate argument as "high priority"
// or "low priority" can be used to distinguish between the two ISRs.

// If the argument is not provided, the ISR is considered high priority

// by default.

// NOTE 3: Multiple interrupts can be handled by the same ISR if they are
// specified in the "irq(...)" argument. Ex: irq(IRQ SW, IRQ HLVD)

void _ interrupt (irq(IRQ_SW), base (0x3008)) SW_ISR(void)

: PIRObits.SWIF = 0; // Clear the interrupt flag
LATCbits.LATCO ~= 1; // ISR code goes here

ioid __interrupt(irq(default), base (0x3008)) DEFAULT ISR (void)

{ // Unhandled interrupts go here

}
void INTERRUPT Initialize (void)
{

INTCONObits .GIEH = 1; // Enable high priority interrupts
INTCONObits.GIEL = 1; // Enable low priority interrupts
INTCONObits.IPEN = 1; // Enable interrupt priority
PIEObits.SWIE = 1; // Enable SW interrupt
PIEObits.HLVDIE = 1; // Enable HLVD interrupt
IPRObits.SWIP = O; // Make SW interrupt low priority

// Change IVTBASE if required

IVTBASEU = 0x00; // Optional

IVTBASEH = 0x30; // Default is 0x000008

IVTBASEL = 0x08;

External Interrupt Pins

Devices may have several external interrupt sources that can be assigned to pins on different ports based on PPS
settings. Refer to the “PPS - Peripheral Pin Select Module” chapter for possible routing options for these external
interrupts. The external interrupt sources are edge-triggered. If the corresponding INTXEDG bit in INTCONO is set,
the interrupt is triggered by a rising edge. If the bit is clear, the trigger is on the falling edge.

When a valid edge appears on the INTx pin, the corresponding flag bit (INTxF in the PIRXx registers) is set. This
interrupt can be disabled by clearing the corresponding enable bit, INTXE. The flag bit INTxF must be cleared by
software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts can wake up the processor from Idle or Sleep modes if the INTXE bit was set prior to going
into those modes. If GIE/GIEH bit is set, the processor will branch to the interrupt vector following wake-up. Interrupt
priority is determined by the value contained in the respective INTxIP interrupt priority bits of the IPRx registers.

Wake-Up from Sleep

The interrupt controller provides a wake-up request to the CPU whenever an interrupt event occurs, if the interrupt
event is enabled. This occurs regardless of whether the part is in Run, Idle/Doze or Sleep modes. The status of
GIE/GIEH and GIEL bits have no effect on the wake-up request. This wake-up request is asynchronous to all clocks.

Interrupt Compatibility

When the MVECEN bit is cleared, the IVT feature is disabled and interrupts are compatible with previous high
performance 8-bit PIC18 microcontroller devices. In this mode, the IVT priority has no effect.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 125
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

When IPEN is also cleared, the interrupt priority feature is disabled and interrupts are compatible with PIC16
microcontroller midrange devices. All interrupts branch to address 0008h, since the interrupt priority is disabled.

11.13 Register Definitions: Interrupt Control

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 126
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.1 INTCONO

Name: INTCONO
Address: 0x4D6

Interrupt Control Register 0

Bit 7 6 5 4 3 2 1 0
| GIE/GEH | GIEL | IPEN INT2EDG INT1EDG INTOEDG
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 1 1 1

Bit 7 — GIE/GIEH Global Interrupt Enable

1 IPEN = 0 | Enables all masked interrupts

0 IPEN = 0 Disables all interrupts

1 IPEN =1 | Enables all unmasked high-priority interrupts: bit also needs to be set for enabling low-
priority interrupts

0 IPEN =1 Disables all interrupts

Bit 6 — GIEL Global Low Priority Interrupt Enable

n IPEN =0 | Reserved, read as ‘0’

1 IPEN =1 Enables all unmasked low-priority interrupts, GIEH also needs to be set for low priority
interrupts

0 IPEN =1 | Disables all low priority interrupts

Bit 5 — IPEN Interrupt Priority Enable
Value Description
1 Enable priority levels on interrupts
0 Disable priority levels on interrupts, all interrupts are treated as high priority interrupts

Bit 2 — INT2EDG External Interrupt 2 Edge Select
Value Description

1 Interrupt on rising edge of INT2 pin

0 Interrupt on falling edge of INT2 pin

Bit 1 — INT1EDG External Interrupt 1 Edge Select
Value Description
1 Interrupt on rising edge of INT1 pin
0 Interrupt on falling edge of INT1 pin

Bit 0 — INTOEDG External Interrupt 0 Edge Select
Value Description

1 Interrupt on rising edge of INTO pin
0 Interrupt on falling edge of INTO pin
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 127

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.2 INTCON1

Name: INTCON1
Address: 0x4D7

Interrupt Control Register 1

Bit 7 6 5 4 3 2 1 0
| STAT[1:0] |
Access R R
Reset 0 0

Bits 7:6 — STAT[1:0] Interrupt State Status
Value Description

11 High priority ISR executing, high-priority interrupt was received while a low-priority ISR was executing
10 High priority ISR executing, high-priority interrupt was received in main routine
01 Low priority ISR executing, low-priority interrupt was received in main routine
00 Main routine executing
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 128

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.3 IVTBASE

Name: IVTBASE
Address: 0x45D

Interrupt Vector Table Base Address Register

Bit 23 22 21 20 19 18 17 16
| | | | IVTBASEU[4:0]
Access RIW RIW RIW RIW RIW
Reset 0 0 0 0 0
Bit 15 14 13 12 1 10 9 8
IVTBASEH[7:0]
Access R/W RIW R/W RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IVTBASEL[7:0]
Access RIW RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 20:16 — IVTBASEU[4:0] Interrupt Vector Table Base Address Most Significant 5 bits
Bits 15:8 — IVTBASEH[7:0] Interrupt Vector Table Base Address Middle 8 bits

Bits 7:0 — IVTBASEL[7:0] Interrupt Vector Table Base Address Least Significant 8 bits

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 129
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.4 IVTAD

Name: IVTAD
Address: 0x45A

Interrupt Vector Table Address

Bit 23 22 21 20 19 18 17 16
| | IVTADU[4:0]
Access R R R R R
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
IVTADH[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IVTADL[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 20:16 — IVTADU[4:0] Interrupt Vector Table Address Most Significant 5 bits

Bits 15:8 — IVTADH[7:0] Interrupt Vector Table Address Middle 8 bits

Bits 7:0 — IVTADL[7:0] Interrupt Vector Table Address Least Significant 8 bits

© 2020-2021 Microchip Technology Inc.

and its subsidiaries

Advance Information Datasheet

DS40002236C-page 130

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.5 IVTLOCK

Name: IVTLOCK
Address: 0x459

Interrupt Vector Table Lock Register

Bit 7 6 5 4 3 2 1 0
| | | IVTLOCKED
Access R/W
Reset 0

Bit 0 — IVTLOCKED VT Registers Lock(1:2)
Value Description

1 IVTBASE Registers are locked and cannot be written
0 IVTBASE Registers can be modified by write operations
Notes:

1. The IVTLOCKED bit can only be set or cleared after the unlock sequence in Example 11-1.
2. IfIVT1WAY = 1, the IVTLOCKED bit cannot be cleared after it has been set.

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 131
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.6 SHADCON

Name: SHADCON
Address: 0x376

Shadow Control Register

Bit 7 6 5 4 3 2 1 0
| | | SHADLO
Access R/W
Reset 0

Bit 0 —- SHADLO Interrupt Shadow Register Access Switch

Value Description

1 Access Main Context for Interrupt Shadow registers
0 Access Low-Priority Interrupt Context for Interrupt Shadow registers
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 132

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.7 PIEO

Name: PIEO
Address: 0x4A8

Peripheral Interrupt Enable Register 0

Bit 7 6 5 4 3 2 1 0

[IOCIE | CRCEE | CLCIE | NVMIE CSWIE OSFIE HLVDIE SWIE

Access R/W RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bit 7 — IOCIE Interrupt-on-Change Enable

Value Description
1 Enabled
0 Disabled

Bit 6 — CRCIE CRC Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 — CLC1IE CLC1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 4 — NVMIE NVM Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - CSWIE Clock Switch Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 — OSFIE Oscillator Failure Interrupt Enable
Value Description

1 Enabled

0 Disabled

Bit 1 — HLVDIE High/Low-Voltage Detect Interrupt Enable
Value Description

1 Enabled

0 Disabled

Bit 0 — SWIE Software Interrupt Enable
Value Description

1 Enabled

0 Disabled

© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 133
and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.8 PIE1

Name: PIE1
Address: 0x4A9

Peripheral Interrupt Enable Register 1

Bit 7 6 5 4 3 2 1 0

| SMT1PWAIE | SMT1PRAIE | SMT1EE | CMIIE ACTIE ADIE ZCDIE INTOIE
Access R/W RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bit 7 — SMT1PWAIE SMT1 Pulse-Width Acquisition Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 — SMT1PRAIE SMT1 Period Acquisition Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 — SMT1IE SMT1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 4 —- CM1IE CMP1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 — ACTIE Active Clock Tuning Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 — ADIE ADC Interrupt Enable
Value Description

1 Enabled

0 Disabled

Bit 1 — ZCDIE ZCD Interrupt Enable
Value Description

1 Enabled

0 Disabled

Bit 0 — INTOIE External Interrupt O Interrupt Enable

Value Description
1 Enabled
0 Disabled
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 134

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.9

Bit

Access
Reset

PIE2

Name: PIE2
Address: Ox4AA

Peripheral Interrupt Enable Register 2

7 6 5 4 3 2 1 0
| DMA1AIE | DMA1ORIE |DMA1DCNTIE | DMA1SCNTIE ADTIE
R/W RIW RIW RIW RIW

0 0 0 0 0

Bit 7 — DMA1AIE DMA1 Abort Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 — DMA1ORIE DMA1 Overrun Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - DMA1DCNTIE DMA1 Destination Count Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 4 - DMA1SCNTIE DMA1 Source Count Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 — ADTIE ADC Threshold Interrupt Enable

Value Description
1 Enabled
0 Disabled
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 135

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.10 PIE3

Name: PIE3
Address: 0x4AB

Peripheral Interrupt Enable Register 3

Bit 7 6 5 4 3 2 1 0
| TMROIE | CCP1IE | TMR1GIE | TMR1IE TMR2IE SPIMIE SPITXIE SPIMRXIE
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 — TMROIE TMRO Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 — CCP1IE CCP1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - TMR1GIE TMR1 Gate Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 4 — TMR1IE TMR1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - TMR2IE TMR2 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 — SPIM1IE SPI1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 1 — SPIMTXIE SPI1 Transmit Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 — SPIMRXIE SPI1 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 136

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.11 PIE4

Name: PIE4
Address: 0x4AC

Peripheral Interrupt Enable Register 4

Bit 7 6 5 4 3 2 1 0
[PWMIEE | PWMIPIE | TMR3GIE | TMRSIE U1IE U1EIE U1TXIE U1RXIE
Access R/W RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bit 7 - PWM1IE PWM1 Parameter Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 — PWM1PIE PWM1 Period Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - TMR3GIE TMR3 Gate Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 4 — TMR3IE TMR3 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 — U1lE UART1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - U1EIE UART1 Framing Error Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 1 — U1TXIE UART1 Transmit Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 — UT1RXIE UART 1 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 137

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.12 PIES

Name: PIES
Address: 0x4AD

Peripheral Interrupt Enable Register 5

Bit 7 6 5 4 3 2 1 0
[PWM2IE | PWM2PIE | CLC2E | CM2IE SPI2IE SPI2TXIE SPI2RXIE
Access R/W RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0

Bit 7 - PWM2IE PWM2 Parameter Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 — PWM2PIE PWM2 Period Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 — CLC2IE CLC2 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 4 —- CM2IE CMP2 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 — SPI2IE SPI2 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 1 — SPI2TXIE SPI2 Transmit Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 — SPI2RXIE SPI2 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 138

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.13 PIE6

Name: PIE6
Address: Ox4AE

Peripheral Interrupt Enable Register 6

Bit 7 6 5 4 3 2 1 0
| DMA2AIE | DMA20RIE | DMA2DCNTIE | DMA2SCNTIE NCO1IE CWG1IE INT1IE
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 — DMA2AIE DMAZ2 Abort Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 — DMA20ORIE DMAZ2 Overrun Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 - DMA2DCNTIE DMA2 Destination Count Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 4 - DMA2SCNTIE DMA2 Source Count Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 - NCO1IE NCO1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 - CWG1IE CWGH1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 — INT1IE External Interrupt 1 Interrupt Enable

Value Description
1 Enabled
0 Disabled
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 139

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.14 PIE7

Name: PIE7
Address: Ox4AF

Peripheral Interrupt Enable Register 7

Bit 7 6 5 4 3 2 1 0
[PWM3E | PWMSPIE | CLC3E | I2C1EIE 12C1IE 12C1TXIE [2C1RXIE
Access R/W RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0

Bit 7 - PWM3IE PWM3 Parameter Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 6 — PWM3PIE PWM3 Period Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 — CLC3IE CLC3 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 — I12C1EIE 12C1 Error Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 — I2C1IE 12C1 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 1 — 12C1TXIE 12C1 Transmit Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 0 — I2C1RXIE 12C1 Receive Interrupt Enable

Value Description
1 Enabled
0 Disabled
© 2020-2021 Microchip Technology Inc. Advance Information Datasheet DS40002236C-page 140

and its subsidiaries

PIC18F04/05/14/15Q40
VIC - Vectored Interrupt Controller Module

11.13.15

Bit

Access
Reset

PIE8

Name: PIE8
Address: 0x4B0

Peripheral Interrupt Enable Register 8

7 6 5 4 3 2 1 0
[SCANIE | | CLC4E | U2IE U2EIE U2TXIE U2RXIE
R/W RIW RIW RIW RIW RIW
0 0 0 0 0 0

Bit 7 — SCANIE Memory Scanner Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 5 — CLC4IE CLC4 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 3 — U2IE UART2 Interrupt Enable

Value Description
1 Enabled
0 Disabled

Bit 2 — U2EIE UART2 Framing Error Interru