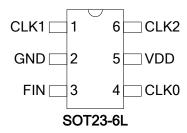
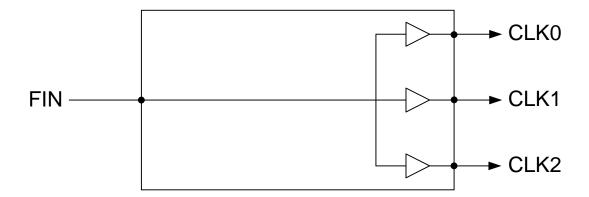


Low-Power, 1.62V to 3.63V, 1MHz to 150MHz, 1:3 Fanout Buffer IC


FEATURES

- 3 LVCMOS Outputs
- 12mA Output Drive Strength
- Input/Output Frequency:
 Reference Clock: 1MHz to 150MHz
- Supports LVCMOS or Sine Wave Input Clock
- Very Low Jitter and Phase Noise
- Low Current Consumption
- Single 1.8V, 2.5V, or 3.3V, $\pm 10\%$ Power Supply
- Operating Temperature Range
 - o 0°C to 70°C (Commercial)
 - o -40°C to 85°C (Industrial)
- Available in SOT23-6L GREEN/RoHS Compliant Packages


DESCRIPTION

The PL133-37 is an advanced fanout buffer design for high performance, low-power, small form-factor applications. The PL133-37 accepts a reference clock input of 1MHz to 150MHz and produces three outputs of the same frequency. Reference clock inputs may be LVCMOS or sine-wave signals (the inputs are internally AC-coupled). Offered in a small 3mm x 3mm SOT23, the PL133-37 offers the best phase noise and jitter performance and lowest power consumption of any comparable IC.

PACKAGE PIN CONFIGURATION

BLOCK DIAGRAM

Low-Power, 1.62V to 3.63V, 1MHz to 150MHz, 1:3 Fanout Buffer IC

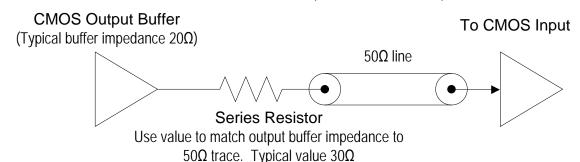
PIN DESCRIPTION

Nama	Package Pin #	Type	Description
Name	SOT23-6L	Туре	Description
CLK1	1	0	Output clock
GND	2	Р	Ground connection
FIN	3	I	Reference clock input
CLK0	4	0	Output clock
VDD	5	Р	Power supply
CLK2	6	0	Output clock

LAYOUT RECOMMENDATIONS

The following guidelines are to assist you with a performance optimized PCB design:

Signal Integrity and Termination Considerations


- Keep traces short!
- Trace = Inductor. With a capacitive load this equals ringing!
- Long trace = Transmission Line. Without proper termination this will cause reflections (looks like ringing).
- Design long traces as "striplines" or "microstrips" with defined impedance.
- Match trace at one side to avoid reflections bouncing back and forth.

Decoupling and Power Supply Considerations

- Place decoupling capacitors as close as possible to the V_{DD} pin(s) to limit noise from the power supply
- Multiple V_{DD} pins should be decoupled separately for best performance.
- Addition of a ferrite bead in series with V_{DD} can help prevent noise from other board sources
- Value of decoupling capacitor is frequency dependant. Typical value to use is $0.1\mu\text{F}_{\cdot}$

Typical CMOS termination

Place Series Resistor as close as possible to CMOS output

Low-Power, 1.62V to 3.63V, 1MHz to 150MHz, 1:3 Fanout Buffer IC ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage Range	V_{DD}	-0.5	4.6	V
Input Voltage Range	Vı	-0.5	V _{DD} +0.5	V
Output Voltage Range	Vo	-0.5	V _{DD} +0.5	V
Storage Temperature	Ts	-65	150	°C
Ambient Operating Temperature*		-40	85	°C

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

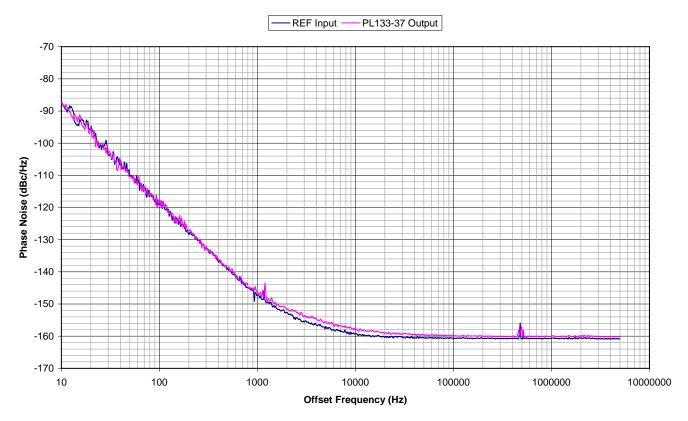
AC SPECIFICATIONS

PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input (FIM) Fraguency	2.5V and 3.3V operation	1		150	MHz
Input (FIN) Frequency	1.8V operation	1		100	MHz
L (CINI)	Internally AC coupled, ≤150MHz, VDD=2.5V and 3.3V.	0.8		V_{DD}	V _{PP}
Input (FIN) Signal Amplitude	Internally AC coupled, ≤100MHz, all VDDs	0.5		V_{DD}	V_{PP}
Signal Amplitude	Internally AC coupled, 3.3V <u><</u> 50MHz, 2.5V <u><</u> 40MHz, 1.8V <u><</u> 15MHz	0.1		V_{DD}	V _{PP}
Output Enable Time	OE Function; Ta=25° C, 15pF Load			10	ns
Output Rise Time	15pF Load, 10/90%V _{DD} , 3.3V		2	3	ns
Output Fall Time 15pF Load, 90/10%V _{DD} , 3.3V			2	3	ns
Duty Cycle	Input Duty Cycle is 50%	45	50	55	%
Output to Output Skew	All outputs equally loaded			250	ps

DC SPECIFICATIONS

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		$V_{DD} = 3.3V$, 25MHz, No Load		1.2		mA
Supply Current, Dynamic	I_{DD}	$V_{DD} = 2.5V$, 25MHz, No Load		0.9		mA
		$V_{DD} = 1.8V$, 25MHz, No Load		0.6		mA
Supply Current, Standby	I _{DD_SB}	OE Pin Pulled Low, V _{DD} = 3.3V		0.3		mA
Operating Voltage	V_{DD}		1.62		3.63	V
Output Low Voltage	V _{OL}	$I_{OL} = +12mA, V_{DD} = 3.3V$			0.4	V
Output High Voltage	V _{OH}	$I_{OH} = -12mA$, $V_{DD} = 3.3V$	2.4			V
Output Current	I _{OSD}	$V_{OL} = 0.4V$, $V_{OH} = 2.4V$, $V_{DD} = 3.3V$	12			mA

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1(408) 944-0800 • fax +1(408) 474-1000 • www.micrel.com Rev 02/24/15 Page 3

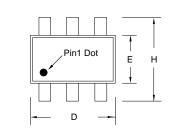

^{*}Operating temperature is guaranteed by design. Parts are tested to commercial grade only.

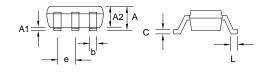
Low-Power, 1.62V to 3.63V, 1MHz to 150MHz, 1:3 Fanout Buffer IC NOISE CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
A LEE DI LEE		V _{DD} =3.3V, Frequency=26MHz Offset=12kHz ~ 5MHz		70		fs
Additive Phase Jitter		V _{DD} =3.3V, Frequency=100MHz Offset=12kHz ~ 20MHz		80		fs

PL133-37 Additive Phase Jitter: VDD=3.3V, CLK=26MHz, Integration Range 12KHz to 5MHz: 0.072ps typical.

When a buffer is used to pass a signal then the buffer will add a little bit of its own noise. The phase noise on the output of the buffer will be a little bit more than the phase noise in the input signal. To quantify the noise addition in the buffer we compare the Phase Jitter numbers from the input and the output. The difference is called "Additive Phase Jitter". The formula for the Additive Phase Jitter is as follows:

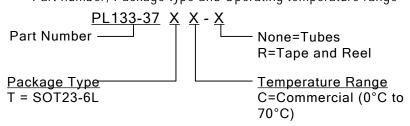

Additive Phase Jitter = $\sqrt{\text{(Output Phase Jitter)}^2 - \text{(Input Phase Jitter)}^2}$



Low-Power, 1.62V to 3.63V, 1MHz to 150MHz, 1:3 Fanout Buffer IC PACKAGE DRAWINGS (GREEN PACKAGE COMPLIANT)

SOT23-6L

Cymbol	Dimension in MM			
Symbol	Min.	Max.		
Α	1.05	1.35		
A1	0.05	0.15		
A2	1.00	1.20		
b	0.30	0.50		
С	0.08	0.20		
D	2.80	3.00		
Е	1.50	1.70		
Н	2.60	3.00		
Ĺ	0.35	0.55		
е	0.95 BSC			


ORDERING INFORMATION (GREEN PACKAGE COMPLIANT)

For part ordering, please contact our Sales Department:

2180 Fortune Drive, San Jose, CA 95131, USA Tel: (408) 944-0800 Fax: (408) 474-1000

PART NUMBER

The order number for this device is a combination of the following: Part number, Package type and Operating temperature range

Part/Order Number	Marking	Package Option		
PL133-37TC-R	H37	4 Din COT22 (Tano and Dool)		
PL133-37TI-R	LLL	6-Pin SOT23 (Tape and Reel)		

*Note: LLL designates lot number

Micrel Inc., reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Micrel is believed to be accurate and reliable. However, Micrel makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: Micrel's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Micrel Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

PL133-27GI 9DBV0541AKLF 9DBV0941AKLF MPC962309EJ-1H NB3M8304CDG NB4N121KMNG NB7VQ58MMNG
8T39S11ANLGI 8T73S1802NLGI 9DBV0941AKILF MC10E111FNG MK2308S-1HILF 5PB1216NDGK 6V31024NLG PL133-27GI-R
9DBV0941AKILFT NB3L02FCT2G NB3L03FCT2G NB7VQ58MMNHTBG ZL40203LDG1 ZL40200LDG1 9DMV0141AKILFT
ZL40205LDG1 ZL40201LDG1 9DBV0541AKILF PI49FCT32807QE 552-02SPGGI 9FG1200DF-1LF MDB1900ZCQY 9ZXL1530DKILF
8SLVP1102ANLGI/W ZL40223LDG1 5PB1203NTGK8 9FG1001BGLF MDB1900ZBQY 5PB1213NTGK 5PB1214CMGK
ZL40202LDG1 8L30205NLGI8 5PB1204CMGK 5PB1214CMGK8 5PB1203NTGK 5PB1206NDGK PI49FCT20802QE MAX9317AECJ+
SL2305SC-1T PI6C10810HE 5P1103A517NLGI 9ZX21901DKLF NB7L1008MNG