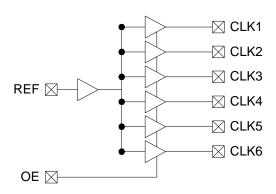
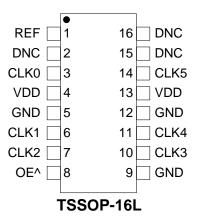


Low-Power 2.25V to 3.63V DC to 150MHz 1:6 Fanout Buffer IC

FEATURES

- 1:6 LVCMOS output fanout buffer for DC to 150MHz
- 8mA Output Drive Strength
- Low power consumption for portable applications
- Low input-output delay
- Output-Output skew less than 250ps
- Low Additive Phase Jitter of 60fs RMS
- 2.5V to 3.3V, ±10% operation
- Operating temperature range from -40°C to 85°C
- Available in 16-Pin SOP GREEN/RoHS package


DESCRIPTION


The PL133-67 is an advanced fanout buffer design for high performance, low-power, small form factor applications. The PL133-67 accepts a reference clock input from DC to 150MHz and provides 6 outputs of the same frequency.

The PL133-67 is offered in a TSSOP-16L package and it offers the best phase noise, additive jitter performance, and lowest power consumption of any comparable IC.

The PL133-67 outputs can be disabled to a high impedance (tri-state) by pulling low the OE pin. When the OE pin is high, the outputs are enabled and follow the REF input signal. When the OE pin is left open, a pull-up resistor on the chip will default the OE pin to logic 1 so the outputs are enabled.

BLOCK DIAGRAM AND PACKAGE PINOUT

Low-Power 2.25V to 3.63V DC to 150MHz 1:6 Fanout Buffer IC

PIN DESCRIPTIONS

Name	TSSOP-16L	Туре	Description
REF	1	I	Input reference frequency.
CLK0	3	0	Buffered clock output
CLK1	6	0	Buffered clock output
CLK2	7	0	Buffered clock output
CLK3	10	0	Buffered clock output
CLK4	11	0	Buffered clock output
CLK5	14	0	Buffered clock output
VDD	4, 13	Р	VDD connection
GND	5, 9, 12	Р	GND connection
OE	8	I	Output Enable Control Input with 130K Ω Pull-Up
DNC	2, 8, 15, 16	-	Do Not Connect

LAYOUT RECOMMENDATIONS

The following guidelines are to assist you with a performance optimized PCB design:

Signal Integrity and Termination Considerations

- Keep traces short!
- Trace = Inductor. With a capacitive load this equals ringing!
- Long trace = Transmission Line. Without proper termination this will cause reflections (looks like ringing).
- Design long traces (> 1 inch) as "striplines" or "microstrips" with defined impedance.
- Match trace at one side to avoid reflections bouncing back and forth.

Decoupling and Power Supply Considerations

- Place decoupling capacitors as close as possible to the VDD pin(s) to limit noise from the power supply
- Addition of a ferrite bead in series with VDD can help prevent noise from other board sources
- Value of decoupling capacitor is frequency dependant. Typical values to use are 0.1 μF for designs using frequencies < 50MHz and 0.01 μF for designs using frequencies > 50MHz.

Typical CMOS termination

Place Series Resistor as close as possible to CMOS output CMOS Output Buffer (Typical buffer impedance 20 ohm) 50 ohm line Connect a 33 ohm series resistor at each of the output clocks to enhance the stability of the output signal

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax +1 (408) 474-1000 • www.micrel.com Rev 03/18/11 Page 2

Low-Power 2.25V to 3.63V DC to 150MHz 1:6 Fanout Buffer IC

ABSOLUTE MAXIMUM CONDITIONS

Supply Voltage to Ground Potential-0.5V to 4.6V DC Input Voltage V_{SS} - 0.5V to 4.6V Storage Temperature-65°C to 150°C

OPERATING CONDITIONS

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	2.25	3.63	V
т	Commercial Operating Temperature (ambient temperature)	0	70	°C
T _A	Industrial Operating Temperature (ambient temperature)	-40	85	°C
	Load Capacitance, below 100 MHz	_	30	pF
CL	Load Capacitance between 100 MHz and 134 MHz	_	10	pF
	Load Capacitance, above 134 MHz	_	5	pF
C _{IN}	Input Capacitance	_	7	pF
REF, CLK[1:6]	Operating Frequency, Input=Output	DC	150	MHz
t _{PU}	Power-up time for all $V_{\text{DD}} s$ to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

ELECTRICAL CHARACTERISTICS (Commercial and Industrial Temperature Devices)

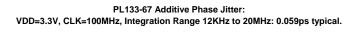
Parameter	Description	Test Conditions	Min.	Max.	Unit
V⊾	Input LOW Voltage [1]		-	0.8	V
V⊮	Input HIGH Voltage [1]		2.0	_	V
IL	Input LOW Current	V _{IN} = 0V	-	50	μA
IIH	Input HIGH Current	V _{IN} = V _{DD}	-	100	μA
V _{OL}	Output LOW Voltage [2]	I _{OL} = 8 mA	-	0.4	V
V _{OH}	Output HIGH Voltage [2]	I _{он} = –8 mA	2.4	_	V
I _{DD}	Supply Current	66.67MHz with unloaded outputs	-	32	mA
R _{PU}	OE Pin Pull-Up Resistance		100	_	KΩ

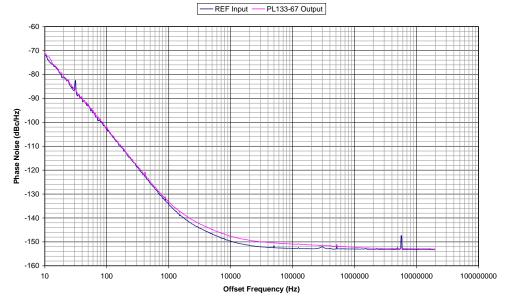
Low-Power 2.25V to 3.63V DC to 150MHz 1:6 Fanout Buffer IC

SWITCHING CHARACTERISTICS (Commercial and Industrial Temperature Devices)^[3]

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Unit
	Duty Cycle [2] = t2 ÷ t1	Measured at 1.4V, Input is 50%	40	50	60	%
t ₃	Rise Time ^[2]	Measured between 0.8V and 2.0V	-	-	1.5	ns
t ₄	Fall Time [2]	Measured between 0.8V and 2.0V	_	-	1.5	ns
t ₅	Output to Output Skew [2]	All outputs equally loaded	_	-	250	ps
t ₆	Propagation Delay, REF Rising Edge to CLKX Rising Edge ^[2]	Measured at V _{DD} /2	1	5	9.2	ns

Notes:


1. REF input has a threshold voltage of V_{DD}/2

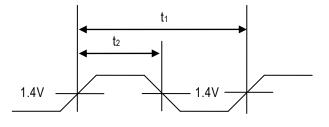

2. Parameter is guaranteed by design and characterization. Not 100% tested in production.

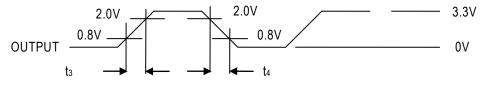
3. All parameters are specified with loaded outputs.

NOISE CHARACTERISTICS (Commercial and Industrial Temperature Devices)

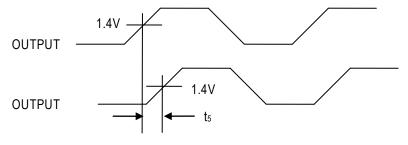
Parameter	Description	Test Conditions	Min.	Тур.	Max.	Unit
	Additive Phase Jitter	V _{DD} =3.3V, Frequency=100MHz Offset=12KHz ~ 20MHz		60		fs

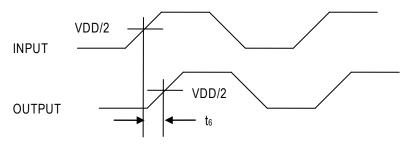
When a buffer is used to pass a signal then the buffer will add a little bit of its own noise. The phase noise on the output of the buffer will be a little bit more than the phase noise in the input signal. To quantify the noise addition in the buffer we compare the Phase Jitter numbers from the input and the output. The difference is called "Additive Phase Jitter". The formula for the Additive Phase Jitter is as follows:

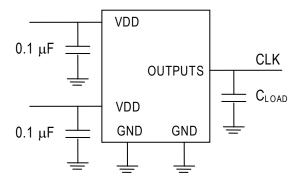

Additive Phase Jitter = $\sqrt{(\text{Output Phase Jitter)}^2 - (\text{Input Phase Jitter)}^2}$


Low-Power 2.25V to 3.63V DC to 150MHz 1:6 Fanout Buffer IC

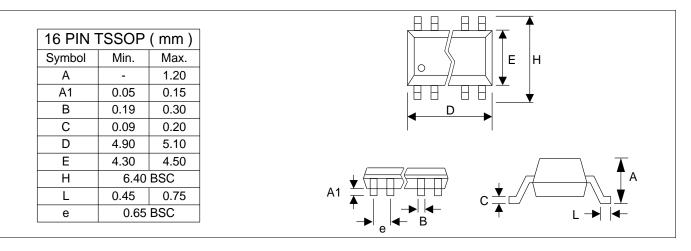
SWITCHING WAVEFORMS


Duty Cycle Timing


All Outputs Rise/Fall Time


Output-Output Skew

Input-Output Propagation Delay


TEST CIRCUIT

Low-Power 2.25V to 3.63V DC to 150MHz 1:6 Fanout Buffer IC

PACKAGE DRAWING (GREEN PACKAGE COMPLIANT)

ORDERING INFORMATION

2180 Fort	ng, please contact une Drive, San Jose 08) 944-0800 Fax: (
Part number, Pac	ckage type and Ope	E R ombination of the following: rating temperature range
PL133-1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	None=Tubes R=Tape & Reel
Package Type O=TSSOP		Temperature Range C=Commercial (0°C to 70°C) I=Industrial (-40°C to 85°C)
Part/Order Number	Marking	Package Option
i	Green (Lead-Free)	Package
	P133-67	
PL133-67OC		16-Pin TSSOP Tube
PL133-67OC PL133-67OC-R	OC LLLLL	16-Pin TSSOP Tube 16-Pin TSSOP (Tape and Reel)
	OC	

Micrel Inc., reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Micrel is believed to be accurate and reliable. However, Micrel makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: Micrel's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Micrel Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF PI49FCT20802QE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK907BCPZ-R2 ADCLK907BCPZ-WP ADCLK914BCPZ-R2 ADCLK914BCPZ-R7 ADCLK925BCPZ-R2 ADCLK925BCPZ-R7 ADCLK925BCPZ-WP