PL607041

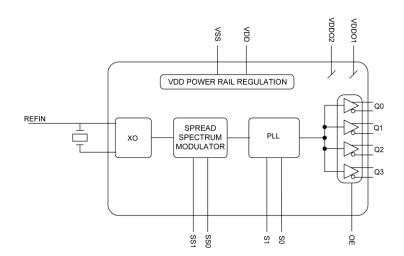
ClockWorks[®] PCIe Quad Outputs Ultra-Low Jitter, HCSL Frequency Synthesizer

General Description

The PL607041 is a member of the ClockWorks[®] family of devices from Micrel and provides an extremely low-noise Spread-Spectrum clock for PCI Express requirements.

The device operates from a 3.3V or 2.5V power supply and synthesizes four HCSL output clocks at 25MHz, 100MHz, 125MHz, and 200MHz. The PL607041 accepts a 25MHz crystal.

Datasheets and support documentation are available on Micrel's web site at: <u>www.micrel.com</u>.


Features

- 25MHz fundamental crystal or reference input
- Generates four HCSL clock outputs at 25MHz, 100MHz, 125MHz, and 200MHz
- Spread spectrum for EMI reduction
- 2.5V or 3.3V operating range
- Typical phase jitter @ 100MHz (1.5MHz to 10MHz): 320fs
- Compliant with PCI Express Gen1, Gen2, and Gen3
- Industrial temperature range (-40°C to +85°C)
- RoHS and PFOS compliant
- Available in 24-pin 4mm × 4mm QFN package

Applications

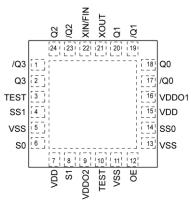
- Servers
- Storage systems
- Switches and routers
- Gigabit Ethernet
- Set-top boxes/DVRs

Block Diagram

ClockWorks is a registered trademark of Micrel, Inc.

Ripple Blocker is a trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com


Ordering Information⁽¹⁾

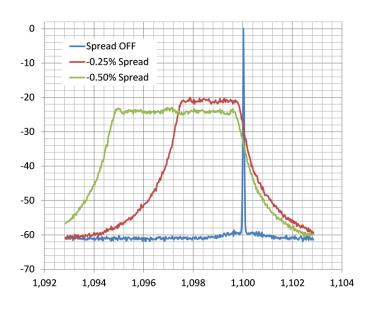
Part Number	Marking	Shipping	Junction Temperature Range	Package
PL607041UMG	PL607 041	Tube	–40° to +85°C	24-Pin QFN
PL607041UMG TR	PL607 041	Tape and Reel	–40° to +85°C	24-Pin QFN

Note:

1. Devices are RoHS and PFOS compliant.

Pin Configuration

24-Pin QFN (Top View)


Pin Description

Pin Number	Pin Name	Pin Type	Pin Level	Pin Function
17, 18 19, 20	/Q0, Q0 /Q1, Q1	O, (DIF)	HCSL	Differential Clock Outputs pins.
23, 24 1, 2	/Q2, Q2 /Q3, Q3	O, (DIF)	HCSL	Differential Clock Outputs pins.
9	VDDO2	PWR		Power Supply.
16	VDDO1	PWR		Power Supply.
7, 15	VDD	PWR		Core Power Supply.
5, 11, 13	VSS	PWR		Power Supply Ground.
6, 8	S0, S1	I	LVCMOS	Frequency Select for 25MHz, 100MHz, 125MHz, and 200MHz. Each pin has a $45k\Omega$ pull-up.
14, 4	SS0, SS1	I	LVCMOS	Spread Spectrum Select pins. Each pin has a $60k\Omega$ pullup.
22	XIN/FIN	I, (SE)	Crystal	Crystal or Reference Input, no load caps needed (see Figure 5).
21	XOUT	O, (SE)	Crystal	Crystal Output, no load caps needed (see Figure 5).
12	OE	I, (SE)	LVCMOS	Output Enable/Disable.
3, 10	TEST			Factory test pins. Keep these pins floating.

EMI Reduction

The Spread Spectrum modulation causes the emission of spectral components in the clock signal to be reduced. The spectrum plot on the right shows measurement results with the two spread settings versus no spread. This plot is looking at the 11th harmonic in a 100MHz clock, at 1.1GHz. The scale is normalized to the strength of this spur without spread. The plot shows about 21dB reduction for -0.25% spread magnitude and 24dB for -0.50% spread magnitude.

The plot also shows how the frequency spreading is happening downwards.

Absolute Maximum Ratings⁽²⁾

Supply Voltage (V _{DD} , V _{DDO1/2})	+4.6V
Input Voltage (V _{IN})	0.50V to VDD + 0.5V
Lead Temperature (soldering, 20s)	260°C
Case Temperature	115°C
Storage Temperature (Ts)	–65°C to +150°C

Operating Ratings⁽³⁾

Supply Voltage (V _{IN})	. +2.375V to +3.465V
Ambient Temperature (T _A)	40°C to +85°C
Junction Thermal Resistance ⁽⁴⁾	
QFN (θ_{JA})	50°C/W
QFN (ψ _{JB})	30°C/W

Electrical Characteristics⁽⁵⁾

 $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$

 V_{DD} = 3.3V ±5%, $V_{DDO1/2}$ = 3.3V ±5% or 2.5V ±5% T_A = -40°C to +85°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{DD} , V _{DDO1/2}	2.5V operating voltage		2.375	2.5	2.625	V
V _{DD} , V _{DDO1/2}	3.3V operating voltage		3.135	3.3	3.465	V
I _{DD}	Supply current V _{DD} + V _{DDO}	Outputs 50 Ω to V _{SS}		150	185	mA

HCSL DC Electrical Characteristics⁽⁵⁾

 $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$

 $V_{DD} = 3.3V \pm 5\%$, $V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$

 $T_A = -40^{\circ}C$ to +85°C. RL = 50 Ω to V_{SS}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{OH}	Output High Voltage		660	700	850	mV
V _{OL}	Output Low Voltage		-150	0	27	mV
V _{CROSS}	Crossing Point Voltage		250	350	550	mV

LVCMOS (S0, S1) Electrical Characteristics⁽⁵⁾

 $V_{DD} = 3.3V \pm 5\%$, or 2.5V $\pm 5\%$, T_A = -40°C to +85°C.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
VIH	Input High Voltage		2.0		V _{DD} + 0.3	V
VIL	Input Low Voltage		-0.3		0.8	V
I _{IH}	Input High Current	$V_{\text{DD}} = V_{\text{IN}} = 3.465 V$			150	μA
IIL	Input Low Current	$V_{DD} = 3.465 V, V_{IN} = 0 V$	-150			μA

Notes:

2. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3. The device is not guaranteed to function outside its operating ratings.

4. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB.

5. The circuit is designed to meet the AC and DC specifications shown in the above table(s) after thermal equilibrium has been established.

Crystal Characteristics

Parameter	Condition	Min.	Тур.	Max.	Units	
Mode of Oscillation	15pF load capacitance	Fundamental, Parallel Resonant				
Frequency			25		MHz	
Equivalent Series Resistance (ESR)				50	Ω	
Shunt Capacitor, C0			1	7	pF	
Correlation Drive Level			10	100	μW	

AC Electrical Characteristics^(6, 7)

 $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$

 $V_{DD} = 3.3V \pm 5\%$, $V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$

 $T_A = -40^{\circ}C$ to +85°C. RL = 50 Ω to V_{SS}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Fout	Output Frequency			25 100 125 200		MHz
F _{REF}	Crystal Input Frequency			25		MHz
FIN	Reference Input Frequency			25		MHz
FIN	FIN Signal Amplitude	Internally AC-coupled	0.9		V_{DD}	V _{PP}
T _R /T _F	HCSL Output Rise/Fall Time	20% - 80%	150	300	450	ps
ODC	Output Duty Cycle		48	50	52	%
T _{SKEW}	Output-to-Output Skew	Note 7			45	ps
TLOCK	PLL Lock Time				20	ms
T (0)	RMS Phase Jitter ⁽⁸⁾	100MHz Integration Range (1.5MHz – 10MHz)		320		fs
T _{jit} (∅)	Cycle-to-Cycle Jitter				30	ps, peak

Notes:

6. All phase noise measurements were taken with an Agilent 5052B phase noise system.

7. Defined as skew between outputs at the same supply voltage and with equal load conditions; measured at the output differential crossing points.

8. Measured using 25MHz crystal as the input reference source. If using an external reference input, use a low phase noise source. With an external reference, the phase noise will follow the input source phase noise up to about 1MHz.

Spread Spectrum Characteristics

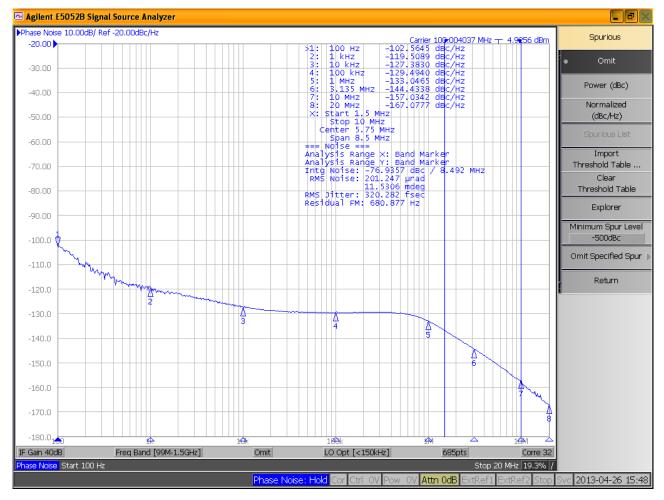
Parameter	Condition	Min.	Тур.	Max.	Units
Modulation Rate ⁽⁹⁾			31.6		kHz
· · · · · · · · · · · · · · · · · · ·	Setting is -0.25%	-0.073 to -0.265	0 to -0.250	+0.031 to -0.375	%
Modulation Magnitude ⁽¹⁰⁾	Setting is -0.50%	-0.136 to -0.383	0 to -0.500	+0.078 to -0.589	%

Notes:

9. The modulation rate is created from the crystal frequency, divided by 792.

10. The typical modulation makes the output frequency sweep between the target frequency (0%) and the down-spread value (-0.25% or -0.5%). There is process variation on the modulation magnitude and the smallest and largest possible modulation magnitude sweep ranges are listed in the table.

Truth Tables


S1	S0	OUTPUT
0	0	25MHz
0	1	100MHz
1	0	125MHz
1	1	200MHz

SS1 ⁽¹¹⁾	SS0 ⁽¹¹⁾	Spread Type	Spread
0	0	Spread is OFF	No Spread
0	1	Down Spread	-0.25%
1	0	Spread is OFF	No Spread
1	1	Down Spread	-0.50%

Note:

11. SS0 is turning ON/OFF the spread spectrum modulation and SS1 is selecting the spread magnitude.

Phase Noise Plot

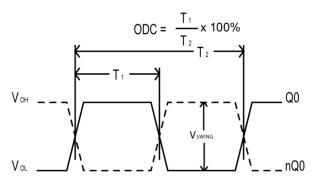


Figure 1. Duty Cycle Timing

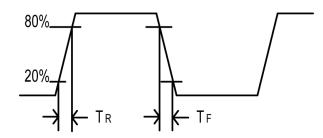


Figure 2. All Outputs Rise/Fall Times

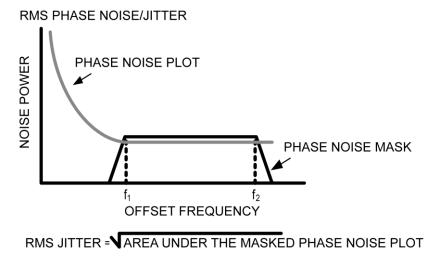
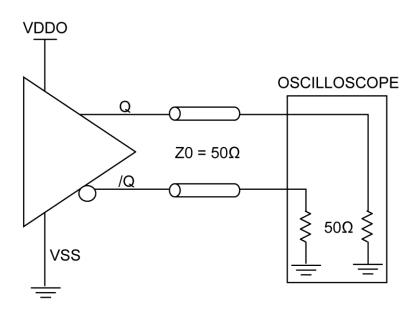



Figure 3. RMS Phase/Noise Jitter

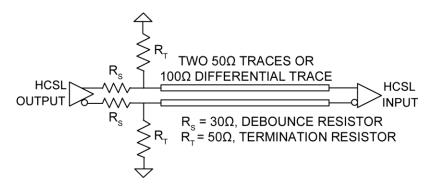


Figure 5. HCSL Recommended Application Termination (Source Terminated)

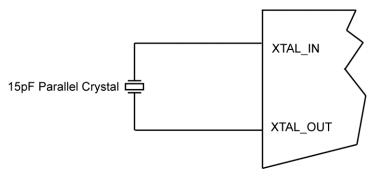


Figure 6. Crystal Input Interface

Application Information

Crystal Layout

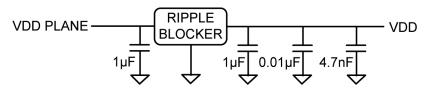
Keep the layers under the crystal as open as possible and do not place switching signals or noisy supplies under the crystal. Crystal load capacitance is built inside the die so no external capacitance is needed. See the *Selecting a Quartz Crystal for the Clockworks Flex / Family of Precision Synthesizers* application note for more details.

Contact Micrel's TCG applications group at: tcghelp@micrel.com if you need help selecting a suitable crystal for your application.

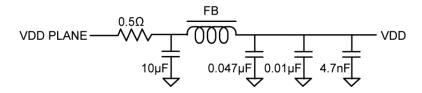
Power Supply Decoupling

Place the smallest value decoupling capacitor (4.7nF above) between the VDD and VSS pins, as close as possible to those pins and at the same side of the PCB as the IC. The shorter the physical path from VDD to capacitor and back from capacitor to VSS, the more effective the decoupling. Use one 4.7nF capacitor for each VDD pin on the PL607041.

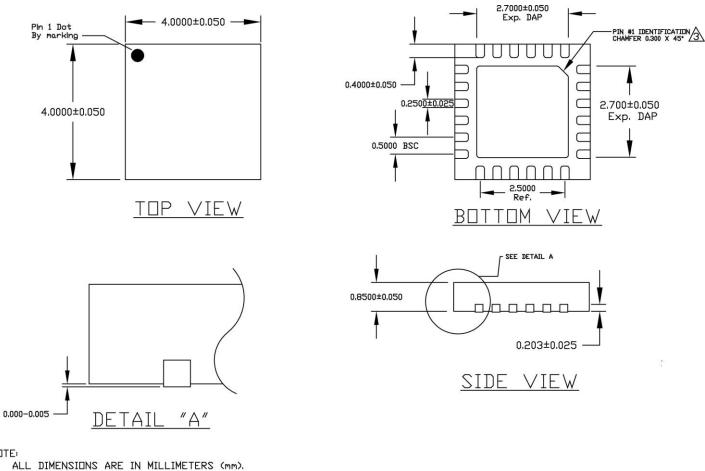
The impedance value of the Ferrite Bead (FB) needs to be between 240Ω and 600Ω with a saturation current \geq 150mA.


VDDO1 and VDDO2 pins connect directly to the VDD Plane. All VDD pins on the PL607041 connect to VDD after the power supply filter.

HCSL Outputs


HCSL outputs are to be terminated with 50Ω to Vss. For best performance load all outputs. If you want to ACcouple or change the termination, contact Micrel's application group: tcghelp@micrel.com (see Figure 5).

Power Supply Filtering Recommendations


Preferred filter, using Micrel's MIC94300 or MIC94310 Ripple Blocker™:

Alternative, traditional filter, using a ferrite bead:

Package Information⁽¹²⁾

NOTE:

1. ALL DIMENSIONS ARE IN MILLIMETERS (mm).

2. THE PIN#1 IDENTIFIER MUST EXIST ON THE TOP SURFACE OF PACKAGE BY USING IDENTIFICATION MARK OR OTHER FEATURE OF PACKAGE BODY.

3. CHAMFER STYLE PIN 1 IDENTIFIER ON BOTTOM SIDE

24-Pin QFN

Note:

12. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB <u>http://www.micrel.com</u>

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2014 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE PI6C557-03AQEX 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1 DSC557-0334F11 DSC557-0343F11