SM843256

10 Gigabit Ethernet and SONET, 6 output, Ultra-Low Jitter LVPECL Frequency Synthesizer

General Description

The SM843256 provides a low-noise timing solution for high speed, high accuracy synthesis of clock signals. Common applications include SONET, Gigabit Ethernet, 10 Gigabit Ethernet, and similar networking standards. It includes a unique power reduction methodology, along with a patented RotaryWave ${ }^{\text {TM }}$ architecture that provides a very stable clock with very low noise.
Power supplies of either 3.3 V or 2.5 V are supported, with superior jitter and phase noise performance. The device synthesizes different low noise LVPECL output frequencies such as $125 \mathrm{MHz}, 156.25 \mathrm{MHz}, 312.5 \mathrm{MHz}$, and 625 MHz for Ethernet applications; $77.76 \mathrm{MHz}, 155.52 \mathrm{MHz}$, 311.04 MHz , and 622.08 MHz for SONET applications. The crystal reference frequencies used include 25 MHz and 19.44 Mhz for Ethernet and SONET applications, respectively.
The SM843256 is an excellent replacement for IDT Femtoclocks, with improved accuracy, power consumption, waveform integrity, and jitter.
Data sheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- Generates six LVPECL outputs
- 2.5 V or 3.3 V operating range
- Typical phase jitter @ 156.25MHz
(1.875MHz to 20MHz): 80fs (typical) @ 3.3V
- 75 MHz to 625 MHz output frequencies
- Industrial temperature range
- Green, RoHS, and PFOS compliant
- Available in 24-pin TSSOP EPAD
- Operating supply modes:

Core/Output
$3.3 \mathrm{~V} / 3.3 \mathrm{~V}, 3.3 \mathrm{~V} / 2.5 \mathrm{~V}, 2.5 \mathrm{~V} / 2.5 \mathrm{~V}$

Applications

- SONET
- Gigabit Ethernet
- 10-Gigabit Ethernet
- Infiniband

Block Diagram

[^0]Micrel Inc. • 2180 Fortune Drive •San Jose, CA $95131 \cdot$ USA• tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Ordering Information ${ }^{(1,2)}$

Part Number	Marking	Shipping	Junction Temperature Range	Package
SM843256KA	843256	Tube, Tape \& Reel	-40° to $+85^{\circ} \mathrm{C}$	$24-P i n$ TSSOP EPAD

Notes:

1. Devices are Green, RoHS, and PFOS Compliant.
2. Lead finish is 100% matte tin.

Pin Configuration

24-Pin TSSOP EPAD

(Top View)

Pin Description

Pin Number	Pin Name	Pin Type	Pin Level	Pin Function
1,2	$V_{\text {DDO }}$	PWR		2.5 V or 3.3V Power Supply
3, 4	/Q2, Q2	O, (DIF)	LVPECL	Differential Clock Output
5,6	/Q1, Q1	O, (DIF)	LVPECL	Differential Clock Output
7, 8	/Q0, Q0	O, (DIF)	LVPECL	Differential Clock Output
9	PLL_BYPASS	I, (SE)	LVCMOS	Pull-Up 45k, Single-Ended Input Select Pin. Logic (0) = PLL Output Logic (1) = Xtal Reference
10	$V_{\text {DDA }}$	PWR		Analog 3.3V or 2.5V Power Supply
11	$V_{D D}$	PWR		3.3 V or 2.5 V Power Supply
12	FB_SEL	I, (SE)	LVCMOS	Pull-Down 45k, Single-Ended Input Select Pin
13	XTAL_IN	I, (SE)	12pF crystal	Crystal Reference Input, no load caps needed.
14	XTAL_OUT	O, (SE)	12pF crystal	Crystal Reference Output, no load caps needed.
15	N_SELO	I, (SE)	LVCMOS	Pull-Up 45k, Single-Ended Input Select Pin
16, 17	GND	PWR		Ground
18	N_SEL1	I, (SE)	LVCMOS	Pull-Up 45k, Single-Ended Input Select Pin
19, 20	/Q5, Q5	O, (DIF)	LVPECL	Differential Clock Output
21, 22	/Q4, Q4	O, (DIF)	LVPECL	Differential Clock Output
23, 24	/Q3, Q3	O, (DIF)	LVPECL	Differential Clock Output

Input and Output Frequency Table

XtAL (MHz)	FB_SEL	N_SEL1	N_SELO	Outputs (MHz)	Application
24	0	0	0	600	-
24	0	0	1	300	-
24	0	1	0	150	SAS/SATA
24	0	1	1	120	-
25	0	0	0	625	10 Gigabit Ethernet
25	0	0	1	312.50	10 Gigabit Ethernet
25	0	1	0	156.25	10 Gigabit Ethernet
25	0	1	1	125	Gigabit Ethernet/lnfiniband/PCI/PCI-E/PCI-X
18.75	1	0	0	600	-
18.75	1	0	1	300	-
18.75	1	1	0	150	SAS/SATA
18.75	1	1	1	75	SAS/SATA
19.44	1	0	0	622.08	SONET
19.44	1	0	1	311.04	SONET
19.44	1	1	0	155.52	SONET
19.44	1	1	1	77.76	10 Gigabit Ethernet/SONET
19.53125	1	0	0	625	10 Gigabit Ethernet
19.53125	1	0	1	0	10.5
19.53125	1	1	1	1	78.125
19.53125	1			10 Gigabit Ethernet	
				10 Gigabit Ethernet	

Absolute Maximum Ratings ${ }^{(1)}$

Supply Voltage ($\left.\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDO}}\right) \ldots .+4.6 \mathrm{~V}$
Input Volage (V)
-0.50 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
LVPECL Output Current ($\mathrm{I}_{\text {OUT }}$)
Continuous.
.50 mA
Surge.
100 mA
Lead Temperature (soldering, 20sec.)........................ $260^{\circ} \mathrm{C}$
Case Temperature .. $115^{\circ} \mathrm{C}$
Storage Temperature $\left(\mathrm{T}_{\mathrm{s}}\right) \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage ($\mathrm{V}_{\mathrm{DDO}}$) +2.375 V to +3.465 V
Supply Voltage ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDA}}$) +2.375 V to +3.465 V Junction Thermal Resistance ${ }^{(3)}$
TSSOP (θ_{JA})(Still Air)
$32^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics ${ }^{(4)}$

$\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {DDO }}$	2.5V Operating Voltage		2.375	2.5	2.625	V
$V_{\text {DDA }}, \mathrm{V}_{\text {dD }}$	3.3V Operating Voltage		2.375	3.3	3.465	V
$I_{\text {dDA }}$	Analog Supply Range	$\mathrm{F}_{\text {OUT }}=156.25 \mathrm{MHz}$		55	65	mA
		$\mathrm{F}_{\text {OUT }}=625.00 \mathrm{MHz}$		56		
I_{DD}	Core Supply Current	$\mathrm{F}_{\text {OUT }}=156.25 \mathrm{MHz}$		13	17	mA
		$\mathrm{F}_{\text {OUT }}=625.00 \mathrm{MHz}$		13		
$\mathrm{I}_{\mathrm{DDO}}$	I/O Supply Range	$\mathrm{F}_{\text {OUT }}=156.25 \mathrm{MHz}$		235	TBD	mA
		$\mathrm{F}_{\text {OUT }}=625.00 \mathrm{MHz}$		330		

$\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {DDA }}$, $V_{D D}$, $V_{D D O}$	3.3V Operating Voltage		3.135	3.3	3.465	V
$\mathrm{I}_{\text {DAA }}$	Analog Supply Range	$\mathrm{F}_{\text {OUT }}=156.25 \mathrm{MHz}$		55	65	mA
		$\mathrm{F}_{\text {OUT }}=625.00 \mathrm{MHz}$		56		
I_{DD}	Core Supply Current	$\mathrm{F}_{\text {OUT }}=156.25 \mathrm{MHz}$		13	17	mA
		$\mathrm{F}_{\text {OUT }}=625.00 \mathrm{MHz}$		13		
$\mathrm{I}_{\text {DDO }}$	I/O Supply Range	$\mathrm{F}_{\text {Out }}=156.25 \mathrm{MHz}$		256	282	mA
		$\mathrm{F}_{\text {OUT }}=625.00 \mathrm{MHz}$		366		

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

LVPECL DC Electrical Characteristics ${ }^{(5,6)}$

$\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OH }}$	Output High Voltage	50Ω to $\mathrm{V}_{\mathrm{DDO}}-2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{DDO}}$	$\mathrm{V}_{\mathrm{DDO}}$	$\mathrm{V}_{\mathrm{DDO}}$	V
-1.145	-0.97	-0.845				
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage	50Ω to $\mathrm{V}_{\mathrm{DDO}}-2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DDO}}$ -1.945	$\mathrm{V}_{\mathrm{DDO}}$ -1.77	$\mathrm{V}_{\mathrm{DDO}}$ -1.645	V
$\mathrm{~V}_{\text {SWING }}$	Peak-to-Peak Output Voltage Swing	Figure 1	0.6	0.8	1.0	V

LVCMOS DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{IH}	Input High Voltage		2		$\begin{gathered} \hline V_{D D} \\ +0.3 \end{gathered}$	V
VIL	Input Low Voltage		-0.3		0.8	V
I_{H}	Input High Current (FB_SEL)	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}=3.465 \mathrm{~V}$			150	$\mu \mathrm{A}$
I_{H}	Input High Current (PLL_BYPASS), (N_SELO), (NSEL1)	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}=3.465 \mathrm{~V}$			5	$\mu \mathrm{A}$
IIL	Input Low Current (FB_SEL)	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
IIL	Input Low Current (PLL_BYPASS), (N_SELO), (NSEL1)	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$

AC Electrical Characteristics ${ }^{(7)}$

$\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
Fout	Output Frequency	Refer to Frequency Table	75		625	MHz
$\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$	LVPECL Output Rise/Fall Time	20\% - 80\%	100	175	350	ps
ODC	Output Duty Cycle		46	50	54	\%
T SKEW	Output-to-Output Skew	Note 8			45	ps
TLock	PLL Lock Time				20	ms
$\mathrm{T}_{\mathrm{jit}}(\varnothing)$	RMS Phase Jitter (Output $=156.25 \mathrm{MHz}$)	Integration Range (12kHz-20MHz)		251		fs
		Integration Range (1.875MHz - 20MHz)		80		fs

Notes:

5. See Figure 4 for load test circuit example.
6. The circuit is designed to meet the DC specifications shown in the above table(s) after thermal equilibrium has been established.
7. The circuit is designed to meet the AC specifications shown in the above table(s) after thermal equilibrium has been established.
8. Defined as skew between outputs at the same supply voltage and with equal load conditions; Measured at the output differential crossing points.

Noise Power dBc/Hz

Offset Frequency (Hz)
Phase Noise Plot: 156.25MHz @ 3.3V

Figure 1. Duty Cycle Timing

Figure 2. All Outputs Rise/Fall Time

Figure 3. RMS Phase NoiselJitter

Figure 4. LVPECL Output Load and Test Circuit

Figure 5. Crystal Input Interface

Package Information

NOTES:
DIMENSIONS ARE IN MM.
2. DIMENAIONS AND TOLERANCES PER ANSI Y14.5M-1994.
dIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURR.
dimension 'e1' does not include internal flash or protrusion.
DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION.
" N " IS THE MAXIMUM NUMBER OF LEAD TERMINAL
POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
CROSS SECTION B-B TO BE DETERMINED ATO. 10
TO 0.25 mm FROM THE LEAD TIP

24-pin EPAD TSSOP

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Synthesizer/Jitter Cleaner category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
MPC9230EIR2 PL902166USY 954204CGLF 9LPRS485DGLF PL902167USY 8V19N490ABDGI HMC822LP6CETR CDCE937QPWRQ1 PI6CX201ALE HMC826LP6CETR 9LPRS355BGLF CDCEL913IPWRQ1 ABMJB-903-101UMG-T5 ABMJB-903-150UMG-T5 ABMJB-903-151UMG-T5 AD9542BCPZ AD9578BCPZ 9FG104EFILF 308RILF 840001BGI-25LF 841N254BKILF 843004AGLF 843801AGI24LF 844004BGI-01LF 844S42BKILF 8A34044C-000NLG 932SQL450BKLF 954226AGLF 9FG108EFLF 9LPR363EGLF 9LPRS355BKLF 9LPRS365BGLF 9LPRS501SKLF MK2703BSILF GS4915-INE3 9DB306BLLF ABMJB-902-155USY-T5 ABMJB-902-156USY-T5 ABMJB-902-Q76USY-T5 ABMJB-902-Q82USY-T5 ABMJB-902-104USY-T5 ABMJB-902-153USY-T5 ABMJB-902-

154USY-T5 ABMJB-902-Q42USY-T5 ABMJB-902-Q57USY-T5 ABMJB-902-Q74USY-T5 ABMJB-902-Q78USY-T5 650GI-44LF
8430252CGI-45LF 5V41064NLG

[^0]: RotaryWave is a trademark of Multigig, Inc.

