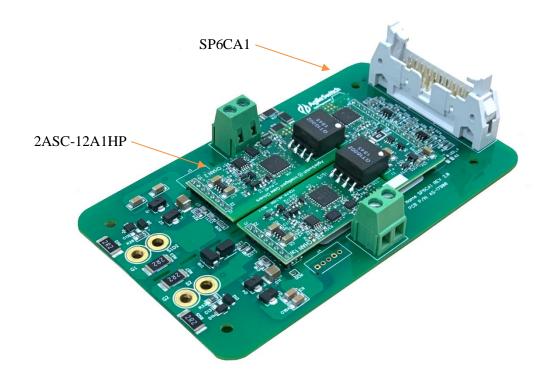


SP6CA1 - 1200V SP6LI Core Adapter Board

Designed for use with the 2ASC-12A1HP SiC Driver Core

Overview


The AgileSwitch SP6CA1 – 1200V SP6LI Core Adapter Board is an evaluation tool designed to work with the the 2ASC-12A1HP SiC Driver Core. The combination can be used with the Microchip SP6LI SiC Power Modules.

Key Adapter Board Features

- UL Compliant 1200V SiC MOSFET Modules
- Dual-Channel
- Robust High-Noise-Immunity Design
- Plug & Play for SP6 or SP6LI SiC Modules from Microchip

Applications

• Evaluation Tool

SP6CA1 – SP6LI SiC Driver Core Adapter PRELIMINARY

Contents

System Overview	3
Absolute Maximum Ratings	
Electrical Characteristics	4
Interconnects	5
Mounting of Core Assembly on Adapter Board	6
Recommended Interface Circuitry	6
SP6CA1 Schematic	8
Layout	10
Design Files	12
Important Precautions	12
Mechanical Dimensions.	
Revisions	13
Legal Disclaimer	14

System Overview

The basic topology of the driver core is shown in Figure 1.

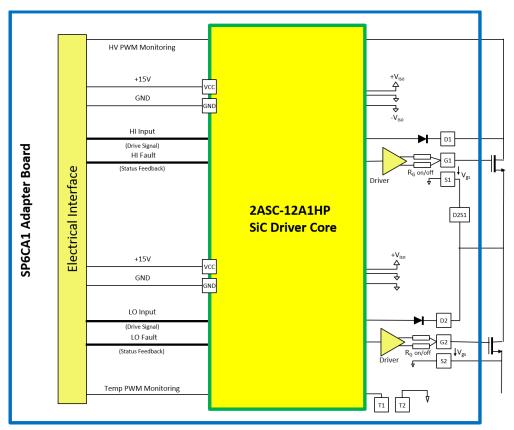


Figure 1 SP6CA1 Adapter Board Basic Topology

Absolute Maximum Ratings

Interaction of maximum ratings is dependent on operating conditions

Parameter	Description	Min	Max	Unit
Supply Voltage	VCC to GND	0	16.5	V
Peak Gate Current	Note 1	-20	20	A
Input Logic Levels	To GND	-0.5	15	V
Switching Frequency	Note 2		100	kHz
Working Voltage	Primary to Secondary, Secondary to Secondary		1200	V
Creepage Distance	Primary to Secondary Side	8		mm
dV/dt	Rate of change input to output	100		kV/μs
Operating	Ambient Operating Temperature	-40	+85	°C
Temperature				
Storage Temperature		-40	+90	°C

Electrical Characteristics

Conditions: $V_{SUP} = +15.0 \text{ V}$, $V_{IN LOGIC} = 5 \text{ V}$, MOSFET (Ciss = 36.24 nF; Qg = 2784 nC)

Solidations: 430F 415.0 4, 416-Eodic 54, Model E1 (Class 36.2 IIII , Qg 270 IIIC)					
Power Supply	Description	Min	Тур	Max	Unit
Supply Voltage	VCC to GND	14	15	16	V
Supply Current	Without Load		86		mA
Supply Current	With Load, Note 3		366		mA
Signal I/O	Description	Min	Тур	Max	Unit
Input Impedance	5V - Hi and Lo side input		100		Ω
	15V – Hi & Lo side input		2000		Ο

Signal I/O	Description	Min	Тур	Max	Unit
Input Impedance	5V - Hi and Lo side input		100		Ω
	15V – Hi & Lo side input		2000		Ω
	5V Differential – Hi & Lo side input		240		Ω
V _{IN} Low	5V - Turn-off threshold			1.25	V
	15V – Turn-off threshold			4	V
V _{IN} High	5V – Turn-on threshold	3.5			V
	15V – Turn-on threshold	10			V
V _{IN} (differential option)	Difference between VIN+ to VIN-	2			V
Fault Output Voltage	Fault lines are open collect with 5mA load	0.3		24	V
Fault Output Current	Note 4			10	mA
Switching Frequency	Note 2			100	kHz

Note 1: Input signal should not be activated until 20 ms after power is applied to allow on board DC-DC converter to stabilize.

Note 2: Actual maximum switching speed is a function of gate capacitance.

Note 3: SiC MOSFET dependant, conditions listed above assume a MOSFET with Ciss = 36.24 & Qg = 2584nC operating at 50kHz

Note 4: Fault lines are open collector and require a pull-up resistor, $2K\Omega$ recommended

Interconnects

Controller/Power to SP6CA1 Connectors

Connector	Туре	Ref	Manufacturer Part Number
Driver Board	20 Pin	J1	FCI 71918-220LF
Cable Assembly	20 Pin		FCI 71600-120LF

Recommended Cable for High Noise Environments: Flat Ribbon Cable, Twisted Pair, Shielded (3M 1785/20 Series)

Master to Slave Driver Connectors (Optional – Standard is DNP)

Connector	Type	Ref	Manufacturer Part Number
Driver Board	5 Pin	J3	JST B05B-PASK-1
Cable Assembly	5 Pin		JST PAP-05V-S
Driver Board	4 Pin	J4	JST B04B-PASK-1
Cable Assembly	4 Pin		JST PAP-04V-S

Thermistor Connector (Optional – Standard is DNP)

Connector	Type	Ref	Manufacturer Part Number
Driver Board	2pos terminal block	NTC	Phoenix 1729018

Standard part is a vertical 2 pin header. Right-angle 2 pin header available upon request (P/N: JST S02B-PASK-2)

MOSFET Terminals

Ref ID	Type	Manufacturer Part Number
G1, G2, S2, S1D2	2.8mm Quick Fit	Keystone 3534
D1*	2pos terminal block	Phoenix 1729018

^{*}Recommended Mate for D1 – Keystone 8291 (Female Fully Insulated Quick Fit Terminal)

2ASC-12A1HP Connection Sockets

Connector	Туре	Ref	Manufacturer Part Number
Input	14 Pin	C-J1	NPPN141BFCN-RC or similar
Ch 1, Ch 2	8 Pin	C-J2, C-J3	NPPN081BFCN-RC or similar

Note: The 2ASC-12A1HP can be mounted to the adapter board using sockets or by soldering.

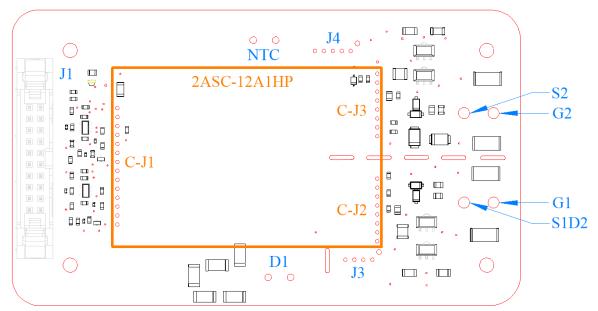


Figure 2 SP6CA1 Interconnects on Adapter Board

^{*}D1 Quick Fit terminal on gate driver must be connected to the D1 terminal on the SiC MOSFET module.

Mounting of Core Assembly on Adapter Board

Method 1 – Soldering

2ASC-12A1HP can be directly soldered onto an Adapter Board without the need for additional support.

Method 2 – Socket

2ASC-12A1HP can be plugged into female sockets on an Adapter Board.

Recommended Sockets

Ref	Connector	Type	Manufacturer Part Number
C-J1	Input	14 Pin, 2mm pitch spacing	NPPN141BFCN-RC
C-J2, C- J3	Ch 1, Ch 2	8 Pin, 2mm pitch spacing	NPPN081BFCN-RC

Recommended Interface Circuitry

Primary

Block Diagram



Figure 3 SP6CA1 Recommended Interface Circuitry

Temperature and High Voltage PWM Monitoring

The AgileSwitch 2ASC-12A1HP Driver provides two 31.5 kHz, 5.0V PWM output signals that monitor the thermistor temperature (isolated or non-isolated) and the DC Link Voltage (High Side drain to Low Side source) of the SiC MOSFET power module. The PWM signals have an output impedance of 510Ω . When combined with an external low pass filter, these signals represent a real time voltage for both High Voltage and Thermistor Temperature. A Sallen-Key active low pass filter can be used with these outputs as shown below with a 2 kHz cut-off frequency. The cut-off frequency can be optimized for your application. For simplicity, a simple RC low pass filter with 100 Hz cut-off frequency can also be used.

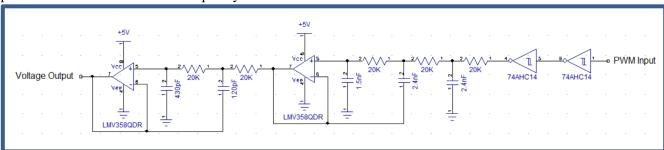
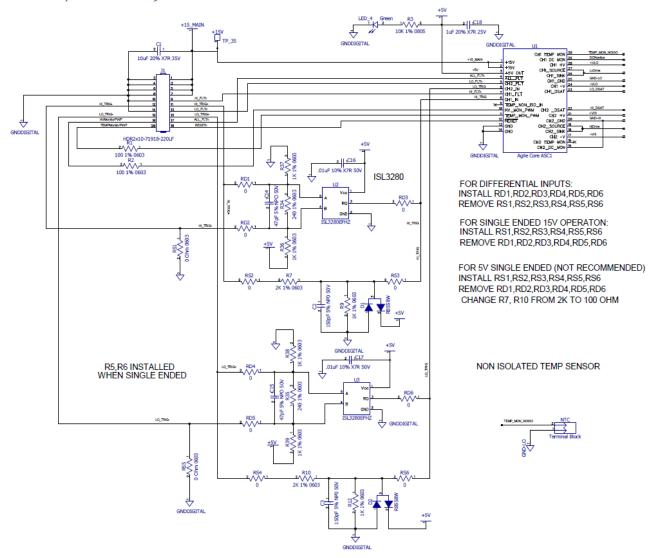
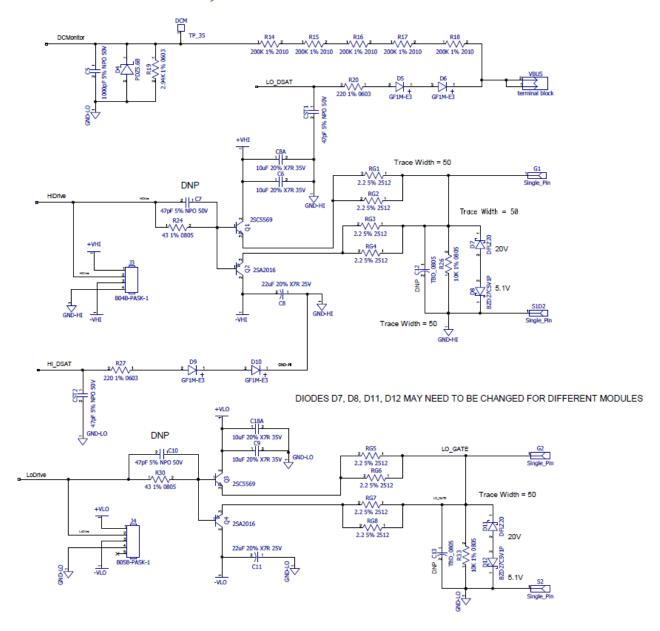
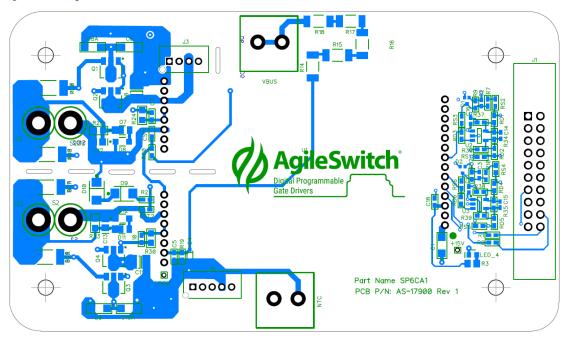
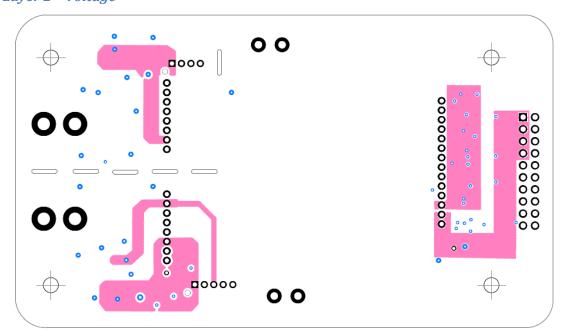



Figure 4 Example of a Low Pass Filter for DC Link PWM output


Schematic

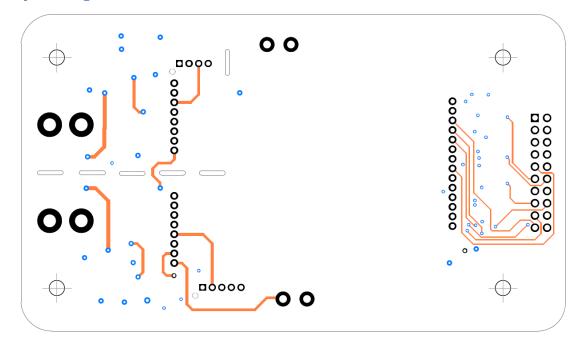
Control I/O - Sheet 1 of 2


HI & LO Side Drivers - Sheet 2 of 2

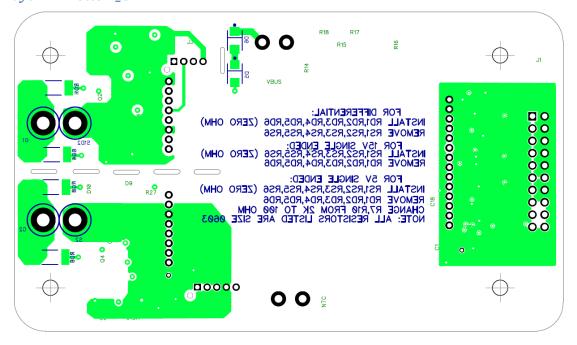


Layout

Layer 1 - Top



Layer 2 - Voltage



Layer 3 - Signals

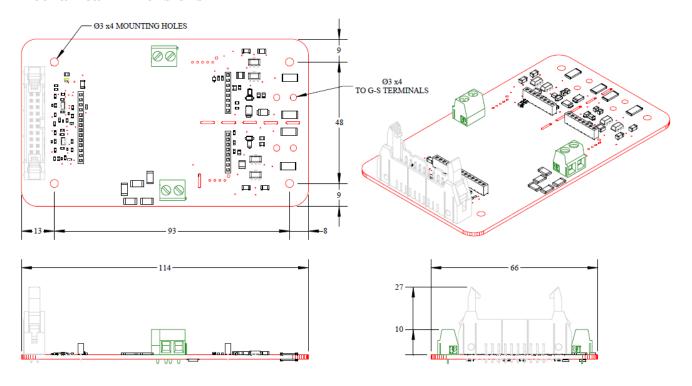
Layer 4 - Bottom_GND

Design Files

The Schematic, Layout and Bill of Materials for the SP6CA1 are publicly available for download.

Please visit AgileSwitch.com for access to these files. http://www.agileswitch.com/module-adapter-boards

Important Precautions


Caution: Handling devices with high voltages involves risk to life. It is imperative to comply with all respective precautions and safety regulations.

When installing the core and adapter board, please make sure that power is turned off. Hot swapping may cause damage to the IC components on the board.

AgileSwitch assumes that the core and adapter board have been mounted on the SiC MOSFET prior to start-up testing. It is recommended that the user checks that the SiC MOSFET power modules are operating inside the Specified Operating Area (SOA) as specified by the module manufacturer including short circuit testing under very low load conditions.

Mechanical Dimensions

Dimensions are in mm.

Revisions

Prepared By	Approved By	Version	Date	Description
N. Satheesh		1	3/16/2020	Preliminary Release
A. Fender				

SP6CA1 – SP6LI SiC Driver Core Adapter PRELIMINARY

Legal Disclaimer

Information in this document is provided solely in connection with AGILESWITCH products. AGILESWITCH, LLC and its subsidiaries ("AGILESWITCH") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All AGILESWITCH products are sold pursuant to AGILESWITCH's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of AGILESWITCH products and services described herein, and AGILESWITCH assumes no liability whatsoever relating to the choice, selection or use of the AGILESWITCH products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by AGILESWITCH for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN AGILESWITCH'S TERMS AND CONDITIONS OF SALE AGILESWITCH DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF AGILESWITCH PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED AGILESWITCH REPRESENTATIVE, AGILESWITCH PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

AGILESWITCH PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of AGILESWITCH products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by AGILESWITCH for the AGILESWITCH product or service described herein and shall not create or extend in any manner whatsoever, any liability of AGILESWITCH.

AGILESWITCH, the AGILESWITCH logo, AgileStack, AgileStack Communications and Stack Black Box are trademarks or registered trademarks of AGILESWITCH, LLC in various countries. Any other names are the property of their respective owners.

EconoDual and PrimePACK are trademarks of Infineon Technologies AG.

Information in this document supersedes and replaces all information previously supplied. Specifications are subject to change without notice.

© 2010-2020 AGILESWITCH LLC - All rights reserved www.AgileSwitch.com.

Patent Notices

Offering	Issued U.S. Patent Numbers
AgileStack TM Power Stack	8,984,197
Gate Drivers for WBG Power	9,490,798
Semiconductors	
Additional Patents Pending	

Manufacturer

AgileSwitch, LLC
Tel: +1-484-483-3256 (US)
2002 Ludlow Street #4
Philadelphia, PA 19103
United States
Email: info@AgileSwitch.com
www.AgileSwitch.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Modules Accessories category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

7010-0001 AX98219 A1UL8RISER F1UJPMICRISER FHW1U16RISER 20-101-0440 MBCDROM AX61221TM VM-105 EA

CARREDIPTFT02 76000958 RK-210E-B E226171106 88606200030E 8816K6400A0E SI-HDMI-EDID-EM MIC-75M13-00A1E FPM
1000T-SMKE AMK-R004E 96FMCF-ST2ADAPTER1 AHWKPTP12GBGB AXXSTCPUCAR FPK-07-R10 Mini Din 6P to 6P HARNESS

881261510A0E AXXP3SWX08080 conga-B7XD/CSP-Cu-B 881281021A0E HFT for mounting KIT FN928X_FN929X BB-MH112-1A

15100600 9-5000-1116 BKCMCR1ABB BKCMCR1ABA 70763 98R3612003E 881261910A0E 106897 4D ARDUINO ADAPTOR

SHIELD II 20926110901 PYCASE GREEN PYCASE BLUE FP15072_ZORYA-SC-HEKLA 20952000004 20953000007 DP-DVI-R10

575-BBIS RACK-220GW/A130B 850-33100 492-BBKM