Inductorless Switching
 Power Supply Demoboard

Introduction:

The Supertex SR10 is an inductorless switching power supply controller intended for operation directly from a rectified 120/240VAC line. Due to the capacitor-coupled, switched shunt topology (CCSS), it exhibits low standby power and good efficiency while employing no magnetics nor high voltage electrolytic capacitors.

To meet a wide variety of applications, the SR10DB1 is highly configurable. Many components are socketed. Half or full-wave rectification is jumper-selectable. Output voltage is jumper-selectable to 3 fixed voltages or may be set anywhere in the range of $6-28 \mathrm{~V}$ using an on-board feedback divider.

Specifications

Parameter	Value
AC Input	90 VAC to 275 VAC 50 Hz to 60 Hz
Output voltage	$6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V} \pm 10 \%$ or $6-28 \mathrm{~V}$ using divider
Output current ${ }^{1}$	up to 50 mA
No-load input power 1	as low as 20 mW
Efficiency 1	up to 75%
Actual board size	$88 \mathrm{~mm} \times 28 \mathrm{~mm}$

Notes:

1. Dependent upon configuration and degree of transient protection.

Board Layout and Connection Diagram

AC Input (H and N)

Connect to the AC line. The 'H' terminal should be connected to the AC line hot conductor. The ' N ' terminal should be connected to the AC line neutral conductor. When configured for half-wave rectification, the N terminal is connected to the DC output minus (-) terminal.

DC Output (+ and -)

Connect the load to these terminals. Do not connect earthgrounded loads or test equipment without using an isolation transformer on the AC line.

Output voltage is jumper-selectable at 6,12 , or 24 V , or it may be set in the range of $6-28 \mathrm{~V}$ using the R_{FB} feedback divider and setting the jumper to ADJ.

Schematic

Bill of Materials

Designation	Description	Value	Rating	Mfg	PN
$R_{\text {LIM }}$	Resistor, fusible	22Ω	2 W	any	-
R_{BL}	Resistor	$4.7 \mathrm{M} \Omega$	$1 / 4 \mathrm{~W}$	any	-
$\mathrm{R}_{\mathrm{FB} 1}$	Resistor	$422 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	any	-
$\mathrm{R}_{\mathrm{FB} 2}$	Resistor	$68.1 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	any	-
C_{S}	Capacitor, film	220 nF to $2.2 \mu \mathrm{~F}$	$275 \mathrm{VAC}, \mathrm{X} 2$	any	-
$\mathrm{C}_{\text {OUT }}$	Capacitor, alum	$220 \mu \mathrm{~F}$ min	35 V	any	-
$\mathrm{C}_{\text {FB }}$	Capacitor, ceramic NPO	470 pF	6 V	any	-
D_{1-4}	Rectifier	-	$1 \mathrm{~A}, 50 \mathrm{~V}$	any	1 N 4001
$\mathrm{D}_{\text {OUT }}$	Rectifier	-	$1 \mathrm{~A}, 50 \mathrm{~V}$	any	1 N 4001
IC_{1}	CCSS regulator	-	-	Supertex	SR 10

Socketed Components

The SR10DB1 is provided with all components pre-installed. Other components may be substituted for the on-board components to meet other requirements.

Refer to the above schematic and BOM, and the drawing and photo on page 1 to determine the proper locations for the components.

Output Voltage

Fixed output voltages of $6 \mathrm{~V}, 12 \mathrm{~V}$, or 24 V may be selected by setting the appropriate jumper on the $\mathrm{V}_{\text {out }}$ header.

For other output voltages, the on-board resistive feedback divider may be used to provide any voltage in the range of $6-28 \mathrm{~V}$. To maintain a minimum $15 \mu \mathrm{~A}$ through the feedback divider, only $\mathrm{R}_{\mathrm{FB} 1}$ should be changed.

$$
R_{F B 1}=R_{F B 2}\left(\frac{V_{O U T}}{V_{F B}}-1\right)=68.1 \mathrm{k} \Omega\left(\frac{V_{O U T}}{1.25 V}-1\right)
$$

Output Current (C_{s} selection)

Output current is primarily dependent on input voltage, C_{s} value, and rectification (full or half). Given the minimum input voltage and choice of rectification, the minimum value of C_{s}
is given by the following equations. Don't forget to take tolerances into account. The SR10 is powered by $\mathrm{V}_{\text {out }}$, so the available output current is reduced by the SR10's operating current $(150 \mu \mathrm{~A}$ nom, $200 \mu \mathrm{~A}$ max). Current may also be reduced $\sim 5 \%$ due to losses.

For standard capacitance values, see the table on page 4.
Full-wave:

$$
C_{s} \geq \frac{I_{\text {OUT }}}{4 f_{\text {IN }}\left(V_{\text {IN }} \sqrt{2}-V_{\text {OUT }}-3 V_{D}\right)}
$$

Half-wave:

$$
C_{S} \geq \frac{I_{\text {OUT }}}{f_{\text {IN }}\left(2 V_{\text {IN }} \sqrt{2}-V_{\text {OUT }}-2 V_{D}\right)}
$$

where: $I_{\text {OUT }}$ is the maximum output current
$f_{I N}$ is the AC line frequency
C_{s} is the series cap on the $A C$ line
$V_{I N}$ is the RMS AC line voltage
$V_{\text {out }}$ is the DC output voltage
V_{D} is the diode forward voltage $(\sim 700 \mathrm{mV})$

Limiting Resistor ($\mathrm{R}_{\mathrm{LIM}}$)

The limiting resistor in series with the AC line is to protect against transients on the AC line. For safety reasons it is fusible and is the most upstream component on the AC line. Higher values provide greater protection but at the expense of higher losses.

$$
P_{L I M} \approx\left(V_{I N} \cdot 2 \pi f_{I N} \cdot C_{S}\right)^{2} \cdot R_{L I M}
$$

Output Capacitor ($\mathrm{C}_{\text {оит }}$)

The output capacitor serves 2 functions - it supplies the load when the shunt is on, and helps absorb transients on the AC line. The supplied value may be lowered but at the expense of higher ripple voltage and increased output voltage during a transient.

Input Power Measurements

The high ratio between the imaginary and real power components makes power measurements difficult. To make accurate measurements of real power, the imaginary component may be eliminated by measuring input voltage after C_{s}. This excludes C_{s} losses, but AC rated film capacitors exhibit very low losses, so the error is minimal.

Since the PCB is laid out with $R_{\text {LIM }}$ upstream of C_{S} for safety reasons, it must be relocated after C_{S} if $R_{\text {LIM }}$ losses are to be included.

Do not connect earth-grounded instruments when operating off the AC line! Use either battery-powered equipment, high voltage differential probes, or an isolation transformer on the AC line. Note that many Variacs (variable transformers) do not provide isolation.

Ideally, $R_{B L}$ should be removed. Its contribution to loss is approximately $\mathrm{V}_{\mathrm{IN}}{ }^{2} / \mathrm{R}_{\mathrm{BL}}$

Since the input current is not a perfect sine wave, real power cannot be obtained by simply multiplying RMS input current by RMS input voltage. One way to make correct measurements is by multiplying instantaneous current by instantaneous voltage on a time-point basis and taking the average over an integer number of $50 / 60 \mathrm{~Hz}$ cycles. At low load currents the shunt turns off only occasionally, requiring a long time window for accurate power measurements.
This measurement technique may be performed on most digital oscilloscopes. When taking the average, be sure to window the average over an integer number of cycles.

Driving LEDs

The SR10 can be configured to provide a constant-current output to drive LEDs. A current sense resistor $\left(R_{\text {SNS }}\right)$ is used to convert LED current to the 1.25 V feedback voltage required by the SR10.

$$
I_{L E D}=\frac{1.2 \mathrm{~V}}{R_{S N S}}
$$

Driving LEDs

When operated over a wide supply voltage range, a small $\mathrm{C}_{\text {out }}$ can result in overcharging at higher line voltages. It may take several cycles for the voltage to drop back down to the regulation threshold. This may cause visible flicker. The remedy is to increase $\mathrm{C}_{\text {out }}$.

To protect against open LEDs, an overvoltage protection (OVP) circuit is employed. The OVP level is set by the value of the OVP Zener. R_{B} limits the current thru the Zener.

$$
V_{o V P}=V_{z}+1.2 V
$$

C Table

The following table is based on the previously provided equations for C_{s}. Actual output current may be less due to losses ($\sim 5 \%$ less). AC line voltage is assumed to be 90 135VRMS @ 60Hz or 190-275VRMS @ 50Hz. Slashed cells exceed recommended operating conditions for peak shunt current at $85^{\circ} \mathrm{C}$.

For universal 120 V and 240 V operation choose C_{s} based on 120VAC and make sure that operation at 240VAC does not fall in a slashed cell. The relevant cells are adjacent to each other. For example, if 50 mA at 12 V is needed and full rectification used, a C_{s} capacitor of $2.2 \mu \mathrm{~F} \pm 10 \%$ provides 53.8 mA at 120VAC (90VAC low line). But at 240VAC, the cell to the right (240VAC column) is slashed, and universal operation is not possible. This assumes 120VAC low line is 90VAC and 240VAC high line is 275VAC. For other high/low voltages use the equations.

Output current capability (mA)

	$\begin{gathered} \mathrm{C}_{\mathrm{s}} \\ \mathrm{Tol} \end{gathered}$	6V Output				12V Output				24V Output			
		Half		Full		Half		Full		Half		Full	
$\mathrm{C}_{\text {s }}$		$\begin{aligned} & 120 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 120 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 120 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 120 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 120 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 120 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$
220nF	10\%	2.9	5.2	5.7	10.3	2.9	5.2	5.4	10.1	2.7	5.1	4.8	9.6
	20\%	2.6	4.7	5.0	9.2	2.5	4.6	4.8	9.0	2.4	4.5	4.3	8.5
$330 n F$	10\%	4.4	7.9	8.5	15.5	4.3	7.8	8.1	15.1	4.1	7.6	7.2	14.4
	20\%	3.9	7.0	7.6	13.8	3.8	6.9	7.2	13.4	3.6	6.8	6.4	12.8
470nF	10\%	6.3	11.2	12.1	22.0	6.1	11.1	11.5	21.5	5.8	10.8	10.3	20.5
	20\%	5.6	10.0	10.8	19.6	5.4	9.9	10.2	19.1	5.2	9.6	9.1	18.2
680nF	10\%	9.1	16.2	17.5	31.9	8.9	16.0	16.6	31.2	8.4	15.7	14.9	29.7
	20\%	8.1	14.4	15.6	28.4	7.9	14.3	14.8	27.7	7.5	13.9	13.2	26.4
$1.0 \mu \mathrm{~F}$	10\%	13.3	23.9	25.7	46.9	13.0	23.6	24.4	45.8	12.4	23.0	21.9	43.7
	20\%	11.9	21.2	22.9	41.7	11.6	21.0	21.7	40.7	11.0	20.5	19.4	38.8
$1.5 \mu \mathrm{~F}$	10\%	20.0	35.8	38.6	70.4	19.5	35.4	36.7	68.1	18.6	34.6	32.8	65.5
	20\%	17.8		34.3	62	17.4		32.6	67.	16.5	30.1	29.1	58.2
$2.2 \mu \mathrm{~F}$	10\%	29.4	2.5	56.6	103.2	28.6	51.9	53.8	100.8	27.2	50.1	48.1	96.
	20\%	28.1	46.6	50.3	91.1	25.5	46.1	47.8	89.6	24.2	45.1	42.1	85.

$=$ Exceeds Recommended Operating Limits

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZREDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM LP38501ATJ-EV

[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

