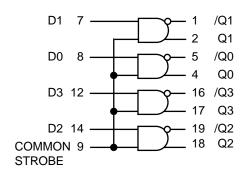


FEATURES

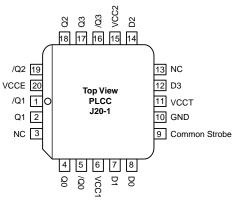

- Single 5V power supply
- All V_{CC} pins isolated on chip
- Differentially drive balanced lines
- t_{PD} 1.3ns typical
- Fully compatible with MC10H351
- Available in 20-pin PLCC package

DESCRIPTION

The SY10H351 is a quad translator for interfacing data between a saturated logic selection and the PECL section of digital systems when only a +5.0V V_{DC} power supply is available. The SY10H351 has TTL/NMOS compatible inputs and PECL complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input is at a low logic level, it forces all true outputs to the PECL low logic state (\approx +3.2V) and all inverting outputs to the PECL high logic state (\approx 4.1V).

The SY10H351 can also be used with the SY10H350 to transmit and receive TTL/NMOS information differentially via balanced twisted pair lines.

BLOCK DIAGRAM


V_{CC} (+5 V_{DC}) = Pins 6, 11, 15, 20; GND = Pin 10

PIN NAMES

Pin	Function					
D0 – D3	Inputs					
Q0 – Q3	Outputs					
/Q0 – /Q3	Inverted outputs					
VCC1	PECL V _{CC} (5.0V)					
VCCE	PECL V _{CC} (5.0V)					
VCCT	TTL V _{CC} (5.0V)					
VCC2	PECL V _{CC} (5.0V)					
Common Strobe	Common Strobe					
GND	Ground					

Micrel, Inc.

PACKAGE/ORDERING INFORMATION

20-Pin PLCC (J20-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Lead Finish	
SY10H351JC	J20-1	Commercial	SY10H351JC	Sn-Pb
SY10H351JCTR ⁽²⁾	J20-1	Commercial	SY10H351JC	Sn-Pb
SY10H351JZ ⁽³⁾	J20-1	Commercial	SY10H351JZ with Pb-Free bar-line indicator	Matte-Sn
SY10H351JZTR ^(2, 3)	J20-1	Commercial	SY10H351JZ with Pb-Free bar-line indicator	Matte-Sn

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
V _{CC}	Power Supply Voltage	-0.5 to +7.0	٧
I _{OUT}	Output Current -Continuous -Surge	50 100	mA
T _{LEAD}	Lead Temperature (soldering, 20sec.)	+260	ç
T _{store}	Storage Temperature	-65 to +150	°C
T _A	Operating Temperature	0 to +85	°C

TRUTH TABLE

cs	D	Q	/Q		
Н	L	L	Н		
Н	Н	Н	L		
Н	Open	Н	L		
L	X	L	Н		
Open	L	L	Н		
Open	Н	Н	L		
Open	Open	Н	L		

Note:

 Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

VCC1 = VCC2 = VCCE = VCCT = 4.75V to 5.25V

		Ta :	= 0°C	TA = +25°C TA = +85°		+85°C				
Symbol	Parameter	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Condition
I _{CC}	Power Supply Current ECL ⁽¹⁾ TTL ⁽²⁾		45 15			45 15	1 1	45 15	mA	No output loads
I _R	Reverse Current (Pins 7, 8, 12, 14)	_	20	_	_	20		20	μΑ	
I _{INH}	Reverse Current, (Pin 9)	_	80	_	_	80	_	80	μΑ	
I _F	Forward Current (Pins 7, 8, 12, 14)	_	-0.6	_	_	-0.6	_	-0.6	mA	
I _{INL}	Forward Current, (Pin 9)	_	-2.4	_	_	-2.4	_	-2.4	mA	
V _{BR(in)}	Input Breakdown Voltage	5.5	_	5.5	_	_	5.5	_	V	
V _I	Input Clamp Voltage	_	-1.5	_	_	-1.5	_	-1.5	V	I _{IN} = -18mA
V _{OH}	Output HIGH Voltage ⁽³⁾	3.98	4.16	4.02	_	4.19	4.08	4.27	V	
V _{OL}	Output LOW Voltage ⁽³⁾	3.05	3.37	3.05	_	3.37	3.05	3.37	V	_
V _{IH}	Input HIGH Voltage	2.0	_	2.0	_		2.0	_	V	
V _{IL}	Input LOW Voltage	_	0.8	_	_	0.8	_	0.8	V	

Notes:

- 1. Total ICC at VCC1, VCC2 and VCCE.
- 2. ICC at ICCT.
- 3. These values are for VCC = 5.0V. Level Specifications will vary 1:1 VCC.

AC ELECTRICAL CHARACTERISTICS

VCC1 = VCC2 = VCCE = VCCT = 4.75V to 5.25V

		TA = 0°C		TA = +25°C			TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Condition
t _{PD}	Propagation Delay ⁽¹⁾	0.4	2.2	0.4	ı	2.2	0.4	2.1	ns	50Ω to VCC–2V
t _r t _f	Output Rise/Fall Time (20% to 80%)	0.4	1.9	0.4	l	2.0	0.4	2.1	ns	50Ω to VCC–2V
f _{MAX}	Maximum Input Frequency ⁽²⁾	150		150	1	_	150	-	MHz	50Ω to VCC–2V

Notes:

- 1. Propagation delay is measured on this circuit from +1.5V on the input waveform to the 50% point on the output waveform.
- 2. These parameters are guaranteed but not tested.

SWITCHING WAVEFORM

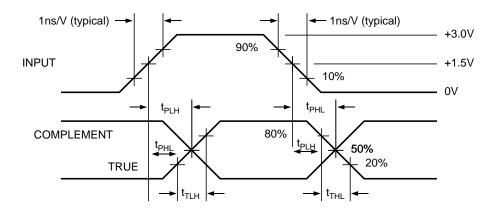
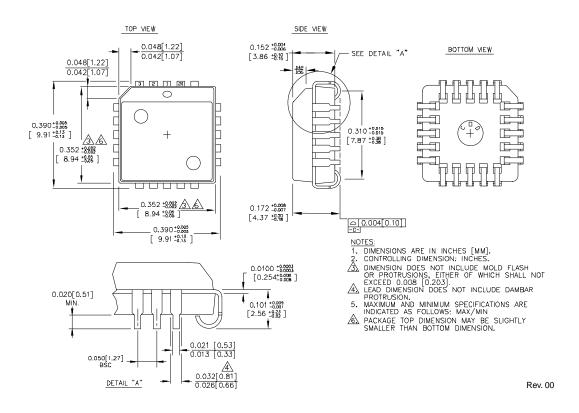



Figure 1. Propagation Delay and Transition Times

Micrel, Inc. SY10H351

20-PIN PLASTIC LEADED CHIP CARRIER (J20-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG
NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG MAX3371ELT+T
NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H
CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG
MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG
SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CN#PBF SY100EL92ZG
74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ
ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ-500RL7 ADG3242BRJZ-REEL7
ADG3243BRJZ-REEL7