FEATURES

- 2.5 GHz min. $\mathrm{f}_{\mathrm{MAX}}$

■ 2.3V to 5.7 V power supply
■ Single bit register memory
\square Synchronizes 1 bit of data to a clock
\square Optimized to work with SuperLite ${ }^{\text {TM }}$ family

- Fully differential

■ Accepts CML, PECL, LVPECL input logic levels
\square Source terminated CML outputs for fast edge rates
\square Available in a tiny 10-pin MSOP

APPLICATIONS

High-speed logic
OC-48 communication systems

FUNCTIONAL BLOCK DIAGRAM

SuperLite ${ }^{\text {TM }}$

DESCRIPTION

The SY55852U is a flip-flop used to synchronize data to a clock. Its differential output will reproduce and remember the value on its input at the rising edge of the clock. In addition, an asynchronous, level sensitive reset is provided. For a synchonous reset, the SY55851U AnyGate ${ }^{\circledR}$ can be used.

SY55852U inputs can be terminated with a single resistor between the true and complement pins of a given input.

The SY55852U is a member of Micrel's SuperLite ${ }^{\text {TM }}$ family of high-speed CML logic. This family features very small packaging and 2.3 V to 5.7 V operation.

PACKAGE/ORDERING INFORMATION

10-Pin MSOP (K10-1)

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY55852UKC	K10-1	Commercial	55852 U	$\mathrm{Sn}-\mathrm{Pb}$
SY55852UKCTR ${ }^{(2)}$	K10-1	Commercial	55852 U	$\mathrm{Sn}-\mathrm{Pb}$
SY55852UKI	K10-1	Industrial	55852 U	$\mathrm{Sn}-\mathrm{Pb}$
SY55852UKITR ${ }^{(2)}$	K10-1	Industrial	55852 U	$\mathrm{Sn}-\mathrm{Pb}$
SY55852UKG ${ }^{(3)}$	K10-1	Industrial	55852 U with Pb-Free bar line indicator	NiPdAu Pb-Free
SY55852UKGTR ${ }^{(2,3)}$	K10-1	Industrial	55852U with $\mathrm{Pb}-$ Free bar line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}$, DC Electricals only.
2. Tape and Reel.
3. Pb-Free package recommended for new designs.

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
1,2	$\mathrm{D}, / \mathrm{D}$	CML/PECL/LVPECL Input (Differential): This is the single bit of data that gets clocked in and remembered.
3,4	CLK, /CLK	CML/PECL/LVPECL Input (Differential): The rising edge of this signal is the clock signal that determines when the Boolean value at the data input gets stored.
5	GND	Ground.
6,7	/Q, Q	CML Output (Differential): This is the output of the flip-flop.
8,9	R, /R	CML/PECL/LVPECL Input (Differential): This is an asynchronous active high level reset, that forces the flip-flop into a known state, namely zero.
10	VCC	Power Supply.

TRUTH TABLE

\mathbf{D}	$\mathbf{C L K}$	\mathbf{R}	\mathbf{Q}	$/ \mathbf{Q}$
X	X	1	0	1
X	0	0	$\mathrm{Q}_{\mathrm{N}-1}$	$/ \mathrm{Q}_{\mathrm{N}-1}$
X	1	0	$\mathrm{Q}_{\mathrm{N}-1}$	$/ \mathrm{Q}_{\mathrm{N}-1}$
0	Λ	0	0	1
1	$\boxed{\Sigma}$	0	1	0

FUNCTIONAL DESCRIPTION

Establishing Static Logic Inputs

The true pin of an input pair is internally biased to ground through a $75 \mathrm{k} \Omega$ resistor. The complement pin of an input pair is internally biased halfway between V_{CC} and ground by a voltage divider consisting of two $75 \mathrm{k} \Omega$ resistors. To keep an input at static logic zero at $\mathrm{V}_{\mathrm{CC}}>3.0 \mathrm{~V}$, leave both inputs unconnected. For $\mathrm{V}_{\mathrm{CC}} \leq 3.0 \mathrm{~V}$, connect the

Figure 1. Hard Wiring a Logic "1"(1)
Note 1. X is either $D, C L K, R$ input. $/ X$ is either / $D, / C L K, / R$ input.

complement inputs to V_{Cc} and leave the true inputs unconnected. To make an input static logic one, connect the true input to V_{CC}, leave the complement input unconnected. These are the only safe ways to cause inputs to be at a static value. In particular, no input pin should be directly connected to ground. All NC (no connect) pins should be unconnected.

Figure 2. Hard Wiring a Logic "0" (1)
Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage (V_{CC}) \qquad -0.5 V to +6.0 V
CML Output Voltage $\mathrm{V}_{\mathrm{CC}}-1.0$ to $\mathrm{V}_{\mathrm{CC}}+0.5$
Lead Temperature (soldering, 20 sec.) $260^{\circ} \mathrm{C}$
Storage Temperature (T_{S}) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \ldots \ldots ~-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance
MSOP (θ_{JA})
Still-Air ... $113^{\circ} \mathrm{C} / \mathrm{W}$
500lpfm .. $96^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratlng conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

DC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=+2.3 \mathrm{~V}$ to $+5.7 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise noted.

Symbol	Parameter	Condition	Min	Typ	Max
V_{CC}	Power Supply Voltage		2.3		5.7
I_{CC}	Power Supply Current			V	

Note:

1. The device is guaranteed to meet the DC specifications, shown in the table above, after thermal equilibrium has been established. The device is tested in a socket such that transverse airflow of $\geq 500 \mathrm{lfpm}$ is maintained.

CML DC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=+2.3 \mathrm{~V}$ to $+5.7 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{ID}	Differential Input Voltage		100			mV
V_{IH}	Input HIGH Voltage	Note 2	1.6	-	V_{CC}	V
V_{IL}	Input LOW Voltage	Note 2	1.5	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	V
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	No Load	$\mathrm{V}_{\mathrm{CC}}-0.020$	$\mathrm{~V}_{\mathrm{CC}}-0.010$	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{OL}	Output LOW Voltage	No Load	$\mathrm{V}_{\mathrm{CC}}-0.97$	$\mathrm{~V}_{\mathrm{CC}}-0.825$	$\mathrm{~V}_{\mathrm{CC}}-0.660$	V
$\mathrm{~V}_{\mathrm{OS}}$	Output Voltage Swing	No Load, Note 3	0.660	0.800	0.950	V
		50Ω Environment, Note 4		0.200		V
$\mathrm{R}_{\text {DRIVE }}$	Output Source Impedance	100Ω Environment, Note 5		0.400	V	

Notes:

1. Equilibrium temperature.
2. Inputs must be biased to logic LOW or HIGH when V_{CC} is less than 3.0 V .
3. Actual voltage levels and differential swing will depend on customer termination scheme. Typically, a 400 mV swing is available in the 100Ω environment and a 200 mV swing in the 50Ω environment. Refer to the "CML Termination" diagram for more details.
4. See Figure 3 a and 3 b .
5. See Figure 4.

AC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $5.7 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Max. Operating Frequency		2.5			GHz
$t_{\text {pd }}$	$\begin{array}{lr} \hline \text { Propagation Delay } & \text { CLK to } Q \\ & R \text { to } Q \end{array}$				$\begin{aligned} & 400 \\ & 500 \end{aligned}$	ps
t_{s}	Set-Up Time		40			ps
t_{H}	Hold Time		40			ps
t_{RR}	Reset Recovery		400			ps
$t_{\text {PW }}$	Minimum Pulse Width \quad CLK to Q R to Q	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}<3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \\ & 250 \end{aligned}$			ps
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	CML Output Rise/Fall Times (20\% to 80\%)		35		150	ps

Note:

1. Tested using environment of Figure 3b, 50Ω load CML output.

TIMING DIAGRAMS

CML TERMINATION

All inputs accept the output from any other member of this family. All outputs are source terminated $100 \Omega \mathrm{CML}$ differential drivers as shown in Figures 3 and 4. SY55852U expects the inputs to be terminated, and that good high
speed design practices be adhered to. SY55852U inputs are designed to accept a termination resistor between the true and complement inputs of a differential pair. 0402 form factor chip resistors will fit with some trace fanout.

Figure 3a. Differentially Terminated (50Ω Load CML Output)

Figure 3b. Individually Terminated (50 Ω Load CML Output)

Figure 4. 100Ω Load CML Output

10-PIN MSOP (K10-1)

NUTES:
DIMENSIDNS ARE IN MM [INCHES].
CONTRDLLING DIMENSIDN: MM
DIMENSIUN DDES NDT INCLUDE MOLD FLASH $\square R$ PROTRUSIONS, EITHER DF WHICH SHALL NDT EXCEED 0.20 [0.008] PER SIDE.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM MM74HC74AMX 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC11ADG M74HCT273B1R M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV.125 74AHC74D.112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D.652 74AHCT1G79GW. 125 74HC273D.652 74HC107D.652 74HC574D.653 74HCT273D.652

