General Description

The SY55854U is a fully differential, CML, 2×2-crosspoint switch. The non-blocking design allows any input to be connected to any output. Varying the state of the select inputs allows SY55854U to be used in backup, fault tolerant, protection, and backplane distribution applications.
SY55854U inputs can be terminated with a single resistor between the true and the complement pins of a given input.
The SY55854U is a member of Micrel's new SuperLite ${ }^{\circledR}$ family of high-speed logic devices. This family features very small packaging, high signal integrity, and flexible supply voltage operation.
Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Functional Block Diagram

SuperLite ${ }^{\circledR}$

Features

- Guaranteed $\mathrm{f}_{\text {MAX }}>2.5 \mathrm{GHz}$ over temperature
- 2.3 V to 5.7 V power supply
- Non-blocking "switch architecture"
- Guaranteed <15ps channel-to-channel skew
- Guaranteed <480 ps propagation delay over temperature
- Configurable as 2:1 mux, 1:2 fan-out buffer, dual buffer, or 2×2 switch
- Accepts CML, PECL, LVPECL inputs
- Fully differential inputs/outputs
- Source terminated CML outputs for fast edge rates
- Wide operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Available in a tiny 16 -pin EPAD-QSOP package

Applications

- High-speed logic
- Data communications systems
- Wireless communications systems
- Telecom systems
- Backplane redundancy

SuperLite is a registered trademark of Micrel, Inc.

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Temperature Range	Package	Lead Finish
SY55854UYI	Y16-1	Industrial	854 U	Sn-Pb
SY55854UYITR(2)	Y16-1	Industrial	854 U	Sn-Pb
SY55854UYY(3)	Y16-1	Industrial	854 U with Pb-Free bar-line indicator	Matte-Sn Pb-Free
SY55854UYYTR(2,3)	Y16-1	Industrial	$854 U$ with Pb-Free bar-line indicator	Matte-Sn Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{DC}$ Electricals only.
2. Tape and Reel.
3. Pb-Free package recommended for new designs.

Pin Configuration

16-Pin EPAD-QSOP (Y16-1)

Pin Description

Pin Number	Pin Name	Pin Function
2,3	D0, /D0	CML/PECL/LVPECL Input (Differential). This is one of the data inputs to the crosspoint. It will be switched either to the Q0 output, the Q1 output, both outputs, or neither output, depending on the state of the S0 and S1 inputs.
4,5	S0, /S0	CML/PECL/LVPECL Input (Differential). This selects input chooses which data input switches to the Q0 output. S0 logic low selects the D0 input, while S0 logic high selects the B input.
6,7	/D1, D1	CML/PECL/LVPECL Input (Differential). This is the other data input to the crosspoint. It will be switched either to the Q0 output, the Q1 output, both outputs, or neither output, depending on the state of the S0 and S1 inputs.
1,8	GND	Ground.
9,16	VCC	Power Supply.
10,11	Q1, /Q1	CML Output (Differential). This is the other output from the crosspoint. Input S1 selects either the D0 or D1 input to be switched to this output.
12,13	/S1, S1	CML/PECL/LVPECL Input (Differential). This select input chooses which data input switches to the Q1 output. S1 logic low selects the D0 input, while S1 logic high selects the D1 input.
14,15	/Q0, Q0	CML Output (Differential). This is one output from the crosspoint. Input S0 selects either the D0 or the D1 input to be switched to this output.

Functional Description

Establishing Static Logic Inputs

The true pin of an input pair is internally biased to ground through a $75 \mathrm{k} \Omega$ resistor. The complement pin of an input pair is internally biased halfway between V_{cc} and ground by a voltage divider consisting of two $75 \mathrm{k} \Omega$ resistors. In this way, unconnected inputs appear as logic zeros. To keep an input at static logic zero at $\mathrm{V}_{\mathrm{Cc}}>3.0 \mathrm{~V}$, leave both inputs unconnected. For $\mathrm{V}_{\mathrm{CC}} \leq 3.0 \mathrm{~V}$, connect the complement input to V_{Cc} and leave the true input unconnected. To make an input static logic one, connect the true input to V_{cc}, and leave the complement input unconnected. These are the only two safe ways to cause inputs to be at a static value. In particular, no input pin should be directly connected to ground. All NC (no connect) pins should be unconnected.

Figure 1. Hard Wiring a Logic " 1 " (1)

Note:

1. X is either $D 0, D 1, S 0$, or $S 1$ input. / X is either /D0, /D1, /S0, or /S1 input.

Figure 2. Hard Wiring a Logic " 0 " (1)

Usage

SY55854U is very versatile. Tying its select inputs in various ways varies its functionality. For example, tying the select inputs together turns SY55854U into a redundant distributor. Either input will be switched to both outputs simultaneously. This is very useful in redundant backplane applications. By cross-tying the select inputs, SY55854U becomes a true crosspoint, selecting between "straight through" and "cross connected" operation. Also, using the select inputs independently, SY55854U functions as two multiplexers. Setting the select inputs to static values turns SY55854U into a dual buffer, or a fan-out buffer.
To make larger crosspoints, cascade SY55854U devices, either in a tree, or in a Banyan structure, as appropriate for your application.

Truth Table

S0	S1	Q0	Q1	Function
0	0	D0	D0	Fan-Out Buffer
0	1	D0	D1	Dual Buffer
1	0	D1	D0	Dual Buffer
1	1	D1	D1	Fan-Out Buffer
CTL	CTL	Same	Same	Redundant Distribution
CTL	ICTL	Opposite	Opposite	Crosspoint

Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage (V_{cc}) \qquad .-0.5 to +6.0 V
Input Voltage ($\mathrm{V}_{\text {IN }}$). \qquad -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
CML Output Voltage ($\mathrm{V}_{\text {out }}$).............. $\mathrm{V}_{\mathrm{CC}}-1.0$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Lead Temperature (soldering, 20sec.). $260^{\circ} \mathrm{C}$
Storage Temperature $\left(\mathrm{T}_{\mathrm{s}}\right)$............................ -65 to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage ($\mathrm{V}_{\text {IN }}$)
-0.5 to +6.0 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$............................. 40 to $+85^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 5.7 V ; $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{C C}$	Power Supply Voltage		2.3		5.7	V
$I_{C C}$	Power Supply Current				60	mA

CML DC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $5.7 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(3)$

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {ID }}$	Differential Input Voltage		100			mV
V_{IH}	Input HIGH Voltage		1.6		V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		1.5		$\mathrm{V}_{\text {cc- }}-0.1$	V
V_{OH}	Output HIGH Voltage	No Load	$\mathrm{V}_{\mathrm{CC}}-0.020$	$\mathrm{V}_{C C}-0.010$	V_{CC}	V
V_{OL}	Output LOW Voltage	No Load	$\mathrm{V}_{\mathrm{CC}}-0.97$	$\mathrm{V}_{C C}-0.825$	$\mathrm{V}_{\mathrm{CC}}-0.660$	V
$\mathrm{V}_{\text {OS }}$	Output Voltage Swing ${ }^{(4)}$	No Load 100Ω Environment(5) 50Ω Environment ${ }^{(6)}$	0.700	0.800	0.950	V
				0.400		V
				0.200		V
$\mathrm{R}_{\text {DRIVE }}$	Output Source Impedance		80	100	120	Ω

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. The device is not guaranteed to function outside its operating rating.
3. Equilibrium temperature.
4. Actual voltage levels and differential swing will depend on customer termination scheme. Typically, a 400 mV swing is available in the 100Ω environment and a 200 mV swing in the 50Ω environment. Refer to the "CML Termination" diagram for more details
5. See Figure 4.
6. See Figure 3a and 3b.

AC Electrical Characteristics ${ }^{(8,9)}$

$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 5.7 V ; $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Max. Operating Frequency		2.5			
$\mathrm{t}_{\text {PD }}$	Propagation Delay, S0, S1, D0, D1 to Q0, Q1				400	
$\mathrm{t}_{\text {SKEW }}$	Within-Device Skew(9 (9) Part-to-Part Skew (Diff.)			mA		
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	CML Output Rise/Fall Times $(20 \%$ to 80\%)			15	ps	

Notes:

8. Tested using environment of Figure $3 \mathrm{~b}, 50 \Omega$ load CML output.
9. Worst case difference between Q0 and Q1 from either A or B, when both outputs come from the same input.

CML Termination

All inputs accept the output from any other member of this family. All outputs are source terminated 100Ω CML differential drivers as shown in Figures 3 and 4. SY55854U expects the inputs to be terminated, and that good high speed design practices be adhered to. SY55854U inputs are designed to accept a termination resistor between the true and complement inputs of a differential pair. 0402 form factor chip resistors will fit with some trace fanout.

Figure 3a. Differentially Terminated (50Ω Load CML Output)

Figure 3b. Individually Terminated (50Ω Load CML Output)

Figure 4. 100Ω Load CML Output

Package Information

NDTE:

1) ALL DIMENSIONS ARE IN INCHES [MM],
2) PACKAGE LENGTH DOES NDT INCLUDE

MILD FLASH, PRDTRUSIUNS IR GATE BURR.
3) PACKAGE WIDTH DOES NDT INCLUDE

INTERLEAD FLASH GR PRDTRUSIDNS.

16-Pin EPAD-QSOP (Y16-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

$$
\text { © } 2006 \text { Micrel, Incorporated. }
$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue \& Digital Crosspoint ICs category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
MT093AE1 MT8808AE1 ADV3203ASWZ AD8177ABPZ ISPGDX240VA-4B388 VSC3308YKU LX64EV-3F100C ISPGDX240VA4BN388 LX256EV-5FN484C GX4002-INE3 AD8112JSTZ AD8115ASTZ SN65LVCP22D ADV3205JSTZ SY89540UMY AD75019JPZ AD75019JPZ-REEL AD8106ASTZ AD8107ASTZ AD8108ASTZ AD8109ASTZ AD8110ASTZ AD8111ASTZ AD8116JSTZ AD8152JBPZ AD8153ACPZ AD8155ACPZ AD8158ACPZ AD8159ASVZ ADN4604ASVZ AD8153ACPZ-RL7 ADN4612ACPZ ADV3201ASWZ ADV3226ACPZ ADV3227ACPZ ADV3228ACPZ ADV3229ACPZ HMC858LC4B MAX4550CAI+ EL4544IGZ $\underline{H A 4314 B C P Z}$ MAX9152EUE+T MAX4360EAX+ MAX4549EAX+ MAX4549EAX+T MAX4570CAI+ TEA6422D SY55858UHG NB4L858MFAG NB4N840MMNG

