FEATURES

■ Guaranteed $\mathrm{f}_{\text {MAX }}>750 \mathrm{MHz}$ over temperature
■ 1.5Gbps throughput capability
■ 3.0V to 5.7 V power supply
■ Guaranteed <700ps propagation delay over temperature
■ Guaranteed < 50 ps within-device skew over temperature
■ LVDS compatible outputs

- Fully differential I/O architecture
\square Wide operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
■ Available in a tiny 10-pin MSOP package

FUNCTIONAL BLOCK DIAGRAM

SuperLite is a trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION

10-Pin MSOP (K10-1)

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY55855VKI	$\mathrm{K} 10-1$	Industrial	855 V	$\mathrm{Sn}-\mathrm{Pb}$
SY55855VKITR $^{(2)}$	$\mathrm{K} 10-1$	Industrial	855 V	$\mathrm{Sn}-\mathrm{Pb}$
SY55855VKG $^{(3)}$	$\mathrm{K} 10-1$	Industrial	855 V with Pb-Free bar line indicator	NiPdAu Pb-Free
SY55855VKGTR $^{(2,3)}$	K10-1	Industrial	855 V with Pb-Free bar line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}$, DC Electricals only.
2. Tape and Reel.
3. Pb-Free package recommended for new designs.

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
1,2	D0, /D0	CML/PECL/LVPECL Input (Differential). This is one of the inputs. It is converted to LVDS onto the Q0 and /Q0 outputs.
3,4	D1, /D1	CML/PECL/LVPECL Input (Differential). This is the other input. It is converted to LVDS onto the Q1 and /Q1 outputs.
5	GND	Ground.
6,7	/Q1, Q1	LVDS Output (Differential). This is the other LVDS output. It buffers the CML input that appears at D1, /D1.
8,9	/Q0, Q0	LVDS Output (Differential). This is one LVDS output. It buffers the CML input that appears at D0, /D0.
10	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}

TRUTH TABLE

D0	D1	Q0	/Q0	Q1	/Q1
0	0	0	1	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	1	0

FUNCTIONAL DESCRIPTION

Establishing Static Logic Inputs

The true pin of an input pair is internally biased to ground through a $75 \mathrm{k} \Omega$ resistor. The complement pin of an input pair is internally biased halfway between V_{CC} and ground by a voltage divider consisting of two $75 \mathrm{k} \Omega$ resistors. In this way, unconnected inputs appear as logic zeros. To keep an input at static logic zero at $\mathrm{V}_{\mathrm{Cc}}>3.0 \mathrm{~V}$, leave both inputs

Figure 1. Hard Wiring a Logic " 1 " (1)
Note 1. X is either D0 or D1 input. /X is either /D0 or /D1 input.
unconnected. For $\mathrm{V}_{\mathrm{CC}} \leq 3.0 \mathrm{~V}$, connect the complement input to V_{CC} and leave the true input unconnected. To make an input static logic one, connect the true input to V_{CC}, leave the complement input unconnected. These are the only two safe ways to cause inputs to be at a static value. In particular, no input pin should be directly connected to ground. All NC (no connect) pins should be unconnected.

$$
\mathrm{V}_{\mathrm{CC}}>3.0 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{CC}} \leq 3.0 \mathrm{~V}
$$

Figure 2. Hard Wiring a Logic " 0 " (1)
Note 1. X is either D 0 or D 1 input. / X is either /D0 or /D1 input.

LVDS OUTPUTS

LVDS stands for Low Voltage Differential Swing. LVDS specifies a small swing of 350 mV typical, on a nominal 1.25 V common mode above ground. The common mode voltage has tight limits to permit large variations in ground between an LVDS driver and receiver. Also, change in common mode voltage, as a function of data input, is also kept tight, to keep EMI low.

Figure 3. LVDS Differential Measurement

Figure 4. LVDS Common Mode Measurement

Figure 5. LVDS Output Termination

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Value	Unit
V_{CC}	Power Supply Voltage	-0.5 to +6.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\mathrm{OUT}}$	LVDS Output Current	$\pm 10 \%$	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{LEAD}}$	Lead Temperature (soldering, 20sec.)	260	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Store }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

Note 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratlng conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.7 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{(2)}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		Unit
		Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
$V_{C C}$	Power Supply Voltage	3.0	5.7	3.0	-	5.7	3.0	5.7	V
I_{CC}	Power Supply Current $\begin{array}{r} 3.6 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} \\ \hline \end{array}$	-	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	-	$\overline{30}$	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	-	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	mA

CML DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.7 V ; $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \mathrm{C}^{(2)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
V_{ID}	Differential Input Voltage	100	-	-	mV	
V_{IH}	Input HIGH Voltage	1.6	-	V_{CC}	V	
V_{IL}	Input LOW Voltage	1.5	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	V	

LVDS DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.7 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{(2)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
V_{OD}	Differential Output Voltage ${ }^{(4)}$	250	-	450	mV	100Ω Termination
$\mathrm{V}_{\mathrm{OCM}}$	Output Common Mode Voltage $^{(3)}$	1.125	-	1.375	V	
$\Delta \mathrm{~V}_{\mathrm{OCM}}$	Change in Common Mode Voltage $^{(3)}$	-50	-	+50	mV	
V_{OH}	Output HIGH Voltage ${ }^{(4),(5)}$	-	-	1.474	V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage ${ }^{(4),(5)}$	0.925	-	-	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$

Note 2. Equilibrium temperature.
Note 3. Measured as per Figure 4.
Note 4. Measured as per Figure 3.
Note 5. Do not short output to GND.

AC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.7 V ; GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{(2)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency	750	-	-	MHz	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	300	-	700	ps	
$\mathrm{t}_{\text {PHL }}$	D0 to Q0, D1 to Q1					
$\mathrm{t}_{\text {SKEW }}$	Within-Device Skew(3)	-	-	50	ps	
	Part-to-Part Skew (Diff.)	-	-	250		
t_{r}	LVDS Output Differential	100	-	300	ps	
t_{f}	Rise/Fall Times (20\% to 80\%)					

Note 1. Specification for packaged product only.
Note 2. Equilibrium temperature.
Note 3. Worst case difference between Q0 and Q1 from either D0 or D1, when both outputs have the same transition.

EYE DIAGRAMS ${ }^{(1)}$

1.25Gbps
3.3V LVPECL-to-LVDS

1.5Gbps
3.3V LVPECL-to-LVDS

Note 1. $2^{23}-1$ pattern.

Rev. 00

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify

Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3242BRJZ-REEL7 ADG3243BRJZ-REEL7 ADG3245BCPZ

