SY56034AR

Low Voltage 1.2V/1.8V/2.5V 2:6 MUX with Crosspoint Capability 5GHz/6.4Gbps

General Description

The SY56034AR is a fully differential, low voltage $1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ CML 2:6 (2+4) MUX with crosspoint capability. The SY56034AR can process clock signals as fast as 5 GHz or data patterns up to 6.4 Gbps .
The differential input includes Micrel's unique, 3-pin input termination architecture that interfaces to LVPECL, LVDS or CML differential signals as small as $100 \mathrm{mV}\left(200 \mathrm{mV}_{\mathrm{pp}}\right)$ without any level-shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an internal voltage reference is provided to bias the V_{T} pin. The outputs are 400 mV CML, with extremely fast rise/fall times guaranteed to be less than 80ps.
The SY56034AR operates from a $2.5 \mathrm{~V} \pm 5 \%$ core supply and a $1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$ output supply and is guaranteed over the full industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$. The SY56034AR is part of Micrel's high-speed, Precision Edge ${ }^{\circledR}$ product line.
Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Functional Block Diagram

Precision Edge ${ }^{\circledR}$

Features

- 1.2V/1.8V/2.5V CML 2:6 (2+4) MUX with Crosspoint Capability
- Guaranteed AC performance over temperature and voltage:
- DC-to- > 6.4Gbps throughput
- <300ps propagation delay (IN-to-Q)
- <25ps Output skew
- <80ps rise/fall times
- Ultra-low jitter design
- $<1 \mathrm{ps}_{\text {RMS }}$ cycle-to-cycle jitter
- <10ps ${ }_{\text {pp }}$ total jitter
- $<1 \mathrm{ps}_{\mathrm{RMS}}$ random jitter
- $<10 \mathrm{ps}_{\mathrm{PP}}$ deterministic jitter
- High-speed CML outputs
- $2.5 \mathrm{~V} \pm 5 \%, 1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$ power supply operation
- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Available in 32-pin QFN package

Applications

- Data Distribution: OC-48, OC-48+FEC
- SONET clock and data distribution
- Fibre Channel clock and data distribution
- Gigabit Ethernet clock and data distribution

Markets

- Storage
- ATE
- Test and measurement
- Enterprise networking equipment
- High-end servers
- Access
- Metro area network equipment

Precision Edge is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000• http://www.micrel.com

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY56034ARMG	QFN-32	Industrial	56034 AR with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY56034ARMGTR ${ }^{(2)}$	QFN-32	Industrial	56034 AR with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{DC}$ Electricals only.
2. Tape and Reel.

Pin Configuration

Truth Table

SEL0	SEL1	Bank1	Bank2
L	L	IN0	IN0
L	H	IN0	IN1
H	L	IN1	IN0
H	H	IN1	IN1

Pin Description

Pin Number	Pin Name	Pin Function
$\begin{aligned} & 2,3 \\ & 6,7 \end{aligned}$	INO, IINO IN1,/IN1	Differential Inputs: These input pairs are the differential signal inputs to the device. They accept differential signals as small as $100 \mathrm{mV}(200 \mathrm{mV}$ PP $)$. Each input pin internally terminates with 50Ω to the VT pin.
$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { VT0 } \\ & \text { VT1 } \end{aligned}$	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. This pin provides a center-tap to a termination network for maximum interface flexibility. An internal high impedance resistor divider biases VT to allow input AC-coupling. For AC-coupling, bypass VT with a $0.1 \mu \mathrm{~F}$ low ESR capacitor to VCC. See "Interface Applications" subsection and Figure 2a.
4	$\begin{aligned} & \text { SELO } \\ & \text { SEL1 } \end{aligned}$	These single-ended TTL/CMOS-compatible inputs select the inputs to the crosspoint switch. Note that each of these inputs is internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to a logic HIGH state if left open.
10, 31	VCC	Positive Power Supply: Bypass with $0.1 \mu \mathrm{~F} / / 0.01 \mu \mathrm{~F}$ low ESR capacitors as close to the V_{cc} pin as possible. Supplies input and core circuitry.
$\begin{aligned} & \hline 11,16,18 \\ & 23,25,30 \end{aligned}$	VCCO	Output Supply: Bypass with $0.1 \mu \mathrm{~F} / / 0.01 \mu \mathrm{~F}$ low ESR capacitors as close to the $\mathrm{V}_{\mathrm{cco}}$ pins as possible. Supplies the output buffer.
9,17,24,32	GND, Exposed pad	Ground: Exposed pad must be connected to a ground plane that is the same potential as the ground pin.
$\begin{aligned} & 29,28 \\ & 27,26 \\ & 22,21 \\ & 20,19 \\ & 15,14 \\ & 13,12 \end{aligned}$	$\begin{aligned} & \mathrm{Q} 0, / \mathrm{Q} 0 \\ & \mathrm{Q} 1, / \mathrm{Q} 1 \\ & \mathrm{Q} 2, / \mathrm{Q} 2 \\ & \mathrm{Q} 3, / \mathrm{Q} 3 \\ & \mathrm{Q} 4, ~ / \mathrm{Q} 4 \\ & \mathrm{Q} 5, ~ / \mathrm{Q} 5 \end{aligned}$	CML Differential Output Pairs: Differential buffered copy of the selected input signal. The output swing is typically 390 mV . See "Interface Applications" subsection for termination information. Output pairs Q0 to Q3 belong to Bank 1. Q4 and Q5 belong to Bank 2.

Absolute Maximum Ratings ${ }^{(1)}$

Supply Voltage (V_{cc}).............................. 0.5 V to +3.0 V
Supply Voltage ($\mathrm{V}_{\mathrm{cco}}$) -0.5 V to +2.7 V
$\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{cco}}$.. $<1.8 \mathrm{~V}$

Input Voltage ($\mathrm{V}_{\text {IN }}$) -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
CML Output Voltage ($\mathrm{V}_{\text {OUT }}$)............... 0.6 V to $\mathrm{V}_{\text {cco }}+0.5 \mathrm{~V}$
Current $\left(\mathrm{V}_{\mathrm{T}}\right)$
Source or sink current on VT pin $\pm 100 \mathrm{~mA}$
Input Current
Source or sink current on (IN, /IN) $\pm 50 \mathrm{~mA}$
Maximum operating Junction Temperature $125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 20sec.) $260^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage (V_{cc})	.2.375V to 2.625V
($\mathrm{V}_{\mathrm{cco}}$)	1.14 V to 2.625 V
Ambient Temperature (T_{A}) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance ${ }^{(3)}$	
QFN	
Still-air ($\theta_{\text {JA }}$)..	$50^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-board ($\psi_{\text {JB }}$)	... $20^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics ${ }^{(4)}$

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {cc }}$	Power Supply Voltage Range	V_{cc}	2.375	2.5	2.625	V
		$\mathrm{V}_{\mathrm{cco}}$	1.14	1.2	1.26	V
		$\mathrm{V}_{\mathrm{cco}}$	1.7	1.8	1.9	V
		$\mathrm{V}_{\mathrm{cco}}$	2.375	2.5	2.625	V
Icc	Power Supply Current	Max. Vcc		100	140	mA
Icco	Power Supply Current	No Load. Max $\mathrm{V}_{\text {cco }}$		96	126	mA
R_{IN}	Input Resistance (IN-to- V_{T}, /IN-to- V_{T})		45	50	55	Ω
$\mathrm{R}_{\text {DIFF_IN }}$	Differential Input Resistance (IN-to-/IN)		90	100	110	Ω
V_{1+}	Input HIGH Voltage (IN, IIN)	IN, IIN	1.2			V
VIL	Input LOW Voltage (IN, IIN)	V_{IL} with $\mathrm{V}_{\text {IH }}=1.2 \mathrm{~V}$				V
V_{IH}	Input HIGH Voltage (IN, IIN)	IN, IIN				
VIL	Input LOW Voltage (IN, IIN)	V_{IL} with $\mathrm{V}_{\mathrm{IH}}=1.14 \mathrm{~V}$ (1.2V-5\%)	0.66		$\mathrm{V}_{\mathrm{H}} \mathrm{H}-0.1$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage Swing (IN, /IN)	see Figure 3a	0.1		1.0	V
VDIFF_IN	Differential Input Voltage Swing (IIN - /IN\|)	see Figure 3b	0.2		2.0	V
$\mathrm{V}_{\text {T_IN }}$	Voltage from Input to V_{T}				1.28	V

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. $\psi_{J B}$ and $\theta_{J A}$ values are determined for a 4-layer board in still-air number, unless otherwise stated. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

CML Outputs DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{\mathrm{Cco}}=1.14 \mathrm{~V}$ to $1.26 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{Cco}}$,
$\mathrm{V}_{\mathrm{cco}}=1.7 \mathrm{~V}$ to $1.9 \mathrm{~V}, 2.375 \mathrm{~V}$ to $2.625 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{cco}}$ or 100Ω across the outputs.
$\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V . $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CCO}}$	$\mathrm{V}_{\mathrm{Cco}}-0.020$	$\mathrm{~V}_{\mathrm{CCo}}-0.010$	$\mathrm{~V}_{\mathrm{Cco}}$	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	See Figure 3a	300	390	475	mV
$\mathrm{V}_{\text {DIFF_OUT }}$	Differential Output Voltage Swing	See Figure 3b	600	780	950	mV
Rout	Output Source Impedance		45	50	55	Ω

LVTTL/CMOS DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \% . \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V
$\mathrm{I}_{\text {IH }}$	Input HIGH Current		-125		30	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current		-300		$\mu \mathrm{~A}$	

Note:
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{Cco}}=1.14 \mathrm{~V}$ to $1.26 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{Cco}}$,
$\mathrm{V}_{\mathrm{Cco}}=1.7 \mathrm{~V}$ to $1.9 \mathrm{~V}, 2.375 \mathrm{~V}$ to $2.625 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{Cco}}$ or 100Ω across the outputs.
$\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V . $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	NRZ Data	6.4			Gbps
		$\mathrm{V}_{\text {OUt }}>200 \mathrm{mV}$ Clock	5			GHz
$t_{\text {PD }}$	Propagation Delay IN-to-Q	Figure 1	150	220	300	ps
	SEL-to-Q	Figure 1	100	200	300	ps
$\mathrm{t}_{\text {skew }}$	Input-to-Input Skew	Note 6		5	15	ps
	Output-to-Output skew	Note 7, All Outputs or Q0-Q3		7	25	ps
	Output-to-Output skew	Note 7, Q4-Q5		4	20	ps
	Part-to-Part Skew	Note 8			75	ps
$\mathrm{t}_{\text {Jitter }}$	Data Random Jitter	Note 9			1	$\mathrm{ps}_{\mathrm{RMS}}$
	Deterministic Jitter	Note 10			10	pspp
	Clock Cycle-to-Cycle Jitter	Note 11			1	$\mathrm{ps}_{\text {RMS }}$
	Total Jitter	Note 12			10	pspp
	Crosstalk Induced Jitter (Adjacent Channel)	Note 13			0.7	pSpp
t_{R}, t_{F}	Output Rise/Fall Times (20\% to 80\%)	At full output swing.	20	60	80	ps
	Duty Cycle	$\leq 4 \mathrm{GHz}$ Differential I/O	47		53	\%
		<5GHz Differential I/O	45		55	\%

Notes:

6. Input-to-Input skew is the difference in time between both inputs, measured at the same output, for the same temperature, voltage and transition.
7. Output-to-Output skew is the difference in time between both outputs, receiving data from the same input, for the same temperature, voltage and transition.
8. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs.
9. Random jitter is measured with a K28.7 pattern, measured at $\leq f_{\text {mAX }}$.
10. Deterministic jitter is measured at 2.5 Gbps with both K 28.5 and $2^{23}-1$ PRBS pattern.
11. Cycle-to-cycle jitter definition: the variation period between adjacent cycles over a random sample of adjacent cycle pairs. $t_{\text {IITTER_cc }}=T_{n}-T_{n+1}$, where T is the time between rising edges of the output signal
12. Total jitter definition: with an ideal clock input frequency of $\leq f_{\text {mAX }}$ (device), no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
13. Crosstalk-induced jitter is defined as the added jitter that results from signals applied to the adjacent channel. It is measured at the output while applying a similar, differential clock frequency to both inputs that is asynchronous with respect to each other.

Interface Applications

For Input Interface Applications, see Figures 4a through 4f. For CML Output Termination, see Figures 5a through Figure 5d.

CML Output Termination with VCCO 1.2V

For VCCO of 1.2 V , Figure 5 a , terminate the output with 50Ω-to-1.2V, DC coupled, not 100 differentially across the outputs.
If AC-coupling is used, Figure 5 d , terminate into 50 -to-1.2V before the coupling capacitor and then connect to a high value resistor to a reference voltage.
Do not AC couple with internally terminated receiver. For example, 50 ANY -IN input. AC-coupling will offset the output voltage by 200 mV and this offset voltage will be too low for proper driver operation. Any unused output pair needs to be terminated when VCCO is 1.2 V , do not leave floating.

CML Output Termination with VCCO $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$

For VCCO of 1.8 V or 2.5 V , Figure 5 a and Figure 5 b , terminate with eith@ 50 -to-1.8V or $\Omega 00$ differentially across the outputs. AC- or DC-coupling is fine. See Figure 5c for AC-coupling.

Input AC-Coupling

The SY56034AR input can accept AC-coupling from any driver. Bypass VT with a $0.1 \mu \mathrm{~F}$ low ESR capacitor to VCC as shown in Figures 4 c and 4 d . VT has an internal high impedance resistor divider as shown in Figure 2a, to provide a bias voltage for AC-coupling.

Timing Diagrams

Figure 1. Propagation Delay

Typical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=1.2 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Functional Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=1.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=400 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Input and Output Stage

Figure 2a. Simplified Differential Input Buffer

Single-Ended and Differential Swings

Figure 3a. Single-Ended Swing

Figure 2b. Simplified CML Output Buffer

Figure 3b. Differential Swing

Input Interface Applications

Figure 4a. CML Interface (DC-Coupled, $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$)
Option: V_{T} may be connected to V_{cc}

For $3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=100 \Omega$.
For $2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=50 \Omega$.

Figure 4d. LVPECL Interface (AC-Coupled)

Figure 4b. CML Interface (DC-Coupled, 1.2V)

For $2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=19 \Omega$.
Figure 4e. LVPECL Interface (DC-Coupled)

Figure 4c. CML Interface (AC-Coupled)

Figure 4f. LVDS Interface

CML Output Termination

Figure 5a. 1.2V 1.8V or 2.5 V CML DC-Coupled Termination

Figure 5c. CML AC-Coupled Termination (Vcco 1.8V or 2.5 V only)

Figure 5 b. 1.8 V or 2.5 V CML DC-Coupled Termination

Figure 5d. CML AC-Coupled Termination
(Vcco 1.2V only)

Related Product and Support Documents

Part Number	Function	Datasheet Link
HBW Solutions	New Products and Termination Application Notes	http://www.micrel.com/page.do?page=/product- info/as/HBWsolutions.shtml

Package Information

NDTE:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. MAX. PACKAGE WARPAGE IS 0.05 mm .
3. MAXIMUM ALLDWABE BURRS IS 0.076 mm IN ALL DIRECTIUNS.
4. PIN \#1 ID UN TZP WILL BE LASER/INK MARKED.
5. DIMENSIDN APPLIES TO METALIZED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FRIM TERMINAL TIP.
6. APPLIED GNLY FOR TERMINALS.
7. APPLIED FOR EXPISED PAD AND TERMINALS.

32-Pin QFN

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Abstract

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2008 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue \& Digital Crosspoint ICs category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
MT093AE1 MT8808AE1 VSC3308YKU ADV3200ASWZ AD8113JSTZ SN65LVCP22D TUSB546-DCIRNQR SY89540UMY AD8108ASTZ AD8110ASTZ AD8111ASTZ AD8116JSTZ AD8158ACPZ ADV3201ASWZ ADV3226ACPZ CBTL08GP053EVY 408353F EL4544IGZ HA4314BCPZ MAX4360EAX+ MT8806AP1 MT8808AP1 MAX9392EHJ+ TEA6422D MT093APR1 MT8816AF1 SY89540UMY-TR SY55858UHG SY56034ARMG VSC3316YYP FSA2866UMX NB4L858MFAG NB4N840MMNG NB6L72MMNG NB7L72MMNG NB7V72MMNG NB6L72MNR2G SY55859LMG-TR SY55859LMG SY58024UMG GX4002-INE3 SY58023UMG DS10CP152QMA/NOPB DS10CP152TMA/NOPB DS10CP154ATSQ/NOPB DS25CP102TSQ/NOPB DS25CP104ATSQ/NOPB DS25CP114TSQE/NOPB DS25CP152TSQ/NOPB DS90CP02SP/NOPB

