General Description

The SY56040AR is a fully differential, low voltage $1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ CML 4×4 Crosspoint switch. The SY56040AR can process clock signals as fast as 5 GHz or data patterns up to 6.4 Gbps .
The differential input includes Micrel's unique, 3 -pin input termination architecture that interfaces to LVPECL, LVDS or CML differential signals as small as 100 mV $\left(200 \mathrm{mV}_{\mathrm{pp}}\right)$ without any level-shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an internal voltage reference is provided to bias the V_{T} pin. The outputs are 400 mV CML, with extremely fast rise/fall times guaranteed to be less than 80ps.
The SY56040AR operates from a $2.5 \mathrm{~V} \pm 5 \%$ core supply and a $1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$ output supply and is guaranteed over the full industrial temperature range ($40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$). The SY56040AR is part of Micrel's high-speed, Precision Edge ${ }^{\circledR}$ product line.
Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- $1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ CML 4×4 Crosspoint Switch
- Guaranteed AC performance over temperature and voltage:
- DC to 6.4Gbps throughput
- <400ps typical propagation delay (IN-to-Q)
- <25ps typical output skew
- <80ps rise/fall times
- Ultra-low jitter design
- <1 ps ${ }_{\text {RMs }}$ cycle-to-cycle jitter
- <10ps ${ }_{\text {pp }}$ total jitter
- $<1 \mathrm{ps}_{\text {RMs }}$ random jitter
- $<10 \mathrm{ps}$ pp deterministic jitter
- High-speed CML outputs
- $2.5 \mathrm{~V} \pm 5 \%, 1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 2.5 \mathrm{~V} \pm 5 \%$ power supply operation
- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Available in 44 -pin ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$) MLF^{\circledR} package

Applications

- Data Distribution: OC-48, OC-48+FEC
- SONET clock and data distribution
- Fibre Channel clock and data distribution
- Gigabit Ethernet clock and data distribution

Markets

- Storage
- ATE
- Test and measurement
- Enterprise networking equipment
- High-end servers
- Access
- Metro area network equipment

Functional Block Diagram

Truth Table

Input Select Address Table		
SIN1	SIN0	INPUT
0	0	IN0
0	1	IN1
1	0	IN2
1	1	IN3

Output Select Address Table		
SOUT1	SOUT0	OUTPUT
0	0	Q0
0	1	Q1
1	0	Q2
1	1	Q3

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY56040ARMY	MLF-44	Industrial	SY56040ARMY with Pb-Free bar-line indicator	Matte-Sn
SY56040ARMYTR				

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{DC}$ Electricals only
2. Tape and Reel.

Pin Configuration

44-Pin MLF ${ }^{\circledR}$ (MLF-44)

Pin Description

Pin Number	Pin Name	Pin Function
17,15	INO, /INO	Differential Inputs: These input pairs are the differential signal inputs to the device. They accept differential signals as small as $100 \mathrm{mV}(200 \mathrm{mV}$ PP $)$. Each input pin internally terminates with 50Ω to the VT pin. Note that these inputs will default to an indeterminate state if left open. Please refer to the "Interface Applications" section for more details.
10,8	IN1,/IN1	
4,2	N2,/IN	
41,39	IN3,/IN3	
16	VT0	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. This pin provides a center-tap to a termination network for maximum interface flexibility. An internal high impedance resistor divider biases VT to allow input AC-coupling. For AC-coupling, bypass VT with a $0.1 \mu \mathrm{~F}$ low ESR capacitor to VCC. See "Interface Applications" subsection and Figure 2a.
9	VT1	
3	VT2	
40	VT3	
18	SIN0	These single-ended TTL/CMOS-compatible inputs address the data inputs during switch configuration. Note that this input is internally connected to a 25 k ohm pullup resistor and will default to a logic HIGH state if left open.
19	SIN1	
38	SOUT0	These single-ended TTL/CMOS-compatible inputs address the data outputs during switch configuration. Note that these inputs are internally connected to a $25 \mathrm{k} \Omega$ pullup resistor and will default to logic HIGH state if left open.
37	SOUT1	
5	CONFIG	These single-ended TTL/CMOS-compatible inputs control the transfer of the addresses defined by SIN0/1 and SOUTO/1. See "Switch Configuration," "Address Table" and "Timing Diagram" sections for more details. Note that these inputs are internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to logic HIGH state if left open. 1. Load: Loads configurations into first set of latches. After programming SIN and SOUT with input and output address respectively, pulse the LOAD signal with a Low to High to Low signal to latch SIN and SOUT. Four LOAD pulses are needed, each LOAD pulse for each output. See simplified control circuit and switch configuration description on page 9 for further clarification. 2. CONFIG: Loads new configuration into the second set of latches and updates switch configuration. After Loading, pulse CONFIG with a Low to High to Low signal to load/transfer the latched signal to the output. See simplified control circuit and switch configuration description on Page 9 for further clarification. If the LOAD and CONFIG control signals are floating, one of the output pairs is set by the programmed SIN and SOUT addresses, as shown in address tables. For the remaining outputs, setup is random at power up or from previous programmed states.
7	LOAD	
23,24	Q0, /Q0	CML Differential Output Pairs: Differential buffered copy of the selected input signal. The output swing is typically 390 mV . See "Interface Application" subsection for termination information.
26,27	Q1, /Q1	
29,30	Q2, /Q2	
32,33	Q3, /Q3	
6	VCC	Positive Power Supply: Bypass with 0.1uF//0.01uF low ESR capacitors as close to the V_{CC} pin as possible. Supplies input and core circuitry.
22,25,28,31,34	VCCO	Output Supply: Bypass with 0.1 uF//0.01uF low ESR capacitors as close to the $\mathrm{V}_{\mathrm{cco}}$ pins as possible. Supplies the output buffer.
$\begin{gathered} \hline 12,13,20,21,35 \\ 36,43,44 \end{gathered}$	GND, Exposed pad	Ground: Exposed pad must be connected to a ground plane that is at the same potential as the ground pin.
1,11,14,42	NC	Not Connected.

Absolute Maximum Ratings ${ }^{(1)}$

Supply Voltage (V_{CC}).............................. 0.5 V to +3.0 V
Supply Voltage ($\mathrm{V}_{\mathrm{cco}}$) -0.5 V to +2.7 V

CML Output Voltage ($\mathrm{V}_{\text {OUT }}$)................ 0.6 V to $\mathrm{V}_{\text {Cco }}+0.5 \mathrm{~V}$
Current (V_{T})
Source or sink current on VT pin $\pm 100 \mathrm{~mA}$
Input Current
Source or sink current on (IN, /IN) $\pm 50 \mathrm{~mA}$
Maximum Operating Junction Temperature.......... $125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 20sec.).................. $260^{\circ} \mathrm{C}$
Storage Temperature $\left(\mathrm{T}_{\mathrm{s}}\right) ~-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage (V_{CC}) 2.375 V to 2.625 V
(V Cco).. 1.14V to 2.625 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$.................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance ${ }^{(3)}$ MLF ${ }^{\circledR}$
Still-air $\left(\theta_{\mathrm{JA}}\right)$
$.40^{\circ} \mathrm{C} / \mathrm{W}$

Junction-to-board (ψ_{JB}) $20^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics ${ }^{(4)}$

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {cc }}$	Power Supply Voltage Range	V cc	2.375	2.5	2.625	V
		V cco	1.14	1.2	1.26	V
		V cco	1.7	1.8	1.9	V
		Vcco	2.375	2.5	2.625	V
I_{Cc}	Power Supply Current	Max. V ${ }_{\text {cc }}$		155	200	mA
Icco	Power Supply Current	No Load. Max. Vcco		64	84	mA
R_{IN}	Input Resistance (IN -to- V_{T}, /IN-to- V_{T})		45	50	55	Ω
$\mathrm{R}_{\text {DIFF_IN }}$	Differential Input Resistance (IN-to-/IN)		90	100	110	Ω
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage (IN, /IN)		1.2			V
VIL	Input LOW Voltage (IN, /IN)	$\mathrm{V}_{\text {IL }}$ with $\mathrm{V}_{\text {IHMIN }}=1.2 \mathrm{~V}$	0.2		$\mathrm{V}_{1 \mathrm{H}-0.1}$	V
V_{IH}	Input HIGH Voltage (IN, /IN)		1.14			V
VIL	Input LOW Voltage (IN, /IN)	$\mathrm{V}_{\text {IL }}$ with $\mathrm{V}_{\text {IHMIN }}=1.14 \mathrm{~V}(1.2 \mathrm{~V}-5 \%)$	0.66		$\mathrm{V}_{1 \mathrm{H}^{-0}} 0.1$	V
V IN	Input Voltage Swing (IN, /IN)	see Figure 3a	0.1		1.0	V
V DIFF_IN	Differential Input Voltage Swing $(\|\mathrm{IN}-/ \mathrm{IN}\|)$	see Figure 3b	0.2		2.0	V
$\mathrm{V}_{\text {T_IN }}$	Voltage from Input to V_{T}				1.28	V

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. ψ_{JB} and θ_{JA} values are determined for a 4-layer board in still-air number, unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

CML Outputs DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{\mathrm{Cco}}=1.14 \mathrm{~V}$ to $1.26 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{Cco}}$,
$\mathrm{V}_{\mathrm{CcO}}=1.7 \mathrm{~V}$ to $1.9 \mathrm{~V} ; 2.375 \mathrm{~V}$ to $2.625 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{Cco}}$ or 100Ω across the outputs.
$\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V . $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{cco}}$	$V_{\text {cco-0 }} 0.020$	$\mathrm{V}_{\text {cco-0 }} 0.010$	V cco	V
Vout	Output Voltage Swing	See Figure 3a	300	390	475	mV
V DIFF_OUT	Differential Output Voltage Swing	See Figure 3b	600	780	950	mV
Rout	Output Source Impedance		45	50	55	Ω

LVTTL/CMOS DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \% . \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0		$\mathrm{~V}_{\text {CC }}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V
$\mathrm{I}_{\text {IH }}$	Input HIGH Current		-125		30	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current		-300		$\mu \mathrm{~A}$	

Note:
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{cco}}=1.14 \mathrm{~V}$ to $1.26 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{cco}}$,
$\mathrm{V}_{\mathrm{CcO}}=1.7 \mathrm{~V}$ to $1.9 \mathrm{~V}, 2.375 \mathrm{~V}$ to $2.625 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{Cco}}$ or 100Ω across the outputs.
$\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V . $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Data Rate/ Frequency	NRZ Data	6.4			Gbps
		V Out $>200 \mathrm{mV}$ Clock	5			GHz
$t_{\text {PD }}$	Propagation Delay IN-to-Q		200	290	400	ps
	CONFIG-to-Q LOAD/CONFIG-Q			$\begin{aligned} & 450 \\ & 850 \end{aligned}$		ps
$t_{\text {PW }}$	Pulse Width of LOAD/CONFIGIG signal		1500			ps
ts_{s}	Set-up Time SIN-to-LOAD SIN-to-LOAD/CONFIG SOUT-to-LOAD SOUT-to-LOAD/CONFIG LOAD-to-CONFIG CONFIG-to-LOAD	Note 7, Fig. 1b, Fig. 1c	$\begin{gathered} 600 \\ 600 \\ 800 \\ 800 \\ 1400 \\ 300 \\ \hline \end{gathered}$			ps
t_{H}	Hold time LOAD-to-SIN LOAD/CONFIG-to-SIN LOAD-to-SOUT LOAD/CONFIG-to-SOUT	Note 8, Fig. 1b, Fig. 1c	$\begin{aligned} & 800 \\ & 500 \\ & 600 \\ & 500 \end{aligned}$			ps
$t_{\text {Skew }}$	Input-to-Input skew	Note 9		25	50	ps
	Output-to-Output skew	Note 10		12	25	ps
	Part-to-Part Skew	Note 11			75	ps
$\mathrm{t}_{\text {Jitter }}$	Data Random Jitter	Note 12			1	ps ${ }_{\text {RMS }}$
	Deterministic Jitter	Note 13			10	pSpp
	Clock Cycle-to-Cycle Jitter	Note 14			1	$\mathrm{ps}_{\text {RMS }}$
	Total Jitter	Note 15			10	pspp
	Crosstalk Induced Jitter (Adjacent Channel)	Note 16			0.7	pSpP
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Times (20\% to 80\%)	At full output swing.	20	50	80	ps
	Duty Cycle	Differential I/O $\leq 4 \mathrm{GHz}$	47		53	\%
		Differential $\mathrm{I} / \mathrm{O} \leq 5 \mathrm{GHz}$	45		55	\%

Notes:

6. High frequency AC electrical values are guaranteed by design and characterization.
7. Set-up time is the time a signal has to be present before the rising edge of the clock/control signal comes by. For example, t_{s} (SIN-LOAD/CONFIG), requires the time SIN has to transition before the L-H edge of the LOAD/CONFIG signal asserts.
8. Hold time is the time a signal has to be present after the falling edge of the clock edge/control signal comes by. For example, $\mathrm{t}_{\mathrm{H}}($ LOAD/CONFIG-SIN) defines the time SIN signal has to transition after the H-L edge of the LOAD/CONFIG signal asserts.
9. Input-to-Input skew is the difference in time between 4 inputs, measured at the same output, for the same temperature, voltage, and transition.
10. Output-to-Output skew is the difference in time between 4 outputs, receiving data from the same input, for the same temperature, voltage and transition.
11. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs.
12. Random jitter is measured with a $K 28.7$ pattern, measured at $\leq f_{\text {max }}$.
13. Deterministic jitter is measured at 2.5 Gbps with both K 28.5 and $2^{23}-1$ PRBS pattern.
14. Cycle-to-cycle jitter definition: the variation period between adjacent cycles over a random sample of adjacent cycle pairs. $\mathrm{t}_{\boldsymbol{\prime l} \text { ITER_cc }}=T_{n}-T_{n+1}$, where T is the time between rising edges of the output signal.
15. Total jitter definition: with an ideal clock input frequency of $\leq f_{\text {max }}$ (device), no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
16. Crosstalk induced jitter is defined as the added jitter that results from signals applied to the adjacent channel. It is measured at the output. While applying a similar, differential clock frequency to both inputs that is asynchronous with respect to each other.

Switch Configuration

As shown in the Simplified Control Circuit below, Figure 1a, each output channel consists of two sets of latches. The first set of latches stores the SIN information for each SOUT selected. The second set of latches transfers this stored information to the output MUX circuitry. These latches are transparent when EN is high and latched when EN is low.
Two pins, LOAD and CONFIG, control the programming. LOAD is ANDed with the SOUT pins to route the SIN data to the appropriate first set of latches. CONFIG subsequently transfers the information in the first set of latches to the second set of latches, which is connected to the output MUX circuitry.
There are two ways to program this device. The first is a Dual Control Mode, as shown in Figure 1b. First, all the input-output (SIN-SOUT) information is loaded. Second, this information is transferred to the output control circuitry. Each LOAD pulse loads the input information (SIN) to be assigned to the output (SOUT). In maximum, four LOAD pulses are applied, one LOAD pulse for each output. Note that LOAD pulses are necessary only for undefined and/or modified input-output combinations. After all the input-output information is loaded, the CONFIG is pulsed to transfer and latch this information to the output control circuitry.
The second programming method is the Single Control Mode, shown in Figure 1c, in which LOAD and CONFIG are tied together. Each individual output receives the appropriate input information in a oneshot control pulse. When one output is being programmed, the other outputs remain unaffected until its turn occurs.

Interface Applications

For Input Interface Applications, see Figures 4a through 4f. For CML Output Termination, see Figures 5a through Figure 5d.

CML Output Termination with VCCO 1.2V

For VCCO of 1.2 V , Figure 5a, terminate the output with 50Ω to 1.2 V , DC-coupled, not 100Ω differentially across the outputs.
If AC-coupling is used, Figure 5d, terminate into 50Ω -to- 1.2 V before the coupling capacitor and then connect to a high value resistor to a reference voltage.
Do not AC-couple with internally terminated receiver, such as 50Ω ANY-IN input. AC-coupling will offset the output voltage by 200 mV and this offset voltage will be too low for proper driver operation. Any unused output pair needs to be terminated when VCCO is 1.2 V , do not leave floating.

CML Output Termination with VCCO 1.8 V , 2.5 V
For VCCO of 1.8 V and 2.5 V , refer to Figure 5 a and Figure 5b, terminate with either 50Ω to VCCO or 100Ω differentially across the outputs. See Figure 5c for AC-coupling.

Input AC-Coupling

The SY56040AR input can accept AC-coupling from any driver. Bypass VT with a $0.1 \mu \mathrm{~F}$ low ESR capacitor to VCC as shown in Figures 4c and 4d. VT has an internal high impedance resistor divider as shown in Figure 2a, to provide a bias voltage for AC -coupling.

Figure 1a. Simplified Control Circuit

Timing Diagrams

Figure 1b. Dual-Control Mode Timing Diagram

Figure 1c. Single-Control Mode Timing Diagram
Note 17. Invalid and valid refer to configurations being changed. All outputs with unchanged configurations remain valid.

Typical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=1.2 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Functional Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=2.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to 2.5 V , Data Pattern: $2^{23}-1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Input and Output Stage

Figure 2a. Simplified Differential Input Buffer

Single-Ended and Differential Swings

Figure 3a. Single-Ended Swing

Figure 2b. Simplified CML Output Buffer

Figure 3b. Differential Swing

Input Interface Applications

Figure 4a. CML Interface (DC-Coupled, $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$)

Option: May connect V_{T} to $V_{C C}$

For $2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=50 \Omega$.

Figure 4d. LVPECL Interface (AC-Coupled)

Figure 4b. CML Interface (DC-Coupled, 1.2V)

Figure 4c. CML Interface (AC-Coupled)

Figure 4e. LVPECL Interface (DC-Coupled)

Figure 4f. LVDS Interface

CML Output Termination

Figure 5 a . $1.2 \mathrm{~V}, 1.8 \mathrm{~V}$ or 2.5 V CML DC-Coupled Termination

Figure 5c. CML AC-Coupled Termination (Vcco 1.8V or 2.5 V)

Figure 5 b. 1.8 V or 2.5 V CML DC-Coupled Termination

Figure 5d. CML AC-Coupled Termination
(Vcco 1.2V only)

Related Product and Support Documents

Part Number	Function	Datasheet Link
HBW Solutions	New Products and Termination Application Notes	http://www.micrel.com/page.do?page=/product- info/as/HBWsolutions.shtml
SY58040U	4×4 CML switch with internal I/O term.	http://www.micrel.com/_PDF/HBW/sy58040u.pdf\#page=3
SY89540U	4×4 LVDS switch with internal I/O term.	http://www.micrel.com/_PDF/HBW/sy89540u.pdf\#page=3

Package Information

TOP VIEW

BOTTOM VIEW

NOTE:

1. ALL DIMENSIDNS ARE IN MILLIMETERS.
2. MAX. PACKAGE WARPAGE IS 0.05 mm .
3. MAXIMUM ALLIWABE BURRS IS 0.076 mm IN ALL DIRECTIONS.
4. PIN \#1 ID ZN TIP WILL BE LASER/INK MARKED.
5. DIMENSIION APPLIES TI METALIZED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FRIM TERMINAL TIP.
6. APPLIED GNLY FIR TERMINALS.
A. APPLIED FOR EXPISED PAD AND TERMINALS.

SIDE VIEW

44-Pin MicroLeadFrame ${ }^{\circledR}$ (MLF-44)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2008 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog \& Digital Crosspoint ICs category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
MT093APR1 MT093AE1 MT8808AE1 ADV3203ASWZ ADV3202ASWZ AD8177ABPZ VSC3308YKU MT8806AE1 CBTL08GP053EVY PI3USB31532ZLEX ISPGDX240VA-4BN388 CBTL04GP043EXJ ADV3200ASWZ AD8114ASTZ AD8113JSTZ MAX9392EHJ+ MAX9393EHJ+ MAX9152ESE+ MAX4550CWI MAX4550EWI+ NB6L72MNG LX256EV-5FN484C AD8112JSTZ AD8115ASTZ SN65LVCP22D NB4N840MMNR4G SY58023UMG TUSB546AI-DCIRNQT TUSB546-DCIRNQR VSC3303YHV-01 ADV3205JSTZ AD75019JPZ AD75019JPZ-REEL AD8106ASTZ AD8107ASTZ AD8108ASTZ AD8109ASTZ AD8110ASTZ AD8111ASTZ AD8116JSTZ AD8117ABPZ AD8152JBPZ AD8153ACPZ AD8155ACPZ AD8158ACPZ AD8159ASVZ ADG2188BCPZ-HS-RL7 ADG2108YCPZ-REEL7 ADG2108BCPZ-REEL7 ADG2128BCPZ-REEL7

