SY87725L

2.5Gbps GPON/BPON ONU SERDES

General Description

The SY87725L is a single chip transceiver for data rates up to 2.5 Gbps . On the receive side, it includes a complete clock recovery and data retiming circuit with an integrated 4-bit serial-to-parallel data converter. On the transmit side, it includes a synthesizer with an integrated 4-bit parallel-to-serial data converter.
The SY87725L receiver has a synthesizer that generates an internal clock from an externally supplied TTL or PECL REFCLK that can be either 155.52 MHz or 77.76 MHz . This internal clock can be used by the clock recovery PLL if an absence of transitions on the input serial data stream prevents normal clock recovery. This enables it to provide a stable clock source in the absence of transitions on the incoming serial data stream.
The transmit synthesizer uses the CLKIN parallel data clock to generate its own serial rate clock locked to CLKIN. This enables the transmit and receive to operate at different data rates.
The serial interface for both the transmit and receive functions feature industry standard high-speed differential CML I/O. The parallel interfaces feature highspeed LVDS I/O with an internal 100Ω termination on the LVDS inputs.
The first bit for the serial-to-parallel conversion can be moved using the RCV_SYNC input. The RCV_SYNC input enables the parallel word boundary to move up in time by one bit time for each pulse. This allows it to in effect "swallow" one bit each time the RCV_SYNC pulse is asserted.
Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- Single 3.3 V supply and 1 W typ. power consumption
- $2.5 \mathrm{G} / 1.25 \mathrm{G} / 625 \mathrm{Mbps}$ down stream
- $1.25 \mathrm{G} / 625 \mathrm{M} / 156 \mathrm{Mbps}$ up stream
- 4-bit Serdes with LVDS interfaces
- Serial Data input sensitivity of 30 mV typical
- Training mode for fast lock acquisition
- Link Fault Indicator (LFIN: "HIGH" = Locked)
- Separate training and MUX synthesizers
- Loop back function for diagnostics
- TTL-CML Translator for MAC-to-Laser diode driver burst control
- Selectable double data rate option for low cost FPGA/ASIC MAC implementation
- Available in Pb -Free ($10 \mathrm{~mm} \times 10 \mathrm{~mm}$) 64-pin EPAD-TQFP

Applications

- BPON/GPON/GEPON/EPON

Markets

- FTTH/FTTP

Functional Block Diagram

Pin Configuration

64-Pin EPAD-TQFP (T64-1)

Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY87725LHY	H64-1	Industrial	SY87725LHY with Pb-Free bar-line indicator	Pb-Free Matte-Sn
SY87725LHYTR				

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, DC electricals only.
2. Tape and Reel

Pin Description

receive section signals

Pin Number	Pin Name	Pin Description
55, 56	SINP, SINN	Serial Data In (Differential LVPECL Input): This input receives the serial differential data stream. An internal PLL recovers the embedded clock and data.
60, 61	REFCLKP, REFCLKN,	Reference Clock (TTL or Differential LVPECL Input): This input accepts either singleended TTL or differential LVPECL signals and is used as the reference for the internal frequency synthesizer and the "training" frequency for the receiver PLL to keep it centered in the absence of data at the SIN input. The REFCLKN input has an internal reference circuit that applies the threshold voltage in case of a single-ended TTLsignal at REFCLKP. REFCLKN has an internal $75 \mathrm{k} \Omega$ to GND and can be left open in that case.
15	REFFREQSEL	Reference Clock Frequency Select (TTL Input): Selects REFCLK frequency of 77.76 MHz when LOW or 155.52 MHz when HIGH.
6, 7	RCV_PLLRP, RCV_PLLRN	Clock Recovery PLL Loop Filter: External loop filter pins for the receive PLL.
1, 2	RCV_PLLSN, RCV_PLLSP	Clock Synthesis PLL Loop Filter: External loop filter pins for the clock synthesis PLL.
59	RCV_SYNC	Receive Synchronizer (TTL Input): Single-ended asynchronous input to set the word boundary on the 4-bit parallel data
3, 5	RCV_FSELO, RCV_FSEL1	Receive Frequency Control (TTL Inputs): Two single-ended frequency selects for receive synthesizer.
$\begin{aligned} & 39,40, \\ & 41,42, \\ & 43,44, \\ & 45,46 \end{aligned}$	DOUTOP, DOUTON, DOUT1P, DOUT1N, DOUT2P, DOUT2N, DOUT3P, DOUT3N	Parallel Data Out (LVDS Outputs): These are the four pairs of receive parallel data outputs.
33, 34	CLKOUT2P, CLKOUT2N	Parallel Clock Out (LVDS Output): This output is the recovered clock at the transmit byte clock rate and provides a clock that can be used as a reference clock to drive CLKIN.
36, 37	CLKOUTP, CLKOUTN	Parallel Clock Out (LVDS Output): This output is the recovered clock divided by 4 or 8 to provide the parallel data rate clock.
18	LFIN	Link Fault Indicator (TTL Output): When HIGH, LFIN indicates CDR is "in-lock" and when LOW it indicates CDR loss-of-lock.
63	RCV_DDRSEL	Double Data Rate Select (TTL Input): Selects either parallel data rate clock for normal operation or one-half of parallel data rate clock for double data rate applications.
62	CD	Carrier Detect Input (LVPECL input): When HIGH, CD indicates the carrier is present and when LOW it indicates the loss of carrier.

TRANSMIT SECTION SIGNALS

$25,26,27$, $28,29,30$, 31,32	DINOP, DINON, DIN1P, DIN1N, DIN2P, DIN2N, DIN3P, DIN3N	Parallel Data In (LVDS Inputs): These are the four pairs of transmit parallel data inputs. Each Differential pair has a 100Ω internal termination across the pair.
22,23	CLKINP, CLKINN	Parallel Clock In (LVDS Input): This input is the transmit parallel (byte-rate) clock.
10,14	XMT_FSELO, XMT_FSEL1	Transmit Frequency Control (TTL Inputs): Two single-ended frequency selects for transmit synthesizer.
11,12	XMT_PLLSN, XMT_PLLSP	Clock Synthesis PLL Loop Filter: External loop filter pins for the clock synthesis PLL.
49,50	SOUTP, SOUTN	Serial Data Out (Differential CML Output): This is the serial differential data stream output.
24	XMT_DDRSEL	Double Data Rate Select (TTL Input): Selects either parallel data rate clock for normal operation or one-half of parallel data rate clock for double data rate applications.

LOOPBACK CONTROLS

Pin Number	Pin Name	Pin Description
16,17	XMT_CNTRLO, XMT_CNTRL1	Transmit Loop back Multiplexer Control (TTL Inputs): Two single-ended control lines to control the data flow for remote loop back or normal serial data output.
4,64	RCV_CNTRLO, RCV_CNTRL1	Receive Loop back Multiplexer Control (TTL Inputs): Two single-ended control lines to control the data flow for local loop back or recovered serial data into the 1:4 DeMUX.

TRANSLATOR SIGNALS

48	IN	Signal from MAC to be translated (TTL Input)
52,53	OUTP, OUTN	Signal to Laser Diode Driver (CML Differential Output)

POWER PINS AND TEST PIN

13	Testb	Test Mode Pin: When held LOW activates test mode. (For factory use only, leave open for normal operation.)
20	Test	Test Mode Pin: When held HIGH activates test mode. (For factory use only, must be tied to GND for normal operation.).
8	VCCA	Analog Power: Connect to +3.3V power supply. Bypass with $0.1 \mu \mathrm{~F} / / 0.1 \mu \mathrm{~F}$ low ESR capacitors as close to VCCA pin as possible.
9	GNDA	Analog Ground pin and exposed pad must be connected to the same ground plane.
$19,38,47,54$, 57	VCC	Core Power: Connect to +3.3V power supply. Bypass with $0.1 \mu \mathrm{~F} / / 0.1 \mu \mathrm{~F}$ low ESR capacitors as close to VCC pins as possible.
$21,35,58$	GND, Exposed Pad	Core Ground: Ground pins and exposed pad must be connected to the same ground plane.
51	VCCO	CML Output Power: Connect to +3.3V power supply. Bypass with $0.1 \mu \mathrm{~F} / / 0.1 \mu \mathrm{~F}$ low ESR capacitors as close to VCCO pin as possible.

Functional Description

The SY87725L is a fully integrated transceiver with an integrated serial-to-4-bit DeMUX and 4-bit-to-serial Multiplexer.

Receive Section

Clock and Data Recovery Function

The Clock Recovery function includes a synthesizer that generates a stable frequency based on the REFCLK input. The REFCLK input can be either a differential PECL input or a single-ended TTL input. It can also be either 77.76 MHz or 155.52 MHz as selected by REFFREQSEL. The synthesized frequency derived from the REFCLK is within 1000ppm of the incoming serial data rate and is used by the Clock and Data Recovery (CDR) circuit to "train" to the correct frequency range. This training function minimizes the acquisition time for the CDR to lock onto the incoming data stream by keeping the CDR frequency within close range of the recovered clock in the case of loss of data.

The RCV_FSEL0 and RCV_FSEL1 inputs select the receive data rate. For example, these inputs can be used to select an OC-48, OC-24 or OC-12 data rate for the serial data in, SIN. The typical input sensitivity of SIN is 30 mV .
The Clock Recovery function also generates CLKOUT2 that is controlled by the XMT_DDRSEL input for regular or double data rate applications. If a clean, low-jitter byte-rate clock is not available for CLKIN to the Transmit Synthesizer, CLKOUT2 can be used as the reference clock.

DeMUX Function

The recovered serial data from the CDR is converted to a 4-bit parallel word by a 1:4 de-multiplexer. The serial-to-parallel conversion sequence is LSB first, i.e. first serial bit in is DOUT0, second serial bit in is DOUT1, etc. A RCV_SYNC pulse input is used to set the word boundary of the 4-bit parallel word. A single pulse, applied asynchronously for a minimum of two input clock cycles to the RCV_SYNC input, causes the start bit of conversion to occur one bit earlier.

The CLKOUT output is the parallel data rate clock to be used with the DOUT parallel data from the DeMUX. It is selectable by the RCV_DDRSEL input to be either at the parallel data rate or one-half the parallel data rate for double data rate applications.

Transmit Section

Synthesizer Function

The SY87725L Transmit Synthesizer uses the divide-by4 parallel clock input or a divide-by-8 clock input when double data rate is selected as a reference clock. The XMT_FSELO and XMT_FSEL1 inputs select the TX data rate. For example, these inputs can be used to select an OC-24, OC-12 or OC-3 rate for the serial data out, SOUT.

MUX Function

The 4-bit parallel data input is converted to a serial data stream with a $4: 1$ multiplexer. The parallel-to-serial conversion sequence is LSB first, i.e. DINO will be shifted out first, followed by DIN1, etc.

Auto-Alignment Function

Because the 4-bit parallel data input can have an arbitrary phase relationship with the transmit byte-rate clock input (CLKIN), an auto-alignment function is included in the transmit parallel-to-serial circuit.
The phase of the 4-bit parallel data is sampled and compared with the phase of the incoming CLKIN. If the clock and data are not in the proper phase relationship, the phase is internally adjusted to insure that the data will be sampled at the optimal time. This can result in a variation of the latency between the parallel data in and the serial data out (TDOUT) of up to three CLKIN clock cycles.

Loopback Function

Two $3: 1$ multiplexers are provided to allow Local or Remote Loopback.

Frequency Selections

XMT_FSEL0	XMT_FSEL1	TX DATA RATE
0	0	155.52 Mbps
1	0	622.08 Mbps
0	1	1244.16 Mbps
1	1	N/A

Table 1. Transmit Frequency Selection

RCV_FSELO	RCV_FSEL1	RX DATA RATE
0	0	N/A
1	0	622.08 Mbps
0	1	1244.16 Mbps
1	1	2488.32 Mbps

Table 2. Receive Frequency Selection

XMT_FSELO	XMT_FSEL1	XMT_DDRSEL	CLKOUT2
0	0	0	38.88 MHz
1	0	0	155.52 MHz
0	1	0	311.04 MHz
1	1	0	N/A
0	0	1	19.44 MHz
1	0	1	77.76 MHz
0	1	1	155.52 MHz
1	1	1	N/A

Table 3. CLKOUT2 Frequency Selection

RCV_CNTRL0	RCV_CNTRL1	XMT_DDRSEL	RCV_DDRSEL	DOUT	CLKOUT
0	0	0	0	N/A	N/A
1	0	0	0	DIN	CLKIN
0	1	0	0	SIN (bypass)	REFCLK/4
1	1	0	0	SIN (Recovered Data)	Recovered Clock/4
0	0	1	0	N/A	N/A
1	0	1	0	DIN	2 * CLKIN
0	1	1	0	SIN (bypass)	REFCLK/4
1	1	0	0	SIN (Recovered Data)	Recovered Clock/4
0	0	0	1	N/A	N/A
1	1	0	1	DIN	CLKIN/2
0	0	1	1	1	SIN (bypass)
1	0	1	1	1	NEFCLK/8
1	1	1	1	DIN	Recovered Clock/8
0	1	0	SIN (bypass)	N/A	
1	1	1	RIN (Recovered Data)	Recovered Clock/8	

Table 4. Local Loopback Controls

XMT_CNTRL0	XMT_CNTRL1	SOUT
0	0	SIN (Bypass CDR)
1	0	Recovered Clock (from SIN)
0	1	Recovered Data (from SIN)
1	1	DIN (Normal Data Flow)

Table 5. Remote Loopback Controls

Loop Filter Components

	\mathbf{R}	\mathbf{C}
Rcv_PLLS	$1.2 \mathrm{k} \Omega$	$1 \mu \mathrm{~F}$
Rcv_PLLR	390Ω	$1 \mu \mathrm{~F}$
XMT_PLLS	$1.2 \mathrm{k} \Omega$	$1 \mu \mathrm{~F}$

Table 6. Synthesizer \& Clock Recovery Loop Filter Values

Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage (V_{cc}) -0.5 V to +4.6 V
Input Voltage ($\mathrm{V}_{\mathbb{N}}$) -0.5 V to $\mathrm{V}_{\text {C }}$
LVDS Output Current (lout)................................. $\pm 10 \mathrm{~mA}$
Current.. $\pm 25 \mathrm{~mA}$
Lead Temperature (soldering, 20 sec.) $+260^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage (V_{cc}) +3.15 V to +3.45 V
Ambient Temperature (T_{A}) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance ${ }^{(3)}$
MLF ${ }^{\circledR} \theta_{\text {נв }}$
Still-Air .. $35^{\circ} \mathrm{C} / \mathrm{W}$
MLF ${ }^{\circledR} \psi_{\text {s }}$
Junction-to-Board .. $7^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics ${ }^{(4)}$

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{cc}	Power Supply		3.15	3.3	3.45	V
I_{Cc}	Power Supply Current	No load, max. V_{cc}		300	380	mA

LVPECL Electrical Characteristics ${ }^{(4)}$

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=\mathrm{GNDA}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{IH}	Input HIGH Voltage		$\mathrm{V}_{\mathrm{cc}}-1.165$		$\mathrm{~V}_{\mathrm{cc}}-0.88$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage		$\mathrm{V}_{\mathrm{cc}}-1.810$		$\mathrm{~V}_{\mathrm{cc}}-1.475$	V

CML Output Electrical Characteristics ${ }^{(4)}$

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=\mathrm{GNDA}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {OH }}$	Output HIGH Voltage		$\mathrm{V}_{\mathrm{CC}}-0.020$	$\mathrm{~V}_{\mathrm{CC}}-0.010$	$\mathrm{~V}_{\mathrm{CC}}$	V
V OUT	Output LOW Voltage		325	400		mV
V $_{\text {DIFF_OUT }}$	Differential Output Voltage		650	800		mV

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package Thermal Resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JB} assumes a 4-layer PCB. ψ_{JA} in still air unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established

LVTTL/CMOS DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=\mathrm{GNDA}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{IH}	Input HIGH Voltage		2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input LOW Voltage		0		0.8	V
I_{IH}	Input HIGH Current		-125		30	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current		-300			$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	2.0			V
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage	$\mathrm{I}_{\mathrm{OI}}=4 \mathrm{~mA}$			0.5	V
I_{OS}	Output Short-Circuit Current	V OUT $=0 \mathrm{~V}$ (max. 1sec.)	-100		-15	mA

LVDS DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{C C}=\mathrm{V}_{C C A}=\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V} \pm 5 \% ; G N D=G N D A=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN-Range }}$	Input Voltage Range		0		2.4	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage Swing		100		500	mV
$\mathrm{V}_{\text {IIFF-IN }}$	Differential Input Voltage Swing		200		1000	mV
$\mathrm{R}_{\text {IN }}$	Input Differential Resistance		85	100	115	Ω
$\mathrm{~V}_{\text {OUT }}$	Output Voltage Swing			325		mV
$\mathrm{V}_{\text {DIFF-OUT }}$	Differential Output Voltage Swing		1.125		1.275	V
$\mathrm{~V}_{\text {OCM }}$	Output Common Mode Voltage		-50		+50	mV
$\Delta \mathrm{V}_{\text {OCM }}$	Change in Output Common Mode Voltage					mV

Note:
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=\mathrm{GNDA}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
SIN MAX	SIN Maximum Data Rate		2.5			Gbps
SOUT $_{\text {MAX }}$	SOUT Maximum Data Rate		1.25			Gbps
$t_{\text {ACQ }}$	Acquisition Lock Time				15	$\mu \mathrm{s}$
	Frequency Difference, LFIN shows Out-of-Lock			1000		ppm
$\mathrm{t}_{\text {CPWH }}$	REFCLK Pulse Width HIGH Time		2.5			ns
tcpwL	REFCLK Pulse Width LOW Time		2.5			ns
tskew	Parallel CLKOUT to Parallel Data Out Skew	See "Figure 1"	-150		+150	ps
$\mathrm{t}_{\mathrm{PR}}, \mathrm{t}_{\text {PF }}$	CML Output Rise/Fall Time (20\% to 80\%)	At full output swing	40	70	100	ps
$t_{\text {LR }}, \mathrm{t}_{\text {LF }}$	LVDS Output Rise/Fall Time (20\% to 80\%)	At full output swing	100	250	400	ps
t_{DC}	CLKOUT, CLKOUT2 Duty Cycle		45		55	\%

Note:
6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

Timing Diagrams

Receive Timing

Figure 1. 1:4 Serial-to-Parallel Conversion

Figure 2. 1:4 Serial-to-Parallel Conversion with SYNC Pulse

Transmit Timing

Figure 3. 4:1 Parallel-to-Serial Conversion

Applications Sections

This section illustrates the various operating modes of the SY87725L with the appropriate control signals.

Normal Data Flow

Receive Section

The diagram below shows the data paths in a normal operating mode. In this case, downstream data at a serial rate of 2.5 Gbps is arriving at SIN and the recovered 4-bit parallel data is exiting at DOUT at 625 Mbps . This is not the double data rate mode (DDR) so the parallel rate is the serial rate $\div 4$.

Transmit Section

On the transmit side, the upstream data appears at DIN in a 4-bit wide parallel format at 312.5 Mbps and exits at SOUT at a 1.25 Gbps serial rate. The CLKIN input is synchronous with the parallel data at DIN.
The loopback control signals RCV_CNTRLO, RCV_CNTRL1, XMT_CNTRL0, XMT_CNTRL1 shown in the table below select the clock and data paths for normal operation. The RCV_DDRSel input is selecting the CLKOUT to be in normal rate ($\div 4$) mode.

Figure 4. Normal Data Flow

RCV_CNTRL0	RCV_CNTRL1	XMT_CNTRL0	XMT_CNTRL1	RCV_DDRSEL
1	1	1	1	0

Table 7. Loopback and DDR Select Control Signals

RCV_FSEL0	RCV_FSEL1	XMT_FSEL0	XMT_FSEL1
1	1	0	1

Table 8. Transmit and Receive Frequency Select

Normal Data Flow (Secondary Clock)

Receive Section

This mode is identical to the Normal Mode in the
previous section, but utilizes CLKOUT2 to be used as the transmit parallel clock. In this mode, CLKOUT2 must be externally connected to CLKIN as shown in the block diagram below.

Figure 5. Normal Data Flow

RCV_CNTRL0	RCV_CNTRL1	XMT_CNTRLO	XMT_CNTRL1	RCV_DDRSEL
1	1	1	1	0

Table 9. Loopback and DDR Select Control Signals

RCV_FSEL0	RCV_FSEL1	XMT_FSEL0	XMT_FSEL1
1	1	0	1

Table 10. Transmit and Receive Frequency Select

Remote Loopback Mode 00

This is the simplest of the loopback modes as its main purpose is to verify if the link is OK.

It is possible to combine this with Local Loopback modes; however, it is intended to be a stand-alone test mode.

REMOTE LOOPBACK DATA FLOW

Figure 6. Remote Loopback Data Flow

XMT_CNTRL0	XMT_CNTRL1
0	0

Table 11. Loopback Control Signals

Remote Loopback Modes 01 and 10

These modes verify the operation of the CDR by
looping back the recovered clock or data.
The REFCLK is necessary for normal operation of the CDR.

Figure 7. Remote Loopback Recovered Clock Flow

XMT_CNTRL0	XMT_CNTRL1
1	0

Table 12. Loopback Control Signals

Figure 8. Remote Loopback Recovered Data Flow

XMT_CNTRLO	XMT_CNTRL1
0	1

Table 13. Loopback Control Signals

CDR Bypass Mode

This mode bypasses the CDR and feeds SIN directly into the DeMUX. Because the CDR is bypassed, there is no recovered clock in this mode. The RefClk is fed directly into the DeMUX and is the serial rate clock.

Therefore, in this mode only, the RefClk is not used by the Synthesizer but will be at the same frequency as the SIN data rate. In this mode the maximum SIN data rate is 155.52 Mbps and the matching RefClk frequency will be 155.52 MHz . The Data at SIN is sampled at the falling edge of REFCLK.

CDR BYPASS MODE DATA FLOW

Figure 9. CDR Bypass Mode

RCV_CNTRL0	RCV_CNTRL1
0	1

Table 14. Loopback Control Signals

Local Loopback Mode

This mode loops the serial data out of the Mux back to the serial input of the DeMux. This allows the
operation of the Mux and DeMux to be verified through the parallel interface.

LOCAL LOOPBACK DATA FLOW

Figure 10. Local Loopback Data Flow

RCV_CNTRL0	RCV_CNTRL1
1	0

Table 15. Loopback Control Signals

Package Information

64-Pin EPAD-TQFP (T64-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2006 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers \& Support Products category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
NLV14541BDR2G MIC1557YD5-TR Z84C3010AEG MIC1555YMU-TR NLV14541BDG MAX7375AXR365+T MIC1555YD5-TR PT8A2515TAEX PT8A2514APE S-35710M01I-E8T3U LTC6992CDCB-2\#TRMPBF SY87700ALZG LM555CM LMC555CM FT8010UMX FTL11639UCX MAX809TEUR+ MAX809MEUR+ MAX7375AXR185+T MAX7375AXR105+T MAX3634ETM+ FTL75939UCX NA555S-13 NB7N017MMNG NJM555D 82P33731ABAG MAX7375AXR405+T Z84C3006PEG SA555S-13 MAX7375AXR805T SY87701ALHG MCP130-475HI/TO S-1410G28-K8T2U4 VSC8115XYA-05-T VSC8115XYA-06-T LTC6992CS63\#TRMPBF NLV14541BDTR2G 636058D 8406501JA S-1410H30-K8T2U4 S-35710C01I-K8T2U S-35770E01I-K8T2U S-35720C01IK8T2U S-35720C02I-K8T2U S-35730C01I-K8T2U S-35740C01I-K8T2U ALD1502SAL ALD2502SBL ALD4501PEL ALD4501SEL

