Precision 1:15 LVPECL Fanout Buffer with 2:1 MUX and Four $\div 1 / \div 2 / \div 4$ Clock Divider Output Banks

General Description

The SY89221U is a $2.5 / 3.3 \mathrm{~V}$ precision, high-speed, integrated clock divider and LVPECL fanout buffer capable of handling clocks up to 1.5 GHz . Optimized for communications applications, the four independently controlled output banks are phasematched and can be configured for pass through $\div 1$, $\div 2$ or $\div 4$ divider ratios.
The differential input includes Micrel's unique, 3-pin input termination architecture that allows the user to interface to any differential signal (AC- or DC-coupled) as small as $100 \mathrm{mV}\left(200 \mathrm{mV} \mathrm{VP}_{\mathrm{P}}\right)$ without any level shifting or termination resistor networks in the signal path. The low-skew, low-jitter outputs are LVPECL compatible with extremely fast rise/fall times that are guaranteed to be less than 220ps.
The /MR (master reset) input asynchronously resets the outputs. A four-clock delay after de-asserting /MR allows the counters to synchronize and start the outputs from the same state without any runt pulse.
The SY89221U is part of Micrel's Precision Edge ${ }^{\circledR}$ product family. All support documentation can be found at Micrel's web site at: www.micrel.com.

Features

- Four low-skew LVPECL output banks with independently programmable $\div 1, \div 2$ and $\div 4$ divider options
- Four output banks, 15 total outputs
- Guaranteed AC performance over temperature and voltage:
- Accepts a clock frequency up to 1.5 GHz
- <1600ps IN-to-OUT propagation delay
- <270ps rise/fall time
- <35 ps within-bank skew
- Fail Safe Input
- Prevents outputs from oscillating
- Ultra-low jitter design:
- $<1 \mathrm{ps}_{\text {RMS }}$ random jitter
$-<10 \mathrm{ps}_{\mathrm{Pp}}$ total jitter (clock)
- Patent-pending input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS)
- CMOS/TTL-compatible output enable (EN) and divider select control
- $2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%$ power supply
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range
- Available in 64-pin TQFP

Applications

- All SONET/SDH applications
- All Fibre Channel applications
- All Gigabit Ethernet applications

Markets

- LAN/WAN routers/switches
- Enterprise servers
- Storage
- ATE
- Test and measurement

United States Patent No. RE44,134
Precision Edge is a registered trademark of Micrel, Inc.

Functional Block Diagram

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89221UHY	T64-1	Industrial	SY89221UHY with Pb-Free bar-line indicator	Pb-Free Matte-Sn
SY89221UHYTR ${ }^{(2)}$	T64-1	Industrial	SY89221UHY with Pb-Free bar-line indicator	Pb-Free Matte-Sn

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{DC}$ Electricals only.
2. Tape and Reel.

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function
1,2	FSELA1, FSELA0	Single-Ended Inputs: These TTL/CMOS inputs select the divide ratio for each of the four 3,4 15,16 17,18
FSELB1, FSELB0		
banks of outputs. Note that each of these inputs is internally connected to a 25k pull-up		
11,14	FSELC1, FSELC0	
resistor and will default to a logic HIGH state if left open. The input-switching threshold is		
VCc/2.		

Pin Description (continued)

Pin Number	Pin Name	Pin Function
64	EN	Single-Ended Input: This TTL/CMOS input disables and enables the outputs. It is internally connected to a 25k pull-up resistor and will default to logic HIGH state ift open. When disabled, true outputs go LOW and complementary outputs switches to HIGH. The input switching threshold is V Vcc/2. For the input enable and disable functional description, refer to Figures 2d and 2e.
$19,32,49,63$	GND, Exposed Pad	Ground and exposed pad must be connected to the same GND plane on the board.

Function Table

$/ \mathrm{MR}^{(1)}$	$\mathrm{EN}^{(2,3)}$	CLK_SEL	FSELx0 ${ }^{(4)}$	FSELx1 ${ }^{(4)}$	Q
1	1	0	0	0	INO -1
1	1	1	0	0	$\mathrm{IN} 1 \div 1$
1	1	0	1	0	INO -2
1	1	1	1	0	$\mathrm{IN} 1 \div 2$
1	1	0	X	1	INO -4
1	1	1	X	1	$\mathrm{IN} 1 \div 4$
1	0	X	X	X	0
0	X	X	X	X	0

Notes:

1. /MR asynchronously forces Q LOW (/Q HIGH).
2. EN forces Q LOW between 2 and 6 input clock cycles after the falling edge of EN . Refer to "Timing Diagram" section.
3. EN synchronously enables the outputs between two and six input clock cycles after the rising edge of EN. Refer to "Timing Diagram" section.
4. FSEL valid for each of the banks A, B, C, and D. Banks can be programmed independent of each other.

Absolute Maximum Ratings ${ }^{(\mathbf{1)}}$

Supply Voltage (V_{cc}).............................. -0.5 V to +4.0 V
Input Voltage ($\mathrm{V}_{\text {IN }}$)...................................... -0.5 V to V_{CC}
Termination Current
Source or sink current on $\mathrm{V}_{\top} . ~ \pm 100 \mathrm{~mA}$
LVPECL Output Current (lout)
Continuous... 50 mA
Surge ... 100 mA
Input Current
Source or sink current on IN, /IN $\pm 50 \mathrm{~mA}$
$V_{\text {REF-AC }}$ Current ${ }^{(3)}$
Source or sink current on $\mathrm{V}_{\text {REF-AC }}$.................... $\pm 2 \mathrm{~mA}$
Lead Temperature (soldering, 20sec.) $260^{\circ} \mathrm{C}$
Storage Temperature $\left(T_{s}\right) \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage (V_{IN})................. +2.375 V to +2.625 V or +3.0 V to 3.6 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$.................. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Package Thermal Resistance ${ }^{(4)}$ TQFP
Still-air $\left(\theta_{\mathrm{JA}}\right)$... $35^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-board $\left(\psi_{\mathrm{JB}}\right)$................ $20^{\circ} \mathrm{C}$

$$
\text { Junction-to-board }\left(\psi_{\text {JB }}\right) \text {.......................... } 20^{\circ} \mathrm{C} / \mathrm{W}
$$

DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {cc }}$	Positive Supply Voltage Range		$\begin{gathered} 2.375 \\ 3.0 \end{gathered}$		$\begin{gathered} 2.625 \\ 3.6 \end{gathered}$	V
ICC	Power Supply Current			140	190	mA
$\mathrm{R}_{\text {DIFF_IN }}$	Differential Input Resistance (IN-to-IIN)		90	100	110	Ω
$\mathrm{R}_{\text {IN }}$	Input Resistance (IN -to- $\mathrm{V}_{\mathrm{T}}, / \mathrm{IN}$-to- V_{T})		45	50	55	Ω
V_{IH}	Input HIGH Voltage (IN, /IN)		1.2		V_{cc}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (IN, /IN)		0		$\mathrm{V}_{\mathrm{HH}-0.1}$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage Swing (IN, /IN)	See Figure 1a; Note 6	0.1		2.5	V
VIIFF_IN	Differential Input Voltage Swing $\|\mathrm{IN}-/ \mathrm{IN}\|$	See Figure 1b	0.2			V
$\mathrm{V}_{\text {IN_FSI }}$	Input Voltage Threshold that Triggers FSI			30	100	mV
$\mathrm{V}_{\text {REF-AC }}$	Reference Voltage		$\mathrm{V}_{\mathrm{cc}}-1.3$	$\mathrm{V}_{\mathrm{cc}}-1.2$	$\mathrm{V}_{\mathrm{cc}}-1.1$	V
$\mathrm{V}_{\text {T_IN }}$	Voltage from Input to V_{T}				1.28	V

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Due to the limited drive capability use for input of the same package only.
4. ψ_{JB} and θ_{JA} values are determined for a 4-layer board in still-air number, unless otherwise stated.
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
6. $\mathrm{V}_{\mathbb{I N}}(\max)$ is specified when V_{T} is floating.

LVTTL/CMOS DC Electrical Characteristics ${ }^{(7)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{H}	Input HIGH Voltage		2			V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage				0.8	V
I_{H}	Input HIGH Current		-125		30	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current		-300			$\mu \mathrm{~A}$

LVPECL Outputs DC Electrical Characteristics ${ }^{(7)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {OH }}$	Output Voltage HIGH (Q, /Q)		$\mathrm{V}_{\mathrm{CC}}-1.145$		$\mathrm{~V}_{\mathrm{CC}}-0.895$	V
$\mathrm{~V}_{\text {OL }}$	Output Voltage LOW (Q, /Q)		$\mathrm{V}_{\mathrm{CC}}-1.945$		$\mathrm{~V}_{\mathrm{CC}}-1.695$	V
V $_{\text {OUT }}$	Output Voltage Swing (Q, /Q)	See Figure 1a	550	800		mV
V $_{\text {DIFF_OUT }}$	Differential Output Voltage Swing $\|\mathrm{Q}-/ \mathrm{Q}\|$	See Figure 1b	1100	1600		mV

Note:

7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics ${ }^{(8)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency	$V_{\text {OUT }} \geq 400 \mathrm{mV}$	1.5	2.0		GHz
$t_{\text {PD }}$	Differential Propagation Delay	IN-to-Q	800	1250	1600	ps
		CLK_SEL-to-Q	700	1000	1400	ps
		/MR(H-L)-to-Q	700	1000	1400	ps
t_{RR}	Reset Recovery Time	/MR (L-H)-to-IN	300			ps
$t_{P D}$ Tempco	Differential Propagation Delay Temperature Coefficient			225		fs/ ${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {SKEw }}$	Within-Bank Skew	Within same fanout bank ${ }^{(9,10)}$		10	35	ps
	Bank-to-Bank Skew	Same divide setting ${ }^{(11)}$		15	40	ps
	Bank-to-Bank Skew	Different divide setting ${ }^{(11)}$		25	60	ps
	Part-to-Part Skew	Note 12			400	ps
$\mathrm{t}_{\text {JITTER }}$	Random Jitter (RJ)	Note 13			1	$\mathrm{ps}_{\text {RMS }}$
	Total Jitter (TJ)	Note 14			10	pSpp
	Cycle-to-Cycle Jitter	Note 15			1	ps ${ }_{\text {RMS }}$
$\mathrm{tr}, ~_{\text {, }} \mathrm{f}$	Output Rise/Fall Time (20\% to 80\%)	At full output swing	120	180	270	ps
	Duty Cycle	Divide-by-2 or Divide-by-4	47		53	\%
		Divide-by-1, input > 1GHz	45		55	
		Divide-by-1, input < 1GHz	47		53	

Notes:

8. Measured with 100 mV input swing. See "Timing Diagrams" section for definition of parameters. High-frequency AC-parameters are guaranteed by design and characterization.
9. Within-bank skew is the difference in propagation delays among the outputs within the same bank.
10. Skews within banks depend on the number of outputs. Within-bank skew decreases if the bank has lesser outputs.
11. Bank-to-bank skew is the difference in propagation delays between outputs from different banks. Bank-to-bank skew is also the phase offset between each bank, after MR is applied.
12. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
13. Random jitter is measured with a K28.7 comma detect character pattern.
14. Total jitter definition: with an ideal clock input frequency $\leq f_{\text {MAx }}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
15. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_{n}-T_{n-1}$ where T is the time between rising edges of the output signal.

Functional Description

Clock Select (CLK_SEL)

CLK_SEL is an asynchronous TTL/CMOS compatible input that selects one of the two input signals. Internal $25 \mathrm{k} \Omega$ pull-up resistor defaults the input to logic HIGH if left open. Delay between the clock selection and multiplexer selecting the correct input signal depends on the divider settings. The delay varies due to the asynchronous nature of the input. Input switching threshold is $\mathrm{V}_{\mathrm{CC}} / 2$. Refer to Figure 2a.

Fail-Safe Input (FSI)

The input includes a special failsafe circuit to sense the amplitude of the input signal and to latch the outputs when there is no input signal present, or when the amplitude of the input signal drops sufficiently below $100 \mathrm{mV}_{\mathrm{PK}} \quad(200 \mathrm{mV} \mathrm{PP})$, typically $30 \mathrm{mV}_{\mathrm{PK}}$. Maximum frequency of the SY89221U is limited by the FSI function. Refer to Figure 2b.

Input Clock Failure Case

If the input clock fails to a floating, static, or extremely low signal swing, the FSI function will eliminate a metastable condition and guarantee a stable output signal. No ringing and no undetermined state will occur at the output under these conditions.
Please note that the FSI function will not prevent duty cycle distortion in case of a slowly deteriorating (but still toggling) input signal. Due to the FSI function, the propagation delay will depend on rise and fall time of the input signal and on its amplitude. Refer to "Typical Operating Characteristics" for detailed information.

Master Reset (IMR)

/MR is a TTL/CMOS compatible input that resets the output signals. Internal $25 \mathrm{k} \Omega$ pull-up resistor defaults the input to logic HIGH if left open. A LOW input to /MR asynchronously sets the true outputs LOW and complimentary outputs HIGH. The outputs will remain in this state until /MR is forced HIGH. Input switching threshold is $\mathrm{V}_{\mathrm{cc}} / 2$. Refer to Figure 2c.

Enable Outputs (EN)

EN is a synchronous TTL/CMOS compatible input that enables/disables the outputs based on the input to this pin. Internal $25 \mathrm{k} \Omega$ pull-up resistor defaults the input to logic HIGH if left open. A logic LOW input causes the true outputs to go LOW and complementary outputs to go HIGH. It takes 2 to 6 input clock cycles before the outputs are enabled/disabled because the signals are going through a series of flip-flops. Input switching threshold is $\mathrm{V}_{\mathrm{cc}} / 2$. Refer to Figure 2d and 2e.

Single-Ended and Differential Swings

Figure 1a. Single-Ended Voltage Swing

Figure 1b. Differential Voltage Swing

Timing Diagrams

Figure 2a. Propagation Delay

Figure 2b. Fail Safe Feature

Timing Diagrams

Figure 2c. Reset with Output Enabled

Timing Diagrams

Figure 2d. Enable Timing

Figure 2e. Disable Timing

Typical Operating Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Propagation Delay
vs. Input Tr/Tf

Propagation Delay
vs. Input Tr/Tf

Functional Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Input and Output Stages

Figure 3a. Simplified Differential Input Stage

Figure 3b. Simplified Differential Output Stage

Input Interface Applications

Figure 4a. CML Interface (DC-Coupled)
May connect V_{T} to V_{Cc}

Figure 4b. CML Interface (AC-Coupled)

Figure 4c. LVPECL Interface (DC-Coupled)

Figure 4d. LVPECL Interface (AC-Coupled)

Figure 4e. LVDS Interface

LVPECL Output Interface Applications

LVPECL has high input impedance, and very low output impedance (open emitter), and small signal swing which results in low EMI. LVPECL is ideal for driving 50Ω - and 100Ω-controlled impedance transmission lines. There are several techniques for terminating the LVPECL output: Parallel TerminationThevenin Equivalent, Parallel Termination (3-resistor), and AC-coupled Termination. Unused output pairs may be left floating. However, single-ended outputs must be terminated, or balanced.

Figure 5a. Parallel Termination-Thevenin Equivalent

Figure 5b. Parallel Termination (3-Resistor)

Related Product and Support Documentation

Part Number	Function	Data Sheet Link
SY89218U	Precision 1:15 LVDS Fanout Buffer with 2:1 MUX and Four $\div 1 / \div 2 / \div 4$ Clock Divider Output Banks	http://www.micrel.com/_PDF/HBW/sy89218u.pdf
SY89200U	Ultra-Precision 1:8 LVDS Fanout with Three $\div 1 / \div 2 / \div 4$ Clock Divider Output Banks	http://www.micrel.com/_PDF/HBW/sy89200u.pdf
SY89202U	Ultra-Precision 1:8 LVPECL Fanout with Three $\div 1 / \div 2 / \div 4$ Clock Divider Output Banks	http://www.micrel.com/_PDF/HBW/sy89202u.pdf
HBW Solutions	New Products and Applications	http://www.micrel.com/page.do?page=/product- info/as/HBWsolutions.shtml

Package Information

64-Pin EPAD-TQFP (T64-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2006 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR 4RCD0232KC1ATG RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1HE40-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I

