FEATURES

Guaranteed AC performance over temp and voltage:

- DC-to-800MHz f MAX
- <100ps IN-to-OUT $\mathrm{t}_{\text {pd }}$

■ Ultra-low jitter design:

- $<1 \mathrm{ps}_{\text {RMs }}$ random jitter
- <10ps ${ }_{\text {pp }}$ deterministic jitter
- <1ps ${ }_{\text {RMS }}$ cycle-to-cycle jitter
- $<1 \mathrm{ps}_{\mathrm{pp}}$ total jitter (clock)

■ Differential LVPECL output

- ICC max. 20mA

■ Q output will default HIGH with inputs open

- Power supply $3.3 \mathrm{~V} \pm 10 \%$ or $5.0 \mathrm{~V} \pm 10 \%$
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range
- Available in ultra-small 8 -pin ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) MLF ${ }^{\text {TM }}$ package

APPLICATIONS

■ High-speed logic

- Data communications systems

■ Wireless communications systems
■ Telecom systems

FUNCTIONAL BLOCK DIAGRAM

LVPECL

8 -Pin MLF ${ }^{\text {TM }}(2 \mathrm{~mm} \times 2 \mathrm{~mm})$

TYPICAL APPLICATIONS CIRCUIT

Precision Edge is a registered trademark of Micrel, Inc.
MicroLeadFrame and MLF are trademarks of Amkor Technology, Inc.

PACKAGE/ORDERING INFORMATION

Ordering Information

8-Pin MLF ${ }^{\text {TM }}$

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function	
7	IN	Single-ended input: This is the LVTTL/LVCMOS input to the device. Input switching threshold is $\mathrm{V}_{\mathrm{CC}} / 2$. If left floating, Q output will default HIGH.	
8	VCC	Positive power supply. Bypass with $0.1 \mu \mathrm{~F} \\| 0.01 \mu \mathrm{~F}$ low ESR capacitors.	
2,3	Q, /Q	Differential LVPECL output: This output is the output of the device. Terminate with 50Ω to $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$. See "Output Interface Applications" section. Defaults HIGH if IN is floating.	
5	GND, Exposed Pad	Ground: Ground pin and exposed pad must be connected to the same ground plane.	
$1,4,6$	NC	No connect.	

Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage (V_{CC}) -0.5 V to +4.0 V
Input Voltage ($\mathrm{V}_{\text {IN }}$) -0.5 V to V_{CC}
LVPECL Output Voltage ($\mathrm{V}_{\text {OUT }}$) $\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$
LVPECL Output Current (IOUT)
Continuous ..50mA
Surge ... 100 mA
Input Current
Source or sink current on IN $\pm 50 \mathrm{~mA}$
Lead Temperature (soldering, 20 sec .) $+260^{\circ} \mathrm{C}$
Storage Temperature (T_{S}) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage (V_{CC}) 3.0 V to 3.3 V
4.5 V to 5.5 V
Ambient Temperature (T_{A}) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance ${ }^{(3)}$
MLF ${ }^{\text {TM }}\left(\theta_{J A}\right)$$93^{\circ} \mathrm{C} / \mathrm{W}$
500lfpm $87^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{MLF}^{T M}\left(\Psi_{\mathrm{JB}}\right)$
Junction-to-board $32^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS(4)

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{CC}	Power Supply		3.0	3.3	3.6	V
			4.5	5.0	5.5	V
I_{CC}	Power Supply Current	No load, max. V_{CC}			20	mA

LVTTL/LVCMOS ELECTRICAL CHARACTERISTICS(4)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max
V_{IH}	Input HIGH Voltage $(\mathrm{IN}, / \mathrm{IN})$		2.0		
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage $(\mathrm{IN}, / \mathrm{IN})$		V		
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		0.8	
		$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$	V		
I_{IL}	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		20	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IK}}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		100	$\mu \mathrm{~A}$

LVPECL OUTPUTS DC ELECTRICAL CHARACTERISTICS(4)

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$ or $5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$, or equivalent, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage $\mathrm{Q}, / \mathrm{Q}$	Note 2	$\mathrm{V}_{\mathrm{CC}}-1.080$		$\mathrm{~V}_{\mathrm{CC}}-0.880$	V
$\mathrm{~V}_{\text {OL }}$	Output LOW Voltage $\mathrm{Q}, / \mathrm{Q}$		$\mathrm{V}_{\mathrm{CC}}-1.830$		$\mathrm{~V}_{\mathrm{CC}}-1.550$	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage Swing $\mathrm{Q}, / \mathrm{Q}$	See Figure 1a.	600	800		mV
$\mathrm{V}_{\text {DIFF-OUT }}$	Differential Output Voltage Swing $\mathrm{Q}, / \mathrm{Q}$	See Figure 1b.	1200	1600		mV

Notes:

1. Permanent device damage may occur if the "Absolute Maximum Ratings" are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package Thermal Resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. Ψ_{JB} uses 4-layer $\theta_{J A}$ in still-air unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC ELECTRICAL CHARACTERISTICS (5)

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$ or $5.0 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency	$\mathrm{V}_{\text {OUT }} \geq 350 \mathrm{mV}$			800	MHz
$t_{\text {pd }}$	Propagation Delay IN-to-Q, /IN-to-/Q		100		600	ps
$\mathrm{t}_{\text {JITTER }}$	Random Jitter (RJ)	Note 6			1	$\mathrm{ps}_{\mathrm{RMS}}$
	Deterministic Jitter (DJ)	Note 7			10	pSPP
	Cycle-to-Cycle Jitter	Note 8			1	$\mathrm{pS}_{\text {RMS }}$
	Total Jitter (TJ)	Note 9			25	pSPP
t_{r}, t_{f}	Rise / Fall Time (20\% to 80\%) $\mathrm{Q}, / \mathrm{Q}$	At full output swing.	200		500	ps

Notes:

5. Measured with outputs loaded with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ unless otherwise stated. See "Timing Diagrams" section for definition of parameters. Highfrequency AC-parameters are guaranteed by design and characterization.
6. RJ is measured with a K28.7 comma detect character pattern, measured at $f_{\text {MAX }}$.
7. DJ is measured at $f_{\text {MAX }}$, with both K 28.5 and $2^{23}-1$ PRBS pattern
8. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $\mathrm{Tn}-\mathrm{Tn}-1$ where T is the time between rising edges of the output signal.
9. Total jitter definition: with an ideal clock input of frequency $\leq f_{\text {MAX }}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.

SINGLE-ENDED AND DIFFERENTIAL SWING

Figure 1a. Single-Ended Voltage Swing

Figure 1b. Differential Voltage Swing

TIMING DIAGRAM

Figure 2. Timing Diagram

OUTPUT INTERFACE APPLICATIONS

Figure 3a. Parallel Thevenin-Equivalent Termination

Figure 3b. Three-Resistor Termination

Figure 3c. Terminating Unused I/O

RELATED PRODUCT AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY89322V	3.3V/5V Dual LVTTL/LVCMOS-to-Differential LVPECL Translator	www.micrel.com/product-info/products/sy89322v.shtml
	MLF ${ }^{\text {TM }}$ Application Note	www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

8 LEAD MicroLeadFrame (MLF-8)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3242BRJZ-REEL7 ADG3243BRJZ-REEL7 ADG3245BCPZ

