LOW-VOLTAGE PECL BUS CLOCK DRIVER \& TRANSLATOR w/ INTERNAL TERMINATION

FEATURES

■ LVPECL or LVDS input to 22 LVPECL outputs
■ 100K ECL compatible outputs
■ LVDS input includes 100Ω termination
■ Guaranteed AC parameters over voltage:

- > 2GHz f ${ }_{\text {MAX }}$ (toggle)
- <35ps max. ch-ch skew

■ Low voltage operation: $2.5 \mathrm{~V}, 3.3 \mathrm{~V}$

- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

■ Output enable pin
■ Available in a 64-Pin EPAD-TQFP

APPLICATIONS

■ High-performance PCs
■ Workstations
■ Parallel processor-based systems
■ Other high-performance computing
■ Communications

Precision Edge ${ }^{\circledR}$

DESCRIPTION

The SY89825U is a High Performance Bus Clock Driver with 22 differential LVPECL output pairs. This part is designed for use in low voltage ($2.5 \mathrm{~V}, 3.3 \mathrm{~V}$) applications which require a large number of outputs to drive precisely aligned, ultra low skew signals to their destination. The input is multiplexed from either LVDS or LVPECL by the CLK_SEL pin. The LVDS input includes a 100Ω internal termination, thus eliminating the need for external termination. The Output Enable (OE) is synchronous so that the outputs will only be enabled/disabled when they are already in the LOW state. This eliminates any chance of generating a runt clock pulse when the device is enabled/ disabled as can happen with an asynchronous control.

The SY89825U features low pin-to-pin skew (35ps max.) -performance previously unachievable in a standard product having such a high number of outputs. The SY89825U is available in a single space saving package which provides a lower overall cost solution. In addition, a single chip solution improves timing budgets by eliminating the multiple device solution with their corresponding large part-to-part skew.

PACKAGE/ORDERING INFORMATION

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89825UHI	$\mathrm{H} 64-1$	Industrial	SY89825UHI	Sn-Pb
SY89825UHITR $^{(2)}$	$\mathrm{H} 64-1$	Industrial	SY89825UHI	SN-PB
SY89825UHY $^{(3)}$	$\mathrm{H} 64-1$	Industrial	SY89825UHY with Pb-Free bar-line indicator	Pb-Free Matte-Sn
SY89825UHYTR $^{(2,3)}$	H64-1	Industrial	SY89825UHY with Pb-Free bar-line indicator	Pb-Free Matte-Sn

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, DC electricals only.
2. Tape and Reel.
3. Pb-Free package recommended for new designs.

64-Pin EPAD-TQFP (H64-1)

PIN NAMES

Pin	Function
LVDS_CLK, /LVDS_CLK	Differential LVDS Inputs (Internal 100Ω termination included)
LVPECL_CLK, /LVPECL_CLK	Differential LVPECL Inputs.
CLK_SEL	Input CLK Select (LVTTL)
OE	Output Enable (LVTTL)
$\mathrm{Q}_{0}-\mathrm{Q}_{21}, / \mathrm{Q}_{0}-/ \mathrm{Q}_{21}$	Differential LVPECL Outputs. Terminate with 50ת to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$
GND	Ground
$\mathrm{V}_{\mathrm{CCI}}$	Power Supply. Connect to V_{CC} on PCB. $\mathrm{V}_{\mathrm{CCI}}$ and $\mathrm{V}_{\mathrm{CCO}}$ are not internally connected
$\mathrm{V}_{\mathrm{CCO}}$	Power Supply for Output Buffer. Connect to $\mathrm{V}_{\mathrm{CCI}}$ on PCB. $\mathrm{V}_{\mathrm{CCI}}$ and $\mathrm{V}_{\mathrm{CCO}}$ are not internally connected

TRUTH TABLE

$\mathbf{O E}^{(1)}$	$\mathbf{C L K} \mathbf{S E L}$	$\mathbf{Q}_{\mathbf{0}}-\mathbf{Q}_{\mathbf{2 1}}$	$/ \mathbf{Q}_{\mathbf{0}}-/ \mathbf{Q}_{\mathbf{2 1}}$
0	0	LOW	HIGH
0	1	LOW	HIGH
1	0	LVDS_CLK	/LVDS_CLK
1	1	LVPECL_CLK	/LVPECL_CLK

NOTE:

1. The OE (output enable) signal is synchronized with the low level of the LVDS_CLK and LVPECL_CLK signal.

SIGNAL GROUPS

Signal	I/O	Level
LVDS_CLK, /LVDS_CLK	Input	LVDS
$Q_{0}-Q_{21}, / Q_{0}-/ Q_{21}$	Output	LVPECL
LVPECL_CLK, /LVPECL_CLK	Input	LVPECL
CLK_SEL, OE	Input	LVCMOS/LVTTL

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Rating	Value	Unit
$\mathrm{V}_{\mathrm{CCI}} / \mathrm{V}_{\mathrm{CCO}}$	V_{CC} Pin Potential to Ground Pin	-0.5 to +4.0	V
$\mathrm{V}_{\text {IN }}$	Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CCI}}$	V
lout	DC Output Current	-50	mA
Tstore	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Package Thermal Resistance (Junction-to-Ambient) With exposed pad soldered to GND - Still-Air (multi-layer PCB) - 2001fpm (multi-layer PCB) - 5001fpm (multi-layer PCB)	$\begin{aligned} & 23 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
	Exposed pad not soldered to GND - Still-Air (multi-layer PCB) - 200lfpm (multi-layer PCB) $-5001 f p m$ (multi-layer PCB)	$\begin{aligned} & 44 \\ & 36 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$
θ_{JC}	Package Thermal Resistance (Junction-to-Case)	4.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data book. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Power Supply

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{V}_{\mathrm{CCI}}$, $\mathrm{V}_{\mathrm{CCO}}$	Power Supply ${ }^{(1)}$	2.37	-	3.6	2.37	-	3.8	2.37	-	3.6	V
I_{CC}	Total Supply Current ${ }^{(2)}$	-	100	150	-	100	150	-	100	150	mA

Notes:

1. $\mathrm{V}_{\mathrm{CCI}}$ and $\mathrm{V}_{\mathrm{CCO}}$ must be connected together on the PCB such that they remain at the same potential. $\mathrm{V}_{\mathrm{CCI}}$ and $\mathrm{V}_{\mathrm{CCO}}$ are not internally connected on the die.
2. No load. Outputs floating.

LVDS Input ($\mathrm{V}_{\mathrm{CC}}=2.37 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{V}_{\text {IN }}$	Input Voltage Range	0	-	2.4	0	-	2.4	0	-	2.4	V
V_{ID}	Differential Input Swing	100	-	-	100	-	-	100	-	-	mV
$\mathrm{I}_{\text {IL }}$	Input Low Current ${ }^{(1)}$	-1.25	-	-	-1.25	-	-	-1.25	-	-	mA
R_{IN}	LVDS Differential Input Resistance (LVDS_CLK to /LVDS_CLK)	80	100	120	80	100	120	80	100	120	Ω

Note:

1. For $I_{I L}$, both LVDS inputs are grounded.

LVPECL Input/Output ($\mathrm{V}_{\mathrm{CC}}=2.37 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	Input HIGH Voltage (Single ended)	$\mathrm{V}_{\mathrm{CC}}-1.165$	$\mathrm{V}_{\mathrm{CC}}-0.88$	$\mathrm{V}_{\mathrm{CC}}-1.165$	$\mathrm{V}_{\mathrm{CC}}-0.88$	$\mathrm{V}_{\mathrm{CC}}-1.165$	$\mathrm{V}_{\mathrm{CC}}-0.88$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$\mathrm{V}_{\mathrm{CC}}-1.945$	$\mathrm{V}_{\mathrm{CC}}-1.625$	$\mathrm{V}_{\mathrm{CC}}-1.945$	$\mathrm{V}_{\mathrm{CC}}-1.625$	$\mathrm{V}_{\mathrm{CC}}-1.945$	$\mathrm{V}_{\mathrm{CC}}-1.625$	V
V_{PP}	Minimum Input Swing ${ }^{(1)}$ LVPECL_CLK	600	-	600	-	600	-	mV
$\mathrm{V}_{\mathrm{CMR}}$	Common Mode Range ${ }^{(2)}$ LVPECL_CLK	-1.5	-0.4	-1.5	-0.4	-1.5	-0.4	V
V_{OH}	Output HIGH Voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CCO}}-1.085$	$\mathrm{V}_{\mathrm{CCO}}-0.880$	$\mathrm{V}_{\mathrm{CCO}}-1.025$	$\mathrm{V}_{\mathrm{CCO}}-0.880$	$\mathrm{V}_{\mathrm{CCO}}-1.025$	$\mathrm{V}_{\mathrm{CCO}}-0.880$	V
V_{OL}	Output LOW Voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CCO}}-1.830$	$\mathrm{V}_{\mathrm{CCO}}-1.555$	$\mathrm{V}_{\mathrm{CCO}}-1.810$	$\mathrm{V}_{\mathrm{CCO}}-1.620$	$\mathrm{V}_{\mathrm{CCO}}-1.810$	$\mathrm{V}_{\mathrm{CCO}}-1.620$	V
I_{IH}	Input HIGH Current	-	150	-	150	-	150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.5	-	0.5	-	0.5	-	$\mu \mathrm{A}$

Notes:

1. The V_{PP} (min .) is defined as the minimum input differential voltage which will cause no increase in the propagation delay.
2. $\mathrm{V}_{\mathrm{CMR}}$ is defined as the range within which the $\mathrm{V}_{\mathbb{I H}}$ level may vary, with the device still meeting the propagation delay specification. The numbers in the table are referenced to $\mathrm{V}_{\mathrm{CCl}}$. The $\mathrm{V}_{\text {IL }}$ level must be such that the peak-to-peak voltage is less than 1.0 V and greater than or equal to V_{PP} (min.). The lower end of the CMR range varies $1: 1$ with $\mathrm{V}_{\mathrm{CCI}}$. The $\mathrm{V}_{\mathrm{CMR}}(\mathrm{min})$ will be fixed at $3.3 \mathrm{~V}-\left|\mathrm{V}_{\mathrm{CMR}}(\mathrm{min})\right|$.
3. Outputs loaded with 50Ω to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$.

LVCMOS/LVTTL Control Inputs (OE, CLK_SEL) ($\mathrm{V}_{\mathrm{CC}}=2.37 \mathrm{~V}$ to 3.6 V , $\mathrm{GND}=0 \mathrm{~V}$)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0	-	-	2.0	-	-	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-	-	0.8	-	-	0.8	-	-	0.8	V
I_{IH}	Input HIGH Current	+20	-	-250	+20	-	-250	+20	-	-250	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	-	-	-600	-	-	-600	-	-	-600	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$

$\mathrm{V}_{\mathrm{CC}}=2.37 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{f}_{\text {MAX }}$	Max Toggle Frequency ${ }^{(2)}$	2	-	-	2	-	-	2	-	-	GHz
$\mathrm{t}_{\mathrm{PHL}}$ $t_{\text {PLH }}$	Propagation Delay (Differential) ${ }^{(3)}$ LVPECL IN LVDS IN	$\begin{aligned} & 0.600 \\ & 0.800 \end{aligned}$	-	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.800 \end{aligned}$	$\begin{gathered} 0.900 \\ 1.1 \end{gathered}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.800 \end{aligned}$	-	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$	ns
$\mathrm{t}_{\text {SKEW }}$	Within-Device Skew ${ }^{(4)}$	-	-	35	-	20	35	-	-	35	ps
	Part-to-Part Skew ${ }^{(5)}$	-	100	200	-	100	200	-	100	200	ps
$\mathrm{t}_{\text {S(OE) }}$	OE Set-Up Time ${ }^{(6)}$	1.0	-	-	1.0	-	-	1.0	-	-	ns
$\mathrm{t}_{\mathrm{H}(\mathrm{OE})}$	OE Hold Time ${ }^{(6)}$	0.5	-	-	0.5	-	-	0.5	-	-	ns
$\mathrm{t}_{\text {JITTER }}$	Random Jitter ${ }^{(7)}$	-	-	1	-	-	1	-	-	1	ps (RMS)
	Cycle-to-Cylce Jitter ${ }^{(8)}$	-	-	1	-	-	1	-	-	1	$\mathrm{ps}_{\text {(RMS) }}$
	Total Jitter ${ }^{(9)}$	-	-	10	-	-	10	-	-	10	$\mathrm{ps}(\mathrm{PP})$
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Output Rise/Fall Time (20\%-80\%)	300	-	600	300	450	600	300	-	600	ps
$\mathrm{t}_{\text {(switchover) }}$	Input Switchover CLK_SEL-to-valid output	-	-	1.2	-	-	1.2	-	-	1.2	ns

Notes:

1. Outputs loaded with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. Airflow ≥ 300 lfpm.
2. $f_{M A X}$ is defined as the maximum toggle frequency measured. Measured with a 750 mV input signal, all loading with 50Ω to $V_{C C}-2 V$.
3. Differential propagation delay is defined as the delay from the crossing point of the differential input signals to the crossing point of the differential output signals.
4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device operating at the same voltage and temperature.
5. The part-to-part skew is defined as the absolute worst case difference between any two delay paths on any two devices operating at the same voltage and temperature. Part-to-part skew is the total skew difference; pin-to-pin skew + part-to-part skew.
6. Set-up and hold time applies to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications, set-up and hold time does not apply. OE set-up time is defined with respect to the rising edge of the clock. OE HIGH to LOW transition ensures outputs remain disabled during the next clock cycle. OE LOW to HIGH transition enables normal operation of the next input clock.
7. Random jitter is measured using K28.7 pattern, measured at $\leq f_{M A X}$.
8. Cycle-to-cycle definition: the variation of periods between adjacent cycles, $\mathrm{Tn}-\mathrm{Tn}-1$ where T is the time between rising edges of the output signal.
9. Total jitter definition: with an ideal clock input of frequency $\leq \mathrm{f}_{\mathrm{MAX}}$, no more than one output edge in 10^{20} output edges will d eviate by more than the specified peak-to-peak jitter value.

LVDS/LVPECL INPUTS

Figure 1. Simplified LVPECL \& LVDS Input Stage

TYPICAL CHARACTERISTICS

Frequency Response
vs. Output Amplitude @2.5V

Frequency Response
vs. Output Amplitude @3.3V

LVPECL TERMINATION RECOMMENDATIONS

Output Considerations

Be sure to properly terminate all outputs as shown below, or equivalent. For AC coupled applications, be sure to include a pull
down resistor at the output of each driver. The emmiter follower outputs requires a DC current path to GND. Unused outputs can be left floating with minimal impact on skew and jitter.

Figure 1. Parallel Termination-Thevenin Equivalent

Notes:

1. For +2.5 V systems:
$R 1=250 \Omega$
$R 2=62.5 \Omega$

Figure 2. Three-Resistor " \mathbf{Y}-Termination"

Notes:

1. Power-saving alternative to Thevenin termination.
2. Place termination resistors as close to destination inputs as possible.
3. R_{b} resistor sets the $D C$ bias voltage equal to V_{t}. For $+3.3 V$ systems $R_{b}=46 \Omega$ to 49Ω.
4. Precision, low-cost 3-Resistor networks are available from resistor manufacturers such as Thin Film Technology (www.thinfilm.com).

64-PIN EPAD-TQFP (DIE UP) (H64-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR 4RCD0232KC1ATG RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7211-1HE40-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S012AKILF 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I

