2.5V/3.3/5V 2.5GHz 1:4 PECL/ECL CLOCK DRIVER WITH 2:1 DIFFERENTIAL INPUT MUX

## FEATURES

Guaranteed AC parameters over temp/voltage:

- $>2.5 \mathrm{GHz} \mathrm{f}_{\mathrm{MAX}}$
- <25ps within-device skew
- < 225ps $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$ time
- <450ps prop delay

■ Low jitter design:

- < $\mathbf{1 p s}_{\text {RMS }}$ cycle-to-cycle jitter
- <15pspp total jitter


## ■ 2:1 Differential MUX input

- Flexible supply voltage: $2.5 \mathrm{~V} / 3.3 \mathrm{~V} / 5 \mathrm{~V}$
$\square$ Wide operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
■ 100K ECL compatible outputs
■ Inputs accept PECL/LVPECL/ECL/HSTL logic levels
■ Available in a 16-pin TSSOP package

Precision Edge ${ }^{\circledR}$

## DESCRIPTION

The SY89830U is a high-speed, 2.5 GHz differential PECL 1:4 fanout buffer optimized for ultra-low skew applications. Within device skew is guaranteed to be less than 25 ps over temperature and supply voltage. The wide supply voltage operation allows this fanout buffer to operate in $2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 5 V systems.

The SY89830U features a 2:1 input MUX, making it an ideal solution for redundant clock switchover applications. If only one input pair is used, the other pair may be left floating. In addition, this device includes a synchronous enable pin that forces the outputs into a fixed logic state. Enable or disable state is initiated only after the outputs are in a LOW state, thus eliminating the possibility of a "runt" clock pulse.

The SY89830U I/O are fully differential and 100K ECL compatible. Differential 10K ECL logic can interface directly into the SY89830U inputs.

The SY89830U is part of Micrel's high-speed precision edge timing and distribution family. For applications that require a different I/O combination, consult the Micrel website at www.micrel.com, and choose from a comprehensive product line of high-speed, low-skew fanout buffers, translators, and clock generators.

## PACKAGE/ORDERING INFORMATION



16-Pin TSSOP (T32-1)

Ordering Information ${ }^{(1)}$

| Part Number | Package <br> Type | Operating <br> Range | Package <br> Marking | Lead <br> Finish |
| :--- | :---: | :---: | :---: | :---: |
| SY89830UK4I | K4-16-1 | Industrial | 89830 U | Sn -Pb |
| SY89830UK4ITR $^{(2)}$ | K4-16-1 | Industrial | 89830 U | $\mathrm{Sn}-\mathrm{Pb}$ |
| SY89830UK4G $^{(3)}$ | K4-16-1 | Industrial | 89830 U with <br> Pb-Free bar line indicator | NiPdAu <br> Pb-Free |
| SY89830UK4GTR $^{(2,3)}$ | K4-16-1 | Industrial | $89830 U$ with <br> Pb-Free bar line indicator | NiPdAu <br> Pb-Free |

## Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}$, $D C$ Electricals only.
2. Tape and Reel.
3. Pb -Free package is recommended for new designs.

## PIN DESCRIPTION

| Pin Number | Pin Name | Pin Function |
| :---: | :---: | :---: |
| $\begin{aligned} & 1,2,3,4, \\ & 5,6,7,8 \end{aligned}$ | $\begin{aligned} & \text { Q0 to Q3 } \\ & \text { /Q0 to /Q3 } \end{aligned}$ | (LV)PECL, (LV)ECL differential outputs: Terminate with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. For single-ended applications, terminate the unused output with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. |
| 9 | $\mathrm{V}_{\mathrm{EE}}$ | Negative Power Supply: For LVPECL, PECL applications, connect to GND. |
| 10 | IN_SEL | (LV)PECL, (LV)ECL compatible 2:1 mux input signal select: When IN_SEL is LOW, the IN0 input pair is selected. When IN_SEL is HIGH, the IN1 input pair is selected. Includes a $75 \mathrm{k} \Omega$ pull-down. Default state is LOW and INO is selected. |
| 11, 12, 13, 14 | INO, /INO <br> IN1, /IN1 | (LV)PECL, (LV)ECL, HSTL clock or data inputs. <br> Internal $75 \mathrm{k} \Omega$ pull-down resistors on $\operatorname{INO}$, $\operatorname{IN} 1$. Internal $75 \mathrm{k} \Omega$ pull-up and $75 \mathrm{k} \Omega$ pull-down resistors on /IN0, /IN1. <br> /INO, /IN1 default condition is $\mathrm{V}_{\mathrm{CC}} / 2$ when left floating. INO, IN1 default condition is LOW when left floating. |
| 15 | /EN | (LV)PECL, (LV)ECL compatible synchronous enable: When /EN goes HIGH, Q Qut will go LOW and /Q $\mathrm{Q}_{\text {OUT }}$ will go HIGH on the next LOW input clock transition. Includes a $75 \mathrm{k} \Omega$ pull-down. Default state is LOW when left floating. The internal latch is clocked on the falling edge of the input (IN0, IN1) |
| 16 | $\mathrm{V}_{\mathrm{CC}}$ | Positive Power Supply: Bypass with $0.1 \mu \mathrm{~F} / / 0.01 \mu \mathrm{~F}$ low ESR capacitors. |

## TRUTH TABLE(1)

| IN0 | IN1 | IN_SEL | /EN | Q |
| :---: | :---: | :---: | :---: | :---: |
| L | X | L | L | L |
| H | X | L | L | H |
| X | L | H | L | L |
| X | H | H | L | H |
| Z | X | L | H | L |
| X | Z | H | H | L |

## Note:

1. $Z=$ negative edge

ABSOLUTE MAXIMUM RATINGS(1)

| Symbol | Rating |  | Value | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ | Power Supply Voltage |  | 6.0 | V |
| $\mathrm{V}_{\text {IN }}$ | Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}$ not more negative than $\mathrm{V}_{\mathrm{EE}}$ ) Input Voltage ( $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}$ not more positive than $\mathrm{V}_{\mathrm{CC}}$ ) |  | $\begin{aligned} & -6.0 \text { to } 0 \\ & +6.0 \text { to } 0 \end{aligned}$ | V |
| Iout | Output Current | -Continuous <br> -Surge | $\begin{gathered} 50 \\ 100 \end{gathered}$ | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature Range |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {LEAD }}$ | Lead Temperature (soldering, 20sec.) |  | 260 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {store }}$ | Storage Temperature Range |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\theta_{\mathrm{JA}}$ | Package Thermal Resistance (Junction-to-Ambient) | -Still-Air (single-layer PCB) <br> -Still-Air (multi-layer PCB) <br> -5001fpm (multi-layer PCB) | $\begin{gathered} 115 \\ 75 \\ 65 \end{gathered}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta_{\text {JC }}$ | Package Thermal Resistance (Junction-to-Case) |  | 21 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## Note:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratlng conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS(1)

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $\mathrm{V}_{C C}$ | Power Supply Voltage <br> (PECL) <br> (LVPECL) <br> (ECL) <br> (LVECL) | $\begin{gathered} 4.5 \\ 2.375 \\ -5.5 \\ -3.63 \end{gathered}$ | $\begin{gathered} 5.0 \\ 3.3 \\ -5.0 \\ -3.3 \end{gathered}$ | $\left\|\begin{array}{c} 5.5 \\ 3.63 \\ -4.5 \\ -2.375 \end{array}\right\|$ | $\begin{gathered} 4.5 \\ 2.375 \\ -5.5 \\ -3.63 \end{gathered}$ | $\begin{gathered} 5.0 \\ 3.3 \\ -5.0 \\ -3.3 \end{gathered}$ | $\left\|\begin{array}{c} 5.5 \\ 3.63 \\ -4.5 \\ -2.375 \end{array}\right\|$ | $\begin{gathered} 4.5 \\ 2.375 \\ -5.5 \\ -3.63 \end{gathered}$ | $\begin{gathered} 5.0 \\ 3.3 \\ -5.0 \\ -3.3 \end{gathered}$ | $\begin{array}{\|c\|} 5.5 \\ 3.63 \\ -4.5 \\ -2.375 \end{array}$ | V |  |
| $\mathrm{I}_{\mathrm{CC}}$ | Power Supply Current | - | - | 70 | - | 50 | 72 | - | - | 75 | mA |  |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current | - | - | 150 | - | - | 150 | - | - | 150 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I H}}$ |
| $\mathrm{I}_{\text {IL }}$ | Input LOW Current $\left.\begin{array}{r}\text { IN } \\ \text { /IN }\end{array} \right\rvert\,$ | $\begin{gathered} 0.5 \\ -150 \end{gathered}$ | - | - | $\begin{gathered} 0.5 \\ -150 \end{gathered}$ | - | - | $\begin{gathered} 0.5 \\ -150 \end{gathered}$ | - | - | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance (TSSOP) | - | - | - | - | 1.0 | - | - | - | - | pF |  |

## Note:

1. 100 KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

## (100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (Single-ended) | 555 | - | 875 | 555 | - | 875 | 555 | - | 875 | mV | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single-ended) | 1275 | - | 1620 | 1275 | - | 1620 | 1275 | - | 1620 | mV | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | 555 | 680 | 805 | 555 | 680 | 805 | 555 | 680 | 805 | mV | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ |
| $\mathrm{V}_{\text {IHCMR }}$ | Input HIGH Voltage Common Mode Range ${ }^{(2)}$ | 1.2 | - | $\mathrm{V}_{\mathrm{CC}}$ | 1.2 | - | $\mathrm{V}_{\mathrm{CC}}$ | 1.2 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |  |

## Notes:

1. 100 KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. Output load is $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
2. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

## (100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (Single-Ended) | 1355 | - | 1675 | 1355 | - | 1675 | 1355 | - | 1675 | mV | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single-Ended) | 2075 | - | 2420 | 2075 | - | 2420 | 2075 | - | 2420 | mV | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |
| $\mathrm{V}_{\text {IHCMR }}$ | Input HIGH Voltage Common Mode Range ${ }^{(2)}$ | 1.2 | - | $\mathrm{V}_{\mathrm{CC}}$ | 1.2 | - | $\mathrm{V}_{\mathrm{CC}}$ | 1.2 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |  |

## Notes:

1. 100 KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. Output load is $50 \Omega$ to $\mathrm{V}_{C C}-2 \mathrm{~V}$.
2. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

## (100KEP) PECL DC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (Single-Ended) | 3055 | - | 3375 | 3055 | - | 3375 | 3055 | - | 3375 | mV | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single-Ended) | 3775 | - | 4120 | 3775 | - | 4120 | 3775 | - | 4120 | mV | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | mV | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {IHCMR }}$ | Input HIGH Voltage ${ }^{(2)}$ Common Mode Range | 1.2 | - | $\mathrm{V}_{\mathrm{CC}}$ | 1.2 | - | $\mathrm{V}_{\mathrm{Cc}}$ | 1.2 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |  |

## Notes:

1. 100 KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. Output load is $50 \Omega$ to $\mathrm{V}_{C C}-2 \mathrm{~V}$.
2. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

## (100KEP) LVECL DC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.63 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $V_{\text {IL }}$ | Input LOW Voltage (Single-ended) | -1945 | - | -1625 | -1945 | - | -1625 | -1945 | - | -1625 | mV |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single-ended) | -1225 | - | -880 | -1225 | - | -880 | -1225 | - | -880 | mV |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | mV | $50 \Omega$ to $\mathrm{V}_{\text {cc }}-2 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | $50 \Omega$ to $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$ |
| $\mathrm{V}_{\text {IHCMR }}$ | Input HIGH Voltage Common Mode Range ${ }^{(2)}$ | $\mathrm{V}_{\mathrm{EE}}+1.2$ | - | 0.0 | $\mathrm{V}_{\mathrm{EE}}+1.2$ | - | 0.0 | $\mathrm{V}_{\mathrm{EE}}+1.2$ | - | 0.0 | V |  |

## Notes:

1. 100 KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500 Ifpm is maintained.
2. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

## (100KEP) ECL DC ELECTRICAL CHARACTERISTICS(1)

$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ to -5.5 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (Single-ended) | -1945 | - | -1625 | -1945 | - | -1625 | -1945 | - | -1625 | mV |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single-ended) | -1225 | - | -880 | -1225 | - | -880 | -1225 | - | -880 | mV |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | mV | $50 \Omega$ to $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | $50 \Omega$ to $\mathrm{V}_{\text {CC }}-2 \mathrm{~V}$ |
| $\mathrm{V}_{\text {IHCMR }}$ | Input HIGH Voltage Common Mode Range ${ }^{(2)}$ | $\mathrm{V}_{\mathrm{EE}}+1.2$ | - | 0.0 | $\mathrm{V}_{\mathrm{EE}}+1.2$ | - | 0.0 | $\mathrm{V}_{\text {EE }}+1.2$ | - | 0.0 | V |  |

Notes:

1. 100 KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
2. The $\mathrm{V}_{I H C M R}$ range is referenced to the most positive side of the differential input signal.

## HSTL INPUT DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

|  | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | 1200 | - | - | 1200 | - | - | 1200 | - | - | mV |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | - | - | 400 | - | - | 400 | - | - | 400 | mV |

## AC ELECTRICAL CHARACTERISTICS

LVPECL: $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to $3.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$; PECL: $\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$ to $5.50 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$
LVECL: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.63 V ; $\mathrm{ECL}: \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.50 \mathrm{~V}$ to -5.5 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |
| $\mathrm{f}_{\text {MAX }}{ }^{(1)}$ | Maximum Frequency | 2.5 | - | - | 2.5 | - | - | 2.5 | - | - | GHz |
| $t_{\text {PD }}$ | Propagation Delay to Output LVPECL/LVECL <br> Diff. IN (150mV) <br> Diff. IN ( 800 mV ) <br> Single-Ended IN | - | - | - | - | 375 | - | - | - | - | ps |
|  |  | 300 | 350 | 450 | 300 | 350 | 450 | 300 | 350 | 450 | ps |
|  |  | - | - | - | - | 375 | - | - | - | - | ps |
|  | PECL/ECL | - | - | - | - | 375 | - | - | - | - | ps |
|  |  | 275 | 350 | 425 | 275 | 350 | 425 | 275 | 350 | 425 | ps |
|  |  | - | - | - | - | 355 | - | - | - | - | ps |
|  | HSTL | 325 | - | 500 | 300 | - | 450 | 300 | - | 450 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{(2)}$ | Within-Device Skew (Diff.) Part-to-Part Skew (Diff.) | — | $\begin{gathered} 15 \\ 100 \end{gathered}$ | $\begin{gathered} 25 \\ 150 \end{gathered}$ | - | $\begin{gathered} 15 \\ 100 \end{gathered}$ | $\begin{gathered} 25 \\ 150 \end{gathered}$ | - | $\begin{gathered} 15 \\ 100 \end{gathered}$ | $\begin{gathered} 25 \\ 150 \end{gathered}$ | $\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$ |
| ${ }^{\text {t }}$ S | Select to Valid Output Switchover Time | - | - | 450 | - | 400 | 450 | - | - | 450 | ps |
| $\mathrm{t}_{\mathrm{S}}{ }^{(3)}$ | Set-Up Time /EN to CLK | 100 | 0 | - | 100 | 0 | - | 100 | 0 | - | ps |
| $\mathrm{t}_{\mathrm{H}}{ }^{(3)}$ | Hold Time /EN to CLK | 200 | 50 | - | 200 | 50 | - | 200 | 50 | - | ps |
| $\mathrm{t}_{\text {JITTER }}$ | Cycle-to-Cycle ${ }^{(4)}$ <br> Total Jitter (622MHz clock) ${ }^{(5)}$ | - | $\begin{gathered} 0.2 \\ <15 \\ \hline \end{gathered}$ | 1 | - | $\begin{gathered} 0.2 \\ <15 \\ \hline \end{gathered}$ | 1 | - | 0.2 $<15$ | 1 | $\begin{array}{\|c} \mathrm{ps}_{\mathrm{RMS}} \\ \mathrm{ps} \\ \hline \mathrm{PP} \end{array}$ |
| $\mathrm{V}_{\mathrm{ID}}$ | Input Voltage Swing | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Output Rise/Fall Times (20\% to 80\%) | 75 | - | 225 | 75 | 130 | 225 | 85 | - | 225 | ps |

## Notes:

1. $f_{\text {MAX }}$ is defined as the maximum toggle frequency. Measured with 750 mV input signal, $50 \%$ duty cycle, output swing $\geq 400 \mathrm{mV}$ (diff), all loading with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
2. Skew is measured between outputs under identical transitions.
3. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next cycle. For asynchronous applications, set-up and hold time does not apply.
4. Cycle-to-cycle jitter definition: The variation in period between adjacent cycles over a random sample of adjacent cycle pairs. $T_{J I T T E R}$ cc $=T_{n}-T_{n+1}$ where T is the time between rising edges of the output signal.
5. Total jitter definition: with an ideal clock input applied to one channel of the MUX, no more than one output edge in $10^{12}$ output edges will deviate by more than the specified peak-to-peak jitter value.

## TYPICAL OPERATING CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.


Propagation Delay
vs. Differential Input Voltage


$\mathrm{t}_{\text {SKEW }}$
vs. Temperature


## FUNCTIONAL CHARACTERISTICS


2.5GHz Output


TIME (72ps/div.)

## TERMINATION RECOMMENDATIONS



Figure 1. Parallel Termination-Thevenin Equivalent

## Notes:

1. For +2.5 V systems:
$R 1=250 \Omega$
$R 2=62.5 \Omega$
2. For +5.0 V systems:
$R 1=82 \Omega$
$R 2=130 \Omega$


Figure 2. Three-Resistor "Y-Termination"

## Notes:

1. Power-saving alternative to Thevenin termination.
2. Place termination resistors as close to destination inputs as possible.
3. $R_{b}$ resistor sets the $D C$ bias voltage, equal to $V_{t}$. For +3.3 V systems $R_{b}=46 \Omega$ to $50 \Omega$. For +5 V systems, $R_{b}=110 \Omega$.
4. C 1 is an optional bypass capacitor intended to compensate for any tr/tf mismatches.


Figure 3. Terminating Unused I/O

## Notes:

1. Unused output (/Q) must be terminated to balance the output.
2. For +2.5 V systems: $\mathrm{R} 1=250 \Omega, \mathrm{R} 2=62.5 \Omega, \mathrm{R} 3=1.25 \mathrm{k} \Omega, \mathrm{R} 4=1.2 \mathrm{k} \Omega$.


IDP VIEW


END VIEW


CVIEW RETAIL ' $A^{\prime}$.


SIDE VIEW

Rev. 01

## MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

## TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 wEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG 74VHC541FT(BE)

RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 NLX2G17CMUTCG
74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG
NLX2G06AMUTCG NLVVHC1G50DFT2G LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC
LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NL17SG126DFT2G

