SY89842U

Precision CML Runt Pulse Eliminator 2:1 Multiplexer

General Description

The SY89842U is a low jitter CML, 2:1 differential input multiplexer (MUX) optimized for redundant source switchover applications. Unlike standard multiplexers, the SY89842U unique 2:1 Runt Pulse Eliminator (RPE) MUX prevents any short cycles or "runt" pulses during switchover. In addition, a unique Fail-Safe Input protection prevents metastable conditions when the selected input clock fails to a DC voltage (voltage between the pins of the differential input drops below 100 mV).
The differential input includes Micrel's unique, 3-pin input termination architecture that allows customers to interface to any differential signal (AC- or DCcoupled) as small as $100 \mathrm{mV}(200 \mathrm{mV}$ PP) without any level shifting or termination resistor networks in the signal path. The output is 400 mV CML with fast rise/fall times guaranteed to be less than 80ps.
The SY89842U operates from a $2.5 \mathrm{~V} \pm 5 \%$ or 3.3 V $\pm 10 \%$ supply and is guaranteed over the full industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The SY89842U is part of Micrel's high-speed, Precision Edge ${ }^{\circledR}$ product line. All support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- Selects between two sources, and provides a glitchfree, stable CML output
- Guaranteed AC performance over temperature and supply voltage:
- Wide operating frequency: 1 kHz to $>1.5 \mathrm{GHz}$
$-<840 p$ In-to-Out $t_{p d}$
$-<80$ ps $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$
- Unique, patent-pending input isolation design minimizes crosstalk
- Fail-safe input prevents oscillations
- Ultra-low jitter design:
$-<1 \mathrm{ps}_{\text {RMS }}$ random jitter
$-<1 \mathrm{ps}_{\mathrm{Rms}}$ cycle-to-cycle jitter
$-<10 \mathrm{ps}_{\mathrm{pp}}$ total jitter (clock)
$-<0.7$ ps $_{\text {RMs }}$ MUX crosstalk induced jitter
- Unique patent-pending input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS)
- 400 mV CML output swing
- $2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%$ supply voltage
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range
- Available in 16-pin (3mm x 3mm) QFN package

Applications

- Redundant clock switchover
- Fail-safe clock protection

Markets

- LAN/WAN
- Enterprise servers
- ATE
- Test and measurement

Precision Edge is a registered trademark of Micrel, Inc.

[^0]
Typical Application

Simplified Example Illustrating Runt Pulse Eliminator (RPE) Circuit when Primary Clock Fails

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89842UMG	QFN-16	Industrial	$842 U$ with Pb-Free bar-line Indicator	NiPdAu Pb-Free
SY89842UMGTR ${ }^{(2)}$	QFN-16	Industrial	$842 U$ with Pb-Free bar-line Indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}$, DC Electricals Only.
2. Tape and Reel.

Pin Configuration

16-Pin QFN

Pin Description

Pin Number	Pin Name	Pin Function	
$\begin{gathered} 4,1 \\ 16,13 \end{gathered}$	INO, IINO, IN1, /IN1	Differential Inputs: These input pairs are the differential signal inputs to the device. These inputs accept AC- or DC-coupled signals as small as 100 mV $\left(200 \mathrm{mV} \mathrm{Vp}_{\mathrm{pp}}\right)$. Each pin of a pair internally terminates to a VT pin through 50Ω. Please refer to the "Input Interface Applications" section for more details.	
2, 14	VREF-ACO VREF-AC1	Reference Voltage: These outputs bias to $\mathrm{V}_{\mathrm{Cc}}-1.2 \mathrm{~V}$. They are used for $\mathrm{AC}-$ coupling inputs IN and /IN. Connect VREF-AC directly to the corresponding VT pin. Bypass with $0.01 \mu \mathrm{~F}$ low ESR capacitor to VCC. Maximum sink/source current is $\pm 1.5 \mathrm{~mA}$.	
3, 15	VT0, VT1	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT0 and VT1 pins provide a center-tap to a termination network for maximum interface flexibility. See the "Input Interface Applications" section for more details.	
5, 8, 12	VCC	Positive Power Supply: Bypass with $0.1 \mu \mathrm{~F} \\| 0.01 \mu \mathrm{~F}$ low ESR capacitors as close to the VCC pins as possible.	
6, 7	Q, /Q	Differential Outputs: This differential CML output is a logic function of the INO, IN1, and SEL inputs. Please refer to the "Truth Table" below for details.	
10	SEL	This single-ended TTL/CMOS-compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to logic HIGH state if left open.	
9	GND, Exposed Pad	Ground: Ground and exposed pad must be connected to the same ground plane.	
11	CAP	Power-On Reset (POR) initialization capacitor. When using the multiplexer with RPE capability, this pin is tied to a capacitor to VCC. The purpose is to ensure the internal RPE logic starts up in a known state. See "Power-On Reset (POR) Description" section for more details regarding capacitor selection. If this pin is tied directly to VCC, the RPE function will be disabled and the multiplexer will function as a normal multiplexer. The CAP pin should never be left open.	

Truth Table

Inputs						Outputs	
IN0	IIN0	IN1	IIN1	SEL	Q	IQ	
0	1	X	X	0	0	1	
1	0	X	X	0	1	0	
X	X	0	1	1	0	1	
X	X	1	0	1	1	0	

DC Electrical Characteristics ${ }^{(4)}$

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units	
Vcc	Power Supply		$\begin{gathered} 2.375 \\ 3.0 \end{gathered}$		$\begin{gathered} 2.625 \\ 3.6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Icc	Power Supply Current	No load, max V_{cc}		83	110	mA	
$\mathrm{R}_{\text {IN }}$	Input Resistance (IN-to-V V_{T})		45	50	55	Ω	
$\mathrm{R}_{\text {DIFF_IN }}$	Differential Input Resistance (IN-to-IIN)		90	100	110	Ω	
V_{IH}	Input High Voltage (IN, /IN)		1.2		V_{cc}	V	
VIL	Input Low Voltage (IN, /IN)		0		$\mathrm{V}_{\mathrm{H}-0.1}$	V	
$\mathrm{V}_{\text {IN }}$	Input Voltage Swing (IN, /IN)	See Figure 1a. Note 5.	0.1		V_{cc}	V	
VIIFF_IN	Differential Input Voltage Swing \|IN-IIN		See Figure 1b.	0.2			V
$\mathrm{V}_{\text {IN_FSI }}$	Input Voltage Threshold that Triggers FSI			30	100	mV	
$\mathrm{V}_{\text {T_IN }}$	IN-to- V_{T} (IN, /IN)				1.8	V	
$\mathrm{V}_{\text {REF-AC }}$	Output Reference Voltage		$\mathrm{V}_{\mathrm{cc}}-1.3$	$\mathrm{V}_{\mathrm{cc}}-1.2$	$\mathrm{V}_{\mathrm{cc}}-1.1$	V	

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and $\psi_{\text {Јв }}$ values are determined for a 4-layer board in still air unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
5. $\mathrm{V}_{\mathrm{IN}}(\max)$ is specified when V_{T} is floating.

CML Outputs DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {OH }}$	Output HIGH Voltage Q, /Q	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to V_{CC}.	$\mathrm{V}_{\mathrm{CC}}-0.020$	$\mathrm{~V}_{\mathrm{CC}}-0.010$	$\mathrm{~V}_{\mathrm{CC}}$	V
VOUT	Output Voltage Swing Q, /Q	See Figure 1a.	325	400		mV
V DIFF-OUT	Differential Output Voltage Swing Q, /Q	See Figure 1b.	650	800		mV
ROUT	Output Source Impedance		45	50	55	Ω

LVTTL/CMOS DC Electrical Characteristics ${ }^{(6)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage				0.8	V
I_{IH}	Input HIGH Current		-125		30	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current		-300		$\mu \mathrm{~A}$	

Note:
6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics ${ }^{(7)}$

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency	Clock	1.5	2.0		GHz
t_{pd}	Differential Propagation Delay$\begin{aligned} & \text { In-to-Q } \\ & \text { In-to-Q } \\ & \text { SEL-to-Q } \\ & \text { SEL-to-Q } \end{aligned}$	$100 \mathrm{mV}<\mathrm{V}_{\text {IN }} \leq 200 \mathrm{mV}^{(8,9)}$	440	625	840	ps
		$200 \mathrm{mV}<\mathrm{V}_{\text {IN }} \leq 800 \mathrm{mV}^{(8,9)}$	390	550	770	ps
		RPE enabled, see Timing Diagram			17	cycles
		RPE disabled ($\left.\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\mathrm{CC}} / 2\right)$	530		880	ps
$\begin{aligned} & \mathrm{t}_{\mathrm{pd}} \\ & \text { Tempco } \end{aligned}$	Differential Propagation Delay Temperature Coefficient			460		fs $/{ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {SKEW }}$	Part-to-Part Skew	Note 10			200	ps
$\mathrm{t}_{\text {IITTER }}$	Clock Random Jitter Cycle-to-Cycle Jitter Total Jitter (TJ)	Note 11			1	pS ${ }_{\text {RMS }}$
		Note 12			1	$\mathrm{ps}_{\text {RMS }}$
		Note 13			10	pSpp
	Crosstalk-Induced Jitter	Note 14			0.7	$\mathrm{pS}_{\text {RMS }}$
$\mathrm{tr}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time (20\% to 80\%)	At full output swing.	30		80	ps

Notes:
7. High-frequency AC-parameters are guaranteed by design and characterization.
8. Propagation delay is a function of rise and fall time at IN. See "Typical Operating Characteristics" for more details.
9. Propagation delay is measured with input $t_{r}, t_{f} \leq 300 \mathrm{ps}(20 \%$ to $80 \%)$ and $V_{\mathrm{IL}} \geq 800 \mathrm{mV}$.
10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
11. Random Jitter is measured with a K28.7 character pattern, measured at $<f_{\text {MAX }}$.
12. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_{n}-T_{n-1}$ where T is the time between rising edges of the output signal.
13. Total Jitter definition: with an ideal clock input of frequency $<\mathrm{f}_{\mathrm{MAx}}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
14. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each other at the inputs.

Functional Description

RPE MUX and Fail-Safe Input

The SY89842U is optimized for clock switchover applications where switching from one clock to another clock without runt pulses (short cycles) is required. It features two unique circuits:

Runt-Pulse Eliminator (RPE) Circuit

The RPE MUX provides a "glitchless" switchover between two clocks and prevents any runt pulses from occurring during the switchover transition. The design of both clock inputs is identical (i.e., the switchover sequence and protection is symmetrical for both input pair, INO or IN1. Thus, either input pair may be defined as the primary input). If not required, the RPE function can be permanently disabled to allow the switchover between inputs to occur immediately. If the CAP pin is tied directly to V_{cc}, the RPE function will be disabled and the multiplexer will function as a normal multiplexer.

Fail-Safe Input (FSI) Circuit

The FSI function provides protection against a selected input pair that drops below the minimum amplitude requirement. If the selected input pair drops sufficiently below the 100 mV minimum singleended input amplitude limit $\left(V_{\mathbb{I N}}\right)$, or 200 mV differentially ($\mathrm{V}_{\text {DIFF_IN }}$), the output will latch to the last valid clock state.

RPE and FSI Functionality

The basic operation of the RPE MUX and FSI functionality is described with the following four case descriptions. All descriptions are related to the true inputs and outputs. The primary (or selected) clock is called CLK1; the secondary (or alternate) clock is called CLK2. Due to the totally asynchronous relation of the IN and SEL signals and an additional internal protection against metastability, the number of pulses required for the operations described in cases 1-4 can vary within certain limits. Refer to "Timing Diagrams" section for detailed information.

Case \#1: Two Normal Clocks and RPE Enabled

In this case, the frequency difference between the two running clocks, INO and IN1, must not be greater than 1.5:1. For example, if the INO clock is 500 MHz , the IN1 clock must be within the range of 334 MHz to 750 MHz .
If the SEL input changes state to select the alternate clock, the switchover from CLK1 to CLK2 will occur in three stages.

- Stage 1: The output will continue to follow CLK1 for a limited number of pulses.
- Stage 2: The output will remain LOW for a limited number of pulses of CLK2.
- Stage 3: The output follows CLK2.

Timing Diagram 1

Case \#2: Input Clock Failure: Switching from a selected clock stuck HIGH to a valid clock (RPE enabled).
If CLK1 fails HIGH before the RPE MUX selects CLK2 (using the SEL pin), the switchover will occur in three stages.

- Stage 1: The output will remain HIGH for a limited number of pulses of CLK2.
- Stage 2: The output will switch to LOW and then remain LOW for a limited number of falling edges of CLK2.
- Stage 3: The output will follow CLK2.

Timing Diagram 2

Note: Output shows extended clock cycle during switchover. Pulse width for both high and low of this cycle will always be greater than 50% of the CLK2 period.

Case \#3: Input Clock Failure: Switching from a selected clock stuck Low to a valid clock (RPE enabled).
If CLK1 fails LOW before the RPE MUX selects CLK2 (using the SEL pin), the switchover will occur in two stages.

- Stage 1: The output will remain LOW for a limited number of falling edges of CLK2.
- Stage 2: The output will follow CLK2.

Timing Diagram 3

Case \#4: Input Clock Failure: Switching from the selected clock input stuck in an undetermined state to a valid clock input (RPE enabled).
If CLK1 fails to an undetermined state (e.g., amplitude falls below the $100 \mathrm{mV}\left(\mathrm{V}_{\mathrm{IN}}\right)$ minimum single-ended input limit, or 200 mV differentially) before the RPE MUX selects CLK2 (using the SEL pin), the switchover to the valid clock CLK2 will occur either following Case \#2 or Case \#3, depending upon the last valid state at the CLK1

If the selected input clock fails to a floating, static, or extremely low signal swing, including 0 mV , the FSI function will eliminate any metastable condition and guarantee a stable output signal. No ringing and no undetermined state will occur at the output under these conditions.
Please note that the FSI function will not prevent duty cycle distortions or runt pulses in case of a slowly deteriorating (but still toggling) input signal. Due to the FSI function, the propagation delay will depend on rise and fall time of the input signal and on its amplitude. Refer to "Typical Operating Characteristics" for detailed information.

Timing Diagram 4

Power-On Reset (POR) Description

The SY89842U includes an internal power-on reset (POR) function to ensure the RPE logic starts-up in a known logic state once the power-supply voltage is stable. An external capacitor connected between V_{cc} and the CAP pin (pin 11) controls the delay for the power-on reset function.
The required capacitor value calculation is based upon the time the system power supply needs to power up to a minimum of 2.3 V . The time constant for the internal power-on-reset must be greater than the time required for the power supply to ramp up to a minimum of 2.3 V .

The following formula describes this relationship:

$$
\mathrm{C}(\mu \mathrm{~F}) \geq \frac{\mathrm{t}_{\mathrm{dPs}}(\mathrm{~ms})}{12(\mathrm{~ms} \mu \mathrm{~F})}
$$

As an example, if the time required for the system power supply to power up past 2.3 V is 12 ms , then the required capacitor value on pin 11 would be:

$$
\mathrm{C}(\mu \mathrm{~F}) \geq \frac{12 \mathrm{~ms}}{12(\mathrm{~ms} / \mu \mathrm{F})}
$$

$$
\mathrm{C}(\mu \mathrm{~F}) \geq 1 \mu \mathrm{~F}
$$

Typical Operating Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq 400 \mathrm{mV}_{\mathrm{pk}}, \mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}} \leq 300 \mathrm{ps}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Functional Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq 400 \mathrm{~m} \mathrm{~V}_{\mathrm{pk}}, \mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}} \leq 300 \mathrm{ps}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across output pair; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

TIME (600ps/div.)

Singled-Ended and Differential Swings

Figure 1a. Single-Ended Voltage Swing

Input Stage

Figure 2a. Simplified Differential Input Stage

Figure 1b. Differential Voltage Swing

Figure 2b. Simplified Differential Input Stage

Input Interface Applications

Figure 3a. LVPECL Interface (DC-Coupled)

Figure 3d. CML Interface (AC-Coupled)

(Ac-Coupled)

Figure 3b. LVPECL Interface (AC-Coupled)

Figure 3e. LVDS Interface
(DC-Coupled)

Option: may connect V_{T} to V_{CC}
Figure 3c. CML Interface (DC-Coupled)

CML Output Interface Applications

Figure 4a. CML DC-Coupled Termination

Figure 4b. CML DC-Coupled Termination

Figure 4C. CML AC-Coupled Termination

Related Product and Support Documentation

Part Number	Function	Data Sheet Link
SY89840U	Precision LVPECL Runt Pulse Eliminator $2: 1$ Multiplexer	www.micrel.com/product-info/products/sy89840u.shtml.
SY89841U	Precision LVDS Runt Pulse Eliminator $2: 1$ Multiplexer	www.micrel.com/product-info/products/sy89841u.shtmI.
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

QFN-16

NDTE

1. ALL DIMENSIINS ARE IN MILLIMETERS.
2. MAX, PACKAGE WARPAGE IS 0.05 mm .
3. MAXIMUM ALLIWABE BURRS IS 0.076 mm IN ALL DIRECTIUNS.
4. PIN \#1 ID $\square N$ TIP WILL BE LASER/INK MARKED.

Packages Notes:

1. Package meets Level 2 Moisture Sensitivity Classification.
2. All parts are dry-packed before shipment.
3. Exposed pad must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
M38510/01406BEA MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G NLVHC4851ADTR2G NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8 QS4A201QG HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 5962-8682201JA 74HC158D.652

74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/36001BEA

[^0]: Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

